Alin Tomescu, CSE408
Tuesday, March 8™, Lecture #11

Public key cryptography

Diffie-Hellman key exchange
- You have Alice and Bob, as usual. Eve’s there too, listening as always.
- Alice and Bob agree on a large number p and a base g between 2 and p. Eve can see bothp and g.
- Alice picks a random number a and computes x = g% mod p.
o Alice sends x to Bob. (Note that a remains secret to Alice)
- Bob picks b random and computes y = g” mod p.
o Bob sends y to Alice. (Note that b remains secret to Bob)
- Alice computes k = y* mod p = g*’ mod p
- Bob computes k'’ = x? modp = g*” mod p
- Alice and Bob now both have a secret key k = k', which is around 2048 bits large
- Given g* mod p and g” mod p, Eve will not be able to easily compute g*” mod p.

Alice and Bob can start sending message back and forth by encrypting messages using their secret key k.

The discrete logarithm problem
Motivation: Eve has x = g% mod p and y = g” mod p but she can’t compute k = g*” mod p. Why?

Eve has to solve the discrete log problem in order to figure out the value of a or b. Eve can’t just take log x and/or logy
because x and y were obtained by raising g to a certain power modulo p. If modular arithmetic were not used, then a
simple log would have obviously worked.

Discrete log problem: Given g, p and g* mod p compute a.

To the best of our knowledge, this is a hard problem. The best algorithms run roughly better than \/E, since p is like

22000 |3rge, then you can see how the square root of that is still a huge number.

Eve can’t do a discrete logarithm, but maybe she can do something else. For instance, Diffie-Hellman is vulnerable to the
Omen problem: it is not clear that to compute g*” mod p you actually need to know a or b.

Man in the middle attack (MITM)
What if Eve tampers with messages?
- She can send g¢ mod p to Bob (by intercepting Alice’s g mod p)
- She can send g® mod p to Alice (by intercepting Bob’s g® mod p)
- She can compute both k4, = g®* mod p and kg = g®® mod p, which will be the keys Alice and Bobs will end up
computing with the bad information they got from Eve.
o Note that k4 and kg will be different, therefore Eve has to extra work.
- Anytime Alice or Bob send a message, Eve has to intercept it, decrypt it using the right key, re-encrypt it under
the other key, and finally let the altered ciphertext pass through to its destination.

Alin Tomescu, CSE408
Tuesday, March 8™, Lecture #11

Number theory

Terms to know: prime number, composite number, 1 is neither prime nor composite, greatest common divisor (always

greater than 1), a and b are relatively prime or coprime < gcd(a, b) = 1.

Notation: a|b means a divides b, the same thing as saying that b mod a = 0

The Extended Euclidian Algorithm
Algorithm: Given a and b, compute m = gcd(a, b) and x, y such that ax + by =m

Essentially, the algorithm starts with two simple equalities:
1Xa+0xb=a
OxXxa+1xb=b

By manipulating these equalities, the algorithm will obtain the coefficients x and y, such that:
xXa+yxb=gcd(a,b)

How do we get to this final, quite useful, equality? By noting that if we have:
Xy Xa+y;Xb=c¢
X, Xa+y, Xb=c,

Then, it is also true that:
(cyXxa+y; Xb)—q(xy; Xa+y, Xb)=c;—qXcy

Therefore, starting with a and b, we compute g and r such that a = g X b + r (so we divide a by b, getting g = |a/b]

and r = a mod b).
- Then, we get the next equationas (x; X a +y; Xb) —q(xy; Xa+y, Xb) =r

- We always repeat the process with the last two equations until we finally get a remainderr = 0

o The remainder before it will be the gcd, and on the same row we’ll have the x; and y; values such that

xXa+yxb=gcd(a,b)

Example: a = 96 and b = 38

x y c=ax + by Cotd/Cnew (Written as
Cnew X 4 + 7 = Co14)

1 0 1X964+0x38=96

0 1 0x96+1x38=238 2Xx38+20=096

The goal now is to get r to equal 0 and get the corresponding x
and y values. We do this by subtracting/adding multiples of the
rows in this table.

Since 2 X 38 + 20 = 96, we subtract 2r, from ry. We repeat.

1 —2 1X96—-2x%x38=20 1x20+18 =38
-1 3 —-1x96+3x38=18 1x18+2=20
2 =5 2X96—-5x38=2 9x2+0=18

x y r=20 Done.

Now, the algorithm has finished with the following output:

gcd(a, b) = gcd(96,38) = 2

Alin Tomescu, CSE408
Tuesday, March 8™, Lecture #11
Also, the algorithm gave you x = 2 and b = —5 such that ax + by = gcd(a, b), specifically now you have:

2X96—5x%x38=2
Description (pseudo-code):

An easy to follow implementation:

eea(a, b) : gcd(a, b), x, y, such that a*x + b*y = gcd(a, b)
let x[], yI[], and d[] be the columns of our Extended Euclidian Algorithm table

eea(a, b, 0) {
if (a < b) swap(a, b);

// The invariant is that x[i]l*a + y[i]l*b = d[i]
x[0] = 1; y[0] = 0; d[0] = a;
x[0] = 0; y[0] = 1; d[1l] = b;

}

eea(a, b, i) {
d[i] = d[i-2] mod d[i-1]

q = d[i-2] / d[i-1];

x[1i] = x[1i-2] - g * x[1-1];
y[i]l = y[i-2] - g * y[i-1];
}

eea(a, b) {
for(int 1 = 0; d[i] !'= 0; i++)
{
eea(a, b, 1);

}

return d[i-1], x[i-1], y[i-1];

Proof of correctness:

Suppose c; = a,c; = banda > b soletcy,cy, ... be as computed in the algorithm.
cy; =comodcy =cy—qiCq
c3 =cymodc, = ¢y — (qyCy
Cn—1 = Cn—3 MOd Cp_3 = Cp-3 — qn—2Cn—2
0=cyp=cppmodcyq1=Cnp = qn-1Cn-1
= Cp-tln-2 = cpqley3 = = cp_qlaand cp_q| b

Observation, gcd(a, b) divides all ¢; = ged(a, b) < cp_4

Also,
Vi, gcd(a, b) | ¢;
Ch-1|laandc,_1| b

Therefore, since gcd(a, b) < cp_4
ng(a, b) =Cn-1

Alin Tomescu, CSE408
Tuesday, March 8™, Lecture #11

Modular arithmetic
There are two notions of mod:
- mod as in the remainder (division)
o Forinstance, n mod q is the remainder r, such that n = pq + r, for some p.
= Example:10mod 3 =1,7mod 4 = 3,100 mod 12 = 4
- mod as an equivalence relation

Modulus equivalence relation

Congruency mod n
Definition: We say that two numbers a and b are congruent mod n, and we write a = b (mod n) if, and only if, n
divides a — b.

a=b(modn)en|a—>b

Intuition: Two numbers a and b are congruent mod n if they both have the same remainder after dividing them by n.
a=b(modn) © amodn=>bmodn

Example: 71 = 63 =7 = —1 (mod 8)

Theorem: If a = b (mod n) and ¢ = d (mod n) thena + ¢ = b + d (mod n) and ac = bd (mod n).

Proof (part1):
We have to prove that:n|(a+c) —(b+d) ©® a+c=b+d (modn)
a =b (modn)andc=d(modn)=>nla—bandn|c—d
Adding the last two division properties, we getnla—b+c—d © n|(a+c)— (b +d)

Proof (part Il):

Let’s prove that ac = bc (mod n). Easy. nla — b = n|c(a — b) © n|ac — bc
Let’s prove that bc = bd (mod n). Easy. n|c —d = n|b(c — d) & n|bc — bd
Therefore, ac = bc = bd (mod n)

Theorems:
a’? = (a mod n)? (mod n)
abte = g¢tb (mod n)

(a?)" = (a%)? (mod n)

Theorem: (a mod n + b mod n) = a + b (mod n).

Note: First two mods are “remainder mods”, third mod are “equivalence mods”.

First, let’s prove that:
a = (a mod n) (mod n)

We have to show that:
n|(a — a mod n)
Letr =amodn,wherea=qn+r=>r=a—qn

n|(a —amodn) & n|(a —(a— qn)) & n|qn, which is true

Alin Tomescu, CSE408
Tuesday, March 8™, Lecture #11
So now, let’s prove that:

(amodn+bmodn)=a+b (modn)
a—qgn+b—qg,n=a+b(modn) s
nla—qn+b—-—qgn—(a+b) &
n|(n(q1 — qz)), which is true.

Example: 116 X 47 mod 11 = =5 X 3mod 11 = —15mod 11 = 7 mod 11

Tip: To go from positive to negative numbers in an equivalence class, the negative equivalent g of a positive number p.
modulonis ¢ = —(n — (p mod n)).

Example: Take p = 116,n = 11, then 116 mod 11 = 6.Soq = —(11 — 6) = —5.

Modular exponentiation
How do we go about computing these big powers in the Diffie-Hellman key exchange protocol?

116°7 mod 11 = 6*” mod 11 = reduce the 47 somehow?
Theorem: If gcd(a, b) = 1, then there exists y such thatay = 1mod b © y = a~! mod b.

Proof: By the extended Euclidian algorithm, since gcd(a, b) = 1, there exists x, y suchthatay + bx =1 = blay — 1 =
ay = 1 mod b.

