Alin Tomescu, CSE408 Tuesday, March 8th, Lecture #11

Diffie-Hellman key exchange

- You have Alice and Bob, as usual. Eve's there too, listening as always.
- Alice and Bob agree on a large number p and a base g between 2 and p. Eve can see both p and g.
- Alice picks a random number *a* and computes $x = g^a \mod p$.
 - Alice sends x to Bob. (Note that a remains secret to Alice)
- Bob picks *b* random and computes $y = g^b \mod p$.
 - \circ Bob sends y to Alice. (Note that b remains secret to Bob)
- Alice computes $k = y^a \mod p = g^{ab} \mod p$
- Bob computes $k' = x^b \mod p = g^{ab} \mod p$
- Alice and Bob now both have a secret key k = k', which is around 2048 bits large
- Given $g^a \mod p$ and $g^b \mod p$, Eve will not be able to easily compute $g^{ab} \mod p$.

Alice and Bob can start sending message back and forth by encrypting messages using their secret key k.

The discrete logarithm problem

Motivation: Eve has $x = g^a \mod p$ and $y = g^b \mod p$ but she can't compute $k = g^{ab} \mod p$. Why?

Eve has to solve the **discrete log problem** in order to figure out the value of a or b. Eve can't just take log x and/or log y because x and y were obtained by raising g to a certain power modulo p. If modular arithmetic were not used, then a simple log would have obviously worked.

Discrete log problem: Given g, p and $g^a \mod p$ compute a.

To the best of our knowledge, this is a hard problem. The best algorithms run roughly better than \sqrt{p} , since p is like 2^{2000} large, then you can see how the square root of that is still a huge number.

Eve can't do a discrete logarithm, but maybe she can do something else. For instance, Diffie-Hellman is vulnerable to the Omen problem: it is not clear that to compute $g^{ab} \mod p$ you actually need to know a or b.

Man in the middle attack (MITM)

What if Eve tampers with messages?

- She can send $g^e \mod p$ to Bob (by intercepting Alice's $g^a \mod p$)
- She can send $g^e \mod p$ to Alice (by intercepting Bob's $g^b \mod p$)
- She can compute both $k_A = g^{ea} \mod p$ and $k_B = g^{eb} \mod p$, which will be the keys Alice and Bobs will end up computing with the bad information they got from Eve.
 - Note that k_A and k_B will be different, therefore Eve has to extra work.
- Anytime Alice or Bob send a message, Eve has to intercept it, decrypt it using the right key, re-encrypt it under the other key, and finally let the altered ciphertext pass through to its destination.

Alin Tomescu, CSE408 Tuesday, March 8th, Lecture #11 Number theory

Terms to know: prime number, composite number, 1 is neither prime nor composite, greatest common divisor (always greater than 1), a and b are relatively prime or coprime \Leftrightarrow gcd(a, b) = 1.

Notation: a|b means a divides b, the same thing as saying that $b \mod a = 0$

The Extended Euclidian Algorithm

Algorithm: Given a and b, compute m = gcd(a, b) and x, y such that ax + by = m

Essentially, the algorithm starts with two simple equalities:

$$1 \times a + 0 \times b = a$$
$$0 \times a + 1 \times b = b$$

By manipulating these equalities, the algorithm will obtain the coefficients x and y, such that:

$$x \times a + y \times b = \gcd(a, b)$$

How do we get to this final, quite useful, equality? By noting that if we have:

$$x_1 \times a + y_1 \times b = c_1$$
$$x_2 \times a + y_2 \times b = c_2$$

Then, it is also true that:

$$(x_1 \times a + y_1 \times b) - q(x_2 \times a + y_2 \times b) = c_1 - q \times c_2$$

Therefore, starting with a and b, we compute q and r such that $a = q \times b + r$ (so we divide a by b, getting $q = \lfloor a/b \rfloor$ and $r = a \mod b$).

- Then, we get the next equation as $(x_1 \times a + y_1 \times b) q(x_2 \times a + y_2 \times b) = r$
- We always repeat the process with the last two equations until we finally get a remainder r = 0
 - The remainder before it will be the gcd, and on the same row we'll have the x_i and y_i values such that $x \times a + y \times b = \text{gcd}(a, b)$

Example: a = 96 and b = 38

x	У	c = ax + by	c_{old}/c_{new} (written as
			$c_{new} \times \boldsymbol{q} + \boldsymbol{r} = c_{old}$)
1	0	$1 \times 96 + 0 \times 38 = 96$	
0	1	$0 \times 96 + 1 \times 38 = 38$	$2 \times 38 + 20 = 96$
The goal now is to get r to equal 0 and get the corresponding x			
and y values. We do this by subtracting/adding multiples of the			
rows in this table.			
Since $2 \times 38 + 20 = 96$, we subtract $2r_2$ from r_1 . We repeat.			
1	-2	$1 \times 96 - 2 \times 38 = 20$	$1 \times 20 + 18 = 38$
-1	3	$-1 \times 96 + 3 \times 38 = 18$	$1 \times 18 + 2 = 20$
2	-5	$2 \times 96 - 5 \times 38 = 2$	$9 \times 2 + 0 = 18$
x	у	r = 0	Done.

Now, the algorithm has finished with the following output:

$$gcd(a, b) = gcd(96,38) = 2$$

Alin Tomescu, CSE408 Tuesday, March 8th, Lecture #11 Also, the algorithm gave you x = 2 and b = -5 such that ax + by = gcd(a, b), specifically now you have:

 $2 \times 96 - 5 \times 38 = 2$

Description (pseudo-code):

An easy to follow implementation:

```
eea(a, b) : gcd(a, b), x, y, such that a*x + b*y = gcd(a, b)
let x[], y[], and d[] be the columns of our Extended Euclidian Algorithm table
eea(a, b, 0) {
   if (a < b) swap(a, b);</pre>
   // The invariant is that x[i]*a + y[i]*b = d[i]
  x[0] = 1; y[0] = 0; d[0] = a;
   x[0] = 0; y[0] = 1; d[1] = b;
}
eea(a, b, i) {
  d[i] = d[i-2] mod d[i-1]
  q = d[i-2] / d[i-1];
  x[i] = x[i-2] - q * x[i-1];
  y[i] = y[i-2] - q * y[i-1];
}
eea(a, b) {
   for(int i = 0; d[i] != 0; i++)
   {
       eea(a, b, i);
   }
   return d[i-1], x[i-1], y[i-1];
```

Proof of correctness:

Suppose $c_0 = a, c_1 = b$ and a > b so Let c_1, c_2, \dots be as computed in the algorithm.

$$c_{2} = c_{0} \mod c_{1} = c_{0} - q_{1}c_{1}$$

$$c_{3} = c_{1} \mod c_{2} = c_{1} - q_{2}c_{2}$$

$$c_{n-1} = c_{n-3} \mod c_{n-2} = c_{n-3} - q_{n-2}c_{n-2}$$

$$0 = c_{n} = c_{n-2} \mod c_{n-1} = c_{n-2} - q_{n-1}c_{n-1}$$

$$\Rightarrow c_{n-1}|c_{n-2} \Rightarrow c_{n-1}|c_{n-3} \Rightarrow \dots \Rightarrow c_{n-1}| a \text{ and } c_{n-1}| b$$

Observation, gcd(a, b) divides all $c_i \Rightarrow gcd(a, b) \le c_{n-1}$

Also,

}

```
\forall i, \gcd(a, b) \mid c_ic_{n-1} \mid a \text{ and } c_{n-1} \mid b
```

Therefore, since $gcd(a, b) \le c_{n-1}$

 $gcd(a, b) = c_{n-1}$

Alin Tomescu, CSE408 Tuesday, March 8th, Lecture #11 **Modular arithmetic**

There are two notions of *mod*:

- *mod* as in the remainder (division)
 - For instance, $n \mod q$ is the remainder r, such that n = pq + r, for some p.
 - Example: $10 \mod 3 = 1, 7 \mod 4 = 3, 100 \mod 12 = 4$
- *mod* as an equivalence relation

Modulus equivalence relation

Congruency mod n

Definition: We say that two numbers *a* and *b* are **congruent** *mod n*, and we write $a \equiv b \pmod{n}$ if, and only if, *n* divides a - b.

$$a \equiv b \pmod{n} \Leftrightarrow n \mid a - b$$

Intuition: Two numbers *a* and *b* are congruent mod *n* if they both have the same remainder after dividing them by *n*.

$$a \equiv b \pmod{n} \Leftrightarrow a \bmod n = b \bmod n$$

Example: $71 \equiv 63 \equiv 7 \equiv -1 \pmod{8}$

Theorem: If $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n}$ then $a + c \equiv b + d \pmod{n}$ and $ac \equiv bd \pmod{n}$.

Proof (part I):

We have to prove that:
$$n|(a + c) - (b + d) \Leftrightarrow a + c \equiv b + d \pmod{n}$$

 $a \equiv b \pmod{n}$ and $c \equiv d \pmod{n} \Rightarrow n|a - b \pmod{n}|c - d$
Adding the last two division properties, we get $n|a - b + c - d \Leftrightarrow n|(a + c) - (b + d)$

Proof (part II):

Let's prove that $ac \equiv bc \pmod{n}$. Easy. $n|a - b \Rightarrow n|c(a - b) \Leftrightarrow n|ac - bc$ Let's prove that $bc \equiv bd \pmod{n}$. Easy. $n|c - d \Rightarrow n|b(c - d) \Leftrightarrow n|bc - bd$ Therefore, $ac \equiv bc \equiv bd \pmod{n}$

Theorems:

$$a^{b} \equiv (a \mod n)^{b} \pmod{n}$$
$$a^{b+c} \equiv a^{c+b} \pmod{n}$$
$$(a^{b})^{c} \equiv (a^{c})^{b} \pmod{n}$$

Theorem: $(a \mod n + b \mod n) \equiv a + b \pmod{n}$.

Note: First two mods are "remainder mods", third mod are "equivalence mods".

First, let's prove that:

 $a \equiv (a \mod n) \pmod{n}$

We have to show that:

$$n|(a - a \mod n)$$

Let $r = a \mod n$, where $a = qn + r \Rightarrow r = a - qn$
 $n|(a - a \mod n) \Leftrightarrow n|(a - (a - qn)) \Leftrightarrow n|qn$, which is true

Alin Tomescu, CSE408 Tuesday, March 8th, Lecture #11 So now, let's prove that:

$$\begin{array}{l} (a \ mod \ n + b \ mod \ n) \equiv a + b \ (mod \ n) \Leftrightarrow \\ a - q_1 n + b - q_2 n \equiv a + b \ (mod \ n) \Leftrightarrow \\ n | a - q_1 n + b - q_2 n - (a + b) \Leftrightarrow \\ n | (n(q_1 - q_2)), \text{ which is true.} \end{array}$$

Example: $116 \times 47 \mod 11 = -5 \times 3 \mod 11 = -15 \mod 11 = 7 \mod 11$

Tip: To go from positive to negative numbers in an equivalence class, the negative equivalent q of a positive number p. modulo n is $q = -(n - (p \mod n))$.

Example: Take p = 116, n = 11, then $116 \mod 11 = 6$. So q = -(11 - 6) = -5.

Modular exponentiation

How do we go about computing these big powers in the Diffie-Hellman key exchange protocol?

 $116^{97} \mod 11 = 6^{47} \mod 11 = reduce \ the \ 47 \ somehow?$

Theorem: If gcd(a, b) = 1, then there exists y such that $ay \equiv 1 \mod b \Leftrightarrow y = a^{-1} \mod b$.

Proof: By the extended Euclidian algorithm, since gcd(a, b) = 1, there exists x, y such that $ay + bx = 1 \Rightarrow b | ay - 1 \Rightarrow ay \equiv 1 \mod b$.