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More number theory 

Theorem from last time (refresher): gcd(𝑎, 𝑛) = 1 ⇔ ∃𝑦, such that 𝑎𝑦 ≡ 1 (𝑚𝑜𝑑 𝑛). We write 𝑎−1 for 𝑦. 

Theorem: If gcd(𝑎, 𝑛) = 1 and gcd(𝑏, 𝑛) = 1 then gcd(𝑎𝑏, 𝑛) = 1 

Proof:  

gcd(𝑎, 𝑛) = 1 ⇔ ∃𝑥1, 𝑦1, 𝑎𝑥1 + 𝑛𝑦1 = 1 

gcd(𝑏, 𝑛) = 1 ⇔ ∃𝑥2, 𝑦2, 𝑏𝑥2 + 𝑛𝑦2 = 1 

𝑎𝑏𝑥1𝑥2 + 𝑎𝑥1𝑦2𝑛 + 𝑏𝑥2𝑦1𝑛 + 𝑦1𝑦2𝑛2 = 1 

𝑎𝑏 × 𝑥1𝑥2 + 𝑛 × (𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔) = 1 ⇔ gcd(𝑎𝑏, 𝑛) = 1 

The set of congruence classes modulo 𝒏 
Notation: ℤ𝑛 = ℤ/𝑛ℤ = {0,1,2, … 𝑛 − 1} = congruence class modulo 𝑛 

Example: ℤ6 = {0,1,2,3,4,5} 

ℤ𝑛
∗ = {𝑥 ∈ ℤ𝑛| gcd(𝑥, 𝑛) = 1} = set of all numbers that are coprime to 𝑛 

𝑍9
∗ = {1,2,4,5,6,7,8} 

Properties of ℤ𝒏
∗  

- If you multiply two numbers in ℤ𝑛
∗  you get another number in ℤ𝑛

∗  (what the second theorem essentially says) 

- ℤ𝑛
∗  is closed under multiplication. Multiplication is associative in ℤ𝑛

∗ . 

- Suppose I pick a number 𝑎 ∈ ℤ𝑛
∗ . What is 𝑎 × ℤ𝑛

∗ = {𝑎 × 𝑥 | 𝑥 ∈ ℤ𝑛
∗  }? It’s a subset of ℤ𝑛

∗ . Because ℤ𝑛
∗  is closed 

under multiplication.  

- 𝑎 ∈ ℤ𝑛
∗  will always have an inverse (according to the first theorem). You can always undo a multiplication.  

- Multiplying by 𝑎 ∈ ℤ𝑛
∗  permutes ℤ𝑛

∗ . 

o Take, 𝑎 = 5 you get 𝑎 × ℤ𝑛
∗ = {5, 1, 2, 7, 8, 4}. 

Definition: The totient function, 𝜑(𝑛) = |ℤ𝑛
∗ | is the size of the ℤ𝑛

∗  set. 

Theorem: If 𝑎 ∈ ℤ𝑛
∗ , then 𝑎𝜑(𝑛) ≡ 1 (𝑚𝑜𝑑 𝑛). 

Proof (by sneakiness):  

Since multiplication by 𝑎 just reoders the numbers, and multiplication is commutative, we have ∏ 𝑥𝑥 ∈ ℤ𝑛
∗ = ∏ 𝑎𝑥𝑥 ∈ ℤ𝑛

∗ . 

∏ 𝑥

𝑥 ∈ ℤ𝑛
∗

= ∏ 𝑎𝑥

𝑥 ∈ ℤ𝑛
∗

= 𝑎𝜑(𝑛) × ∏ 𝑥

𝑥 ∈ ℤ𝑛
∗

⇔ 1 ≡ 𝑎𝜑(𝑛) 

Side-note: Cancelling works just fine with modular arithmetic when you have an inverse, but that might not always 

happen. 2𝑥 = 2𝑦 mod 8 does not imply 𝑥 = 𝑦 because you could have 𝑥 = 2 and 𝑦 = 6. 

Getting back to our initial problem… How do we go about computing big powers modulo 𝑛? 

577 mod 9 
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ℤ9
∗ = {1,2,4,5,7,8} 

𝜙(𝑛) = 6 

77 = 12 × 6 + 5 

(56)12 × 55 𝑚𝑜𝑑 9 = 55 𝑚𝑜𝑑 9 

So you can reduce bases mod 𝑛 and exponents mod 𝜙(𝑛) in order to perform easy exponentiation. Note that when 𝑛 =

prime then 𝜙(𝑛) = 𝑛 − 1. 

On top of this we can use logarithmic exponentiation, after reducing the base and exponents. To give an example of 

this: 

𝑎128 = ((((((𝑎2)2)2)2)2)2)2 

- Instead of performing 128 multiplications, we are only performing log2 128 = 7. 

How to compute the totient function 𝝓(𝒏)? 
The totient function has many interesting properties, which can be exploited to easily calculate its values. 

𝜙(𝑝) = 𝑝 − 1, if 𝑛 is prime (since all numbers less than 𝑝 will be coprime with 𝑝) 

How many numbers between 1 and 𝑝𝑘 divide 𝑝𝑘, if 𝑝 is prime?  

- 1, 𝑝, 2𝑝, 3𝑝, … , 𝑝𝑘 − 𝑝 and 𝑝𝑘  all divide 𝑝𝑘 

o A clearer way to express this sequence: 1, 1 × 𝑝, 2 × 𝑝, 3 × 𝑝 … (𝑝𝑘−1 − 1) × 𝑝, 𝑝𝑘−1 × 𝑝 

- So there are 𝑝𝑘 numbers in total that could “potentially” be coprime to 𝑝𝑘 

- 𝑝𝑘−1 out of these numbers will divide 𝑝𝑘 because they will be all the multiples of 𝑝 from 1 to 𝑝𝑘 

o We exclude the number 1 since even though it divides 𝑝𝑘, it is still considered to be coprime with 𝑝𝑘 

o Back to 5th grade: How many multiples of 𝑥 > 0 are there between 1 and 𝑛? Answer: ⌊
𝑛

𝑥
⌋ 

𝜙(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = 𝑝𝑘−1(𝑝 − 1) 

The Chinese remainder theorem 
Theorem: If gcd(𝑎, 𝑏) = 1 then ℤ𝑎

∗ × ℤ𝑏
∗ ≅ ℤ𝑎𝑏

∗   

 

For ℤ𝑎
∗ × ℤ𝑏

∗ ≅ ℤ𝑎𝑏
∗  there needs to exist an isomorphism 𝑓 ∶ ℤ𝑎𝑏

∗ → ℤ𝑎
∗ × ℤ𝑏

∗  between the two sets, such that: 

- 𝑓 is bijective 

- 𝑓(𝑥𝑦) = 𝑓(𝑥)𝑓(𝑦), ∀𝑥, 𝑦 ∈ ℤ𝑎𝑏
∗  

But first, how does ℤ𝒂
∗ × ℤ𝒃

∗  “work”? 

ℤ𝑎
∗ × ℤ𝑏

∗ = {(𝑥, 𝑦)| 𝑥 ∈ ℤ𝑎
∗ , 𝑦 ∈ ℤ𝑏

∗ } 

- (𝑥, 𝑦) × (𝑧, 𝑤) = (𝑥𝑧 mod 𝑎, 𝑦𝑤 mod 𝑏), where (𝑥, 𝑦) and (𝑧, 𝑤) ∈ ℤ𝑎
∗ × ℤ𝑏

∗  

- there exists a neutral element, (1,1) × (𝑥, 𝑦) = (𝑥, 𝑦) 

- there exists an inverse (𝑥, 𝑦) × (𝑥−1, 𝑦−1) = (1,1) 
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Proof: 

Now, to show that doing arithmetic in ℤ𝑎
∗ × ℤ𝑏

∗  is equivalent to doing arithmetic in ℤ𝑎𝑏
∗  if gcd(𝑎, 𝑏) = 1 

 

𝐿𝑒𝑡 𝑓(𝑥) = (𝑥 mod 𝑎, 𝑥 mod 𝑏) be our isomorphism. We will prove that it satisfies all the conditions. 

1. We need to show that 𝒇(𝒙) maps correctly to the codomain. So we need to show that: 

gcd(𝑥, 𝑎𝑏) = 1 ⇒ gcd(𝑥 mod 𝑎, 𝑎) = 1 

Suppose the above statement is false, then, there exists a common divisor 𝑚 > 1 that divides both 𝑥 mod 𝑎, and 𝑎: 

𝑚 | 𝑥 − 𝑘𝑎 

𝑚 | 𝑎 

Therefore, subtracting the second equality times 𝑘 from the first equality, we get: 

𝑚 | 𝑥 

Then 𝑚 | 𝑎𝑏 so gcd(𝑥, 𝑎𝑏) would not be 1 anymore. This is a contradiction. Therefore our initial assumption was true. 

2. We need to prove that 𝒇 is invertible. 

Since gcd(𝑎, 𝑏) = 1, then ∃𝑟, 𝑠 such that 𝑟𝑎 + 𝑏𝑠 = 1. 

We will define 𝑔((𝑥, 𝑦)) ∶  ℤ𝑎
∗ × ℤ𝑏

∗ → ℤ𝑎𝑏
∗  and prove that 𝑔 = 𝑓−1 ⇔ 𝑓 (𝑔((𝑥, 𝑦))) = (𝑥 mod 𝑎, 𝑦 mod 𝑏) 

𝑔((𝑥, 𝑦)) = 𝑏𝑠𝑥 + 𝑟𝑎𝑦 mod 𝑎𝑏 

Then 𝑓 (𝑔((𝑥, 𝑦))) = 𝑓(𝑏𝑠𝑥 + 𝑟𝑎𝑦 mod 𝑎𝑏) = ((𝑏𝑠𝑥 + 𝑟𝑎𝑦 mod 𝑎𝑏) mod 𝑎, (𝑏𝑠𝑥 + 𝑟𝑎𝑦 mod 𝑎𝑏) mod 𝑏) 

Since 𝑎 | 𝑎𝑏, then 𝑓(𝑔(𝑥, 𝑦)) = (𝑏𝑠𝑥 + 𝑟𝑎𝑦 mod 𝑎, 𝑏𝑠𝑥 + 𝑟𝑎𝑦 mod 𝑏) = (𝑏𝑠𝑥 mod 𝑎, 𝑟𝑎𝑦 mod 𝑏) 

But, 𝑟𝑎 + 𝑏𝑠 = 1 ⇔ 𝑟𝑎 = −(𝑏𝑠 − 1) so 𝑏𝑠 ≡ 1 (𝑚𝑜𝑑 𝑎), The other way around, we also get 𝑟𝑎 ≡ 1 (𝑚𝑜𝑑 𝑏) 

𝑓 (𝑔((𝑥, 𝑦))) = (𝑥 𝑚𝑜𝑑 𝑎, 𝑦 𝑚𝑜𝑑 𝑏) 

3. We need to prove that 𝒇(𝒙𝒚) = 𝒇(𝒙)𝒇(𝒚), ∀𝒙, 𝒚 ∈ ℤ𝒂𝒃
∗  
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𝑓(𝑥𝑦) = (𝑥𝑦 𝑚𝑜𝑑 𝑎, 𝑥𝑦 𝑚𝑜𝑑 𝑏) = (𝑥 𝑚𝑜𝑑 𝑎, 𝑥 𝑚𝑜𝑑 𝑏)(𝑦 𝑚𝑜𝑑 𝑎, 𝑦 𝑚𝑜𝑑 𝑏) = 𝑓(𝑥)𝑓(𝑦) 

Applying the Chinese remainder theorem 
Now, we can finally apply the Chinese remainder theorem to compute the totient function: 

gcd(𝑎, 𝑏) = 1 ⇒ 𝜙(𝑎𝑏) = |𝑍𝑎𝑏
∗ | = |𝑍𝑎

∗||𝑍𝑏
∗| = 𝜙(𝑎) × 𝜙(𝑏) 

𝜙(𝑎) = 𝜙(𝑎1
𝑟1) × 𝜙(𝑎2

𝑟2) × … × 𝜙(𝑎𝑛
𝑟𝑛) 


