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Public key cryptography 

Diffie-Hellman key exchange 
- You have Alice and Bob, as usual. Eve’s there too, listening as always. 

- Alice and Bob agree on a large number 𝑝 and a base 𝑔 between 2 and 𝑝. Eve can see both 𝑝 and 𝑔.  

- Alice picks a random number 𝑎 and computes 𝑥 = 𝑔𝑎  mod 𝑝.  

o Alice sends 𝑥 to Bob. (Note that 𝑎 remains secret to Alice) 

- Bob picks 𝑏 random and computes 𝑦 = 𝑔𝑏 mod 𝑝. 

o Bob sends 𝑦 to Alice. (Note that 𝑏 remains secret to Bob) 

- Alice computes 𝑘 = 𝑦𝑎  mod 𝑝 = 𝑔𝑎𝑏 mod 𝑝 

- Bob computes 𝑘′ = 𝑥𝑏 mod 𝑝 = 𝑔𝑎𝑏 mod 𝑝 

- Alice and Bob now both have a secret key 𝑘 = 𝑘′, which is around 2048 bits large 

- Given 𝑔𝑎 mod 𝑝 and 𝑔𝑏 mod 𝑝, Eve will not be able to easily compute 𝑔𝑎𝑏 mod 𝑝. 

Alice and Bob can start sending message back and forth by encrypting messages using their secret key 𝑘. 

The discrete logarithm problem 
Motivation: Eve has 𝑥 = 𝑔𝑎  𝑚𝑜𝑑 𝑝 and 𝑦 = 𝑔𝑏 𝑚𝑜𝑑 𝑝 but she can’t compute 𝑘 = 𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝. Why? 

Eve has to solve the discrete log problem in order to figure out the value of 𝑎 or 𝑏. Eve can’t just take log 𝑥 and/or log 𝑦 

because 𝑥 and 𝑦 were obtained by raising 𝑔 to a certain power modulo 𝑝. If modular arithmetic were not used, then a 

simple log  would have obviously worked. 

Discrete log problem: Given 𝑔, 𝑝 and 𝑔𝑎  𝑚𝑜𝑑 𝑝 compute 𝑎. 

To the best of our knowledge, this is a hard problem. The best algorithms run roughly better than √𝑝, since 𝑝 is like 

22000 large, then you can see how the square root of that is still a huge number. 

Eve can’t do a discrete logarithm, but maybe she can do something else. For instance, Diffie-Hellman is vulnerable to the 

Omen problem: it is not clear that to compute 𝑔𝑎𝑏 𝑚𝑜𝑑 𝑝 you actually need to know 𝑎 or 𝑏. 

Man in the middle attack (MITM) 
What if Eve tampers with messages? 

- She can send 𝑔𝑒 𝑚𝑜𝑑 𝑝 to Bob (by intercepting Alice’s 𝑔𝑎  𝑚𝑜𝑑 𝑝) 

- She can send 𝑔𝑒 𝑚𝑜𝑑 𝑝 to Alice (by intercepting Bob’s 𝑔𝑏 𝑚𝑜𝑑 𝑝) 

- She can compute both 𝑘𝐴 = 𝑔𝑒𝑎  𝑚𝑜𝑑 𝑝 and 𝑘𝐵 = 𝑔𝑒𝑏 𝑚𝑜𝑑 𝑝, which will be the keys Alice and Bobs will end up 

computing with the bad information they got from Eve.   

o Note that 𝑘𝐴 and 𝑘𝐵 will be different, therefore Eve has to extra work. 

- Anytime Alice or Bob send a message, Eve has to intercept it, decrypt it using the right key, re-encrypt it under 

the other key, and finally let the altered ciphertext pass through to its destination.  



Alin Tomescu, CSE408 
Tuesday, March 8th, Lecture #11 

Number theory 
Terms to know: prime number, composite number, 1 is neither prime nor composite, greatest common divisor (always 

greater than 1), 𝑎 and 𝑏 are relatively prime or coprime ⇔ gcd(𝑎, 𝑏) = 1. 

Notation: 𝑎|𝑏 means 𝑎 divides 𝑏, the same thing as saying that 𝑏 𝑚𝑜𝑑 𝑎 = 0 

The Extended Euclidian Algorithm 
Algorithm: Given 𝑎 and 𝑏, compute 𝑚 = gcd(𝑎, 𝑏) and 𝑥, 𝑦 such that 𝑎𝑥 + 𝑏𝑦 = 𝑚 

Essentially, the algorithm starts with two simple equalities: 

1 × 𝑎 + 0 × 𝑏 = 𝑎 

0 × 𝑎 + 1 × 𝑏 = 𝑏 

By manipulating these equalities, the algorithm will obtain the coefficients 𝑥 and 𝑦, such that: 

𝑥 × 𝑎 + 𝑦 × 𝑏 = gcd(𝑎, 𝑏) 

How do we get to this final, quite useful, equality? By noting that if we have: 

𝑥1 × 𝑎 + 𝑦1 × 𝑏 = 𝑐1 

𝑥2 × 𝑎 + 𝑦2 × 𝑏 = 𝑐2 

Then, it is also true that: 

(𝑥1 × 𝑎 + 𝑦1 × 𝑏) − 𝑞(𝑥2 × 𝑎 + 𝑦2 × 𝑏) = 𝑐1 − 𝑞 × 𝑐2 

Therefore, starting with 𝑎 and 𝑏, we compute 𝑞 and 𝑟 such that 𝑎 = 𝑞 × 𝑏 + 𝑟 (so we divide 𝑎 by 𝑏, getting 𝑞 = ⌊𝑎/𝑏⌋ 

and 𝑟 = 𝑎 mod 𝑏). 

- Then, we get the next equation as (𝑥1 × 𝑎 + 𝑦1 × 𝑏) − 𝑞( 𝑥2 × 𝑎 + 𝑦2 × 𝑏) = 𝑟  

- We always repeat the process with the last two equations until we finally get a remainder 𝑟 = 0 

o The remainder before it will be the gcd, and on the same row we’ll have the 𝑥𝑖 and 𝑦𝑖  values such that 

𝑥 × 𝑎 + 𝑦 × 𝑏 = gcd(𝑎, 𝑏) 

Example: 𝑎 = 96 and 𝑏 = 38 

𝑥 𝑦 𝑐 = 𝑎𝑥 + 𝑏𝑦 𝑐𝑜𝑙𝑑/𝑐𝑛𝑒𝑤 (written as 
𝑐𝑛𝑒𝑤 × 𝒒 + 𝑟 = 𝑐𝑜𝑙𝑑) 

1 0 1 × 96 + 0 × 38 = 96  
0 1 0 × 96 + 1 × 38 = 38  𝟐 × 38 + 20 = 96 

The goal now is to get 𝑟 to equal 0 and get the corresponding 𝑥 
and 𝑦 values. We do this by subtracting/adding multiples of the 
rows in this table.  
Since 𝟐 × 38 + 20 = 96, we subtract 2𝑟2 from 𝑟1. We repeat. 

1 −2 1 × 96 − 2 × 38 = 20 𝟏 × 20 + 18 = 38 
−1 3 −1 × 96 + 3 × 38 = 18 𝟏 × 18 + 2 = 20 
2 −5 2 × 96 − 5 × 38 = 2 𝟗 × 2 + 0 = 18 
𝑥 𝑦 𝑟 = 0 Done. 

 

Now, the algorithm has finished with the following output: 

gcd(𝑎, 𝑏) = gcd(96,38) = 2 
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Also, the algorithm gave you 𝑥 = 2 and 𝑏 = −5 such that 𝑎𝑥 + 𝑏𝑦 = gcd (𝑎, 𝑏), specifically now you have: 

2 × 96 − 5 × 38 = 2 

Description (pseudo-code):  

An easy to follow implementation: 

 

Proof of correctness: 

Suppose 𝑐0 = 𝑎, 𝑐1 = 𝑏 and 𝑎 >  𝑏 so Let 𝑐1, 𝑐2, … be as computed in the algorithm. 

𝑐2 = 𝑐0 𝑚𝑜𝑑 𝑐1 = 𝑐0 − 𝑞1𝑐1 

𝑐3 = 𝑐1 𝑚𝑜𝑑 𝑐2 = 𝑐1 − 𝑞2𝑐2 

𝑐𝑛−1 = 𝑐𝑛−3 𝑚𝑜𝑑 𝑐𝑛−2 = 𝑐𝑛−3 − 𝑞𝑛−2𝑐𝑛−2 

0 = 𝑐𝑛 = 𝑐𝑛−2 𝑚𝑜𝑑 𝑐𝑛−1 = 𝑐𝑛−2 − 𝑞𝑛−1𝑐𝑛−1 

⇒ 𝑐𝑛−1|𝑐𝑛−2 ⇒ 𝑐𝑛−1|𝑐𝑛−3 ⇒ ⋯ ⇒ 𝑐𝑛−1| 𝑎 and 𝑐𝑛−1| 𝑏 

Observation, gcd (𝑎, 𝑏) divides all 𝑐𝑖 ⇒ gcd(𝑎, 𝑏) ≤ 𝑐𝑛−1 

Also, 

∀𝑖, gcd(𝑎, 𝑏) | 𝑐𝑖  

𝑐𝑛−1| 𝑎 and 𝑐𝑛−1| 𝑏 

Therefore, since gcd(𝑎, 𝑏) ≤ 𝑐𝑛−1 

𝐠𝐜𝐝(𝒂, 𝒃) = 𝒄𝒏−𝟏 

eea(a, b) : gcd(a, b), x, y, such that a*x + b*y = gcd(a, b) 

 

let x[], y[], and d[] be the columns of our Extended Euclidian Algorithm table 

 

eea(a, b, 0) { 

   if (a < b) swap(a, b); 

 

   // The invariant is that x[i]*a + y[i]*b = d[i] 

   x[0] = 1; y[0] = 0; d[0] = a; 

   x[0] = 0; y[0] = 1; d[1] = b; 

} 

 

eea(a, b, i) { 

   d[i] = d[i-2] mod d[i-1] 

    

   q = d[i-2] / d[i-1]; 

   x[i] = x[i-2] – q * x[i-1]; 

   y[i] = y[i-2] – q * y[i-1]; 

} 

 

eea(a, b) { 

   for(int i = 0; d[i] != 0; i++) 

   { 

       eea(a, b, i); 

   } 

 

   return d[i-1], x[i-1], y[i-1]; 

} 
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Modular arithmetic 
There are two notions of 𝑚𝑜𝑑: 

- 𝑚𝑜𝑑 as in the remainder (division) 

o For instance, 𝑛 𝑚𝑜𝑑 𝑞 is the remainder 𝑟, such that 𝑛 = 𝑝𝑞 + 𝑟, for some 𝑝.  

 Example: 10 𝑚𝑜𝑑 3 = 1, 7 𝑚𝑜𝑑 4 = 3, 100 𝑚𝑜𝑑 12 = 4 

- 𝑚𝑜𝑑 as an equivalence relation 

Modulus equivalence relation 

Congruency mod 𝒏 

Definition: We say that two numbers 𝑎 and 𝑏 are congruent 𝒎𝒐𝒅 𝒏, and we write 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) if, and only if, 𝑛 

divides 𝑎 − 𝑏. 

𝑎 ≡ 𝑏 (mod 𝑛) ⇔ 𝑛 | 𝑎 − 𝑏 

Intuition: Two numbers 𝑎 and 𝑏 are congruent mod 𝑛 if they both have the same remainder after dividing them by 𝑛. 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) ⇔ 𝑎 mod 𝑛 = 𝑏 mod 𝑛 

Example: 71 ≡ 63 ≡ 7 ≡ −1 (𝑚𝑜𝑑 8) 

Theorem: If 𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) then 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (𝑚𝑜𝑑 𝑛) and 𝑎𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛). 

Proof (part I):  

We have to prove that: 𝑛|(𝑎 + 𝑐) − (𝑏 + 𝑑) ⇔ 𝑎 + 𝑐 ≡ 𝑏 + 𝑑 (𝑚𝑜𝑑 𝑛) 

𝑎 ≡ 𝑏 (𝑚𝑜𝑑 𝑛) and 𝑐 ≡ 𝑑 (𝑚𝑜𝑑 𝑛) ⇒ 𝑛|𝑎 − 𝑏 and 𝑛|𝑐 − 𝑑 

Adding the last two division properties, we get 𝑛|𝑎 − 𝑏 + 𝑐 − 𝑑 ⇔ 𝑛|(𝑎 + 𝑐) − (𝑏 + 𝑑)  

Proof (part II): 

Let’s prove that 𝑎𝑐 ≡ 𝑏𝑐 (𝑚𝑜𝑑 𝑛). Easy. 𝑛|𝑎 − 𝑏 ⇒ 𝑛|𝑐(𝑎 − 𝑏) ⇔ 𝑛|𝑎𝑐 − 𝑏𝑐  

Let’s prove that 𝑏𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛). Easy. 𝑛|𝑐 − 𝑑 ⇒ 𝑛|𝑏(𝑐 − 𝑑) ⇔ 𝑛|𝑏𝑐 − 𝑏𝑑 

Therefore, 𝑎𝑐 ≡ 𝑏𝑐 ≡ 𝑏𝑑 (𝑚𝑜𝑑 𝑛) 

Theorems: 

𝑎𝑏 ≡ (𝑎 𝑚𝑜𝑑 𝑛)𝑏 (𝑚𝑜𝑑 𝑛) 

𝑎𝑏+𝑐 ≡ 𝑎𝑐+𝑏 (𝑚𝑜𝑑 𝑛) 

(𝑎𝑏)
𝑐

≡ (𝑎𝑐)𝑏 (𝑚𝑜𝑑 𝑛) 

Theorem: (𝑎 𝑚𝑜𝑑 𝑛 + 𝑏 𝑚𝑜𝑑 𝑛) ≡ 𝑎 + 𝑏 (𝑚𝑜𝑑 𝑛).  

Note: First two mods are “remainder mods”, third mod are “equivalence mods”. 

First, let’s prove that: 

𝑎 ≡ (𝑎 𝑚𝑜𝑑 𝑛) (𝑚𝑜𝑑 𝑛) 

We have to show that: 

𝑛|(𝑎 − 𝑎 𝑚𝑜𝑑 𝑛) 

Let 𝑟 = 𝑎 𝑚𝑜𝑑 𝑛, where 𝑎 = 𝑞𝑛 + 𝑟 ⇒ 𝑟 = 𝑎 − 𝑞𝑛 

𝑛|(𝑎 − 𝑎 𝑚𝑜𝑑 𝑛) ⇔ 𝑛|(𝑎 − (𝑎 − 𝑞𝑛)) ⇔ 𝑛|𝑞𝑛, which is true 
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So now, let’s prove that: 

(𝑎 𝑚𝑜𝑑 𝑛 + 𝑏 𝑚𝑜𝑑 𝑛) ≡ 𝑎 + 𝑏 (𝑚𝑜𝑑 𝑛) ⇔ 

𝑎 − 𝑞1𝑛 + 𝑏 − 𝑞2𝑛 ≡ 𝑎 + 𝑏 (𝑚𝑜𝑑 𝑛) ⇔ 

𝑛|𝑎 − 𝑞1𝑛 + 𝑏 − 𝑞2𝑛 − (𝑎 + 𝑏) ⇔ 

𝑛|(𝑛(𝑞1 − 𝑞2)), which is true. 

Example: 116 × 47 𝑚𝑜𝑑 11 = −5 × 3 𝑚𝑜𝑑 11 = −15 𝑚𝑜𝑑 11 = 7 𝑚𝑜𝑑 11 

Tip: To go from positive to negative numbers in an equivalence class, the negative equivalent 𝑞 of a positive number 𝑝. 

modulo 𝑛 is 𝑞 = −(𝑛 − (𝑝 𝑚𝑜𝑑 𝑛)).  

Example: Take 𝑝 = 116, 𝑛 = 11, then 116 𝑚𝑜𝑑 11 = 6. So 𝑞 = −(11 − 6) = −5. 

Modular exponentiation 
How do we go about computing these big powers in the Diffie-Hellman key exchange protocol? 

11697 𝑚𝑜𝑑 11 = 647 𝑚𝑜𝑑 11 = 𝑟𝑒𝑑𝑢𝑐𝑒 𝑡ℎ𝑒 47 𝑠𝑜𝑚𝑒ℎ𝑜𝑤? 

Theorem: If gcd(𝑎, 𝑏) = 1, then there exists 𝑦 such that 𝑎𝑦 ≡ 1 𝑚𝑜𝑑 𝑏 ⇔ 𝑦 = 𝑎−1 𝑚𝑜𝑑 𝑏. 

Proof: By the extended Euclidian algorithm, since gcd(𝑎, 𝑏) = 1, there exists 𝑥, 𝑦 such that 𝑎𝑦 + 𝑏𝑥 = 1 ⇒ 𝑏|𝑎𝑦 − 1 ⇒

𝑎𝑦 ≡ 1 mod 𝑏. 


