Theorem from last time (refresher): $gcd(a, n) = 1 \Leftrightarrow \exists y$, such that $ay \equiv 1 \pmod{n}$. We write a^{-1} for y.

Theorem: If
$$gcd(a, n) = 1$$
 and $gcd(b, n) = 1$ then $gcd(ab, n) = 1$

Proof:

 $gcd(a, n) = 1 \Leftrightarrow \exists x_1, y_1, ax_1 + ny_1 = 1$ $gcd(b, n) = 1 \Leftrightarrow \exists x_2, y_2, bx_2 + ny_2 = 1$ $abx_1x_2 + ax_1y_2n + bx_2y_1n + y_1y_2n^2 = 1$

 $ab \times x_1 x_2 + n \times (something) = 1 \Leftrightarrow gcd(ab, n) = 1$

The set of congruence classes modulo n

Notation: $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z} = \{0, 1, 2, \dots n - 1\}$ = congruence class modulo n

Example: $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}$

 $\mathbb{Z}_n^* = \{x \in \mathbb{Z}_n | \gcd(x, n) = 1\} = \text{set of all numbers that are coprime to } n$

 $Z_9^* = \{1, 2, 4, 5, 6, 7, 8\}$

Properties of \mathbb{Z}_n^*

- If you multiply two numbers in \mathbb{Z}_n^* you get another number in \mathbb{Z}_n^* (what the second theorem essentially says)
- \mathbb{Z}_n^* is closed under multiplication. Multiplication is associative in \mathbb{Z}_n^* .
- Suppose I pick a number $a \in \mathbb{Z}_n^*$. What is $a \times \mathbb{Z}_n^* = \{a \times x \mid x \in \mathbb{Z}_n^*\}$? It's a subset of \mathbb{Z}_n^* . Because \mathbb{Z}_n^* is closed under multiplication.
- $a \in \mathbb{Z}_n^*$ will always have an inverse (according to the first theorem). You can always undo a multiplication.
- Multiplying by $a \in \mathbb{Z}_n^*$ permutes \mathbb{Z}_n^* .
 - Take, a = 5 you get $a \times \mathbb{Z}_n^* = \{5, 1, 2, 7, 8, 4\}$.

Definition: The totient function, $\varphi(n) = |\mathbb{Z}_n^*|$ is the size of the \mathbb{Z}_n^* set.

Theorem: If $a \in \mathbb{Z}_n^*$, then $a^{\varphi(n)} \equiv 1 \pmod{n}$.

Proof (by sneakiness):

Since multiplication by *a* just reoders the numbers, and multiplication is commutative, we have $\prod_{x \in \mathbb{Z}_n^*} x = \prod_{x \in \mathbb{Z}_n^*} ax$.

$$\prod_{x \in \mathbb{Z}_n^*} x = \prod_{x \in \mathbb{Z}_n^*} ax = a^{\varphi(n)} \times \prod_{x \in \mathbb{Z}_n^*} x \Leftrightarrow 1 \equiv a^{\varphi(n)}$$

Side-note: Cancelling works just fine with modular arithmetic when you have an inverse, but that might not always happen. $2x = 2y \mod 8$ does not imply x = y because you could have x = 2 and y = 6.

Getting back to our initial problem... How do we go about computing big powers modulo n?

Alin Tomescu, CSE408 Tuesday, March 10th, Lecture #12

$$\mathbb{Z}_{9}^{*} = \{1, 2, 4, 5, 7, 8\}$$
$$\phi(n) = 6$$
$$77 = 12 \times 6 + 5$$
$$(5^{6})^{12} \times 5^{5} \mod 9 = 5^{5} \mod 9$$

So you can reduce bases mod n and exponents mod $\phi(n)$ in order to perform easy exponentiation. Note that when n = prime then $\phi(n) = n - 1$.

9

On top of this we can use **logarithmic exponentiation**, after reducing the base and exponents. To give an example of this:

$$a^{128} = ((((((a^2)^2)^2)^2)^2)^2)^2)^2$$

- Instead of performing 128 multiplications, we are only performing $\log_2 128 = 7$.

How to compute the totient function $\phi(n)$?

The totient function has many interesting properties, which can be exploited to easily calculate its values.

 $\phi(p) = p - 1$, if n is prime (since all numbers less than p will be coprime with p)

How many numbers between 1 and p^k divide p^k , if p is prime?

- 1, p, 2p, 3p, ..., $p^k p$ and p^k all divide p^k
 - A clearer way to express this sequence: $1, 1 \times p, 2 \times p, 3 \times p \dots (p^{k-1} 1) \times p, p^{k-1} \times p$
 - So there are p^k numbers in total that could "potentially" be coprime to p^k
- p^{k-1} out of these numbers will divide p^k because they will be all the multiples of p from 1 to p^k
 - We exclude the number 1 since even though it divides p^k , it is still considered to be coprime with p^k
 - Back to 5th grade: How many multiples of x > 0 are there between 1 and n? Answer: $\left|\frac{n}{n}\right|$

$$\phi(p^k) = p^k - p^{k-1} = p^{k-1}(p-1)$$

The Chinese remainder theorem

Theorem: If gcd(a, b) = 1 then $\mathbb{Z}_a^* \times \mathbb{Z}_b^* \cong \mathbb{Z}_{ab}^*$

For $\mathbb{Z}_a^* \times \mathbb{Z}_b^* \cong \mathbb{Z}_{ab}^*$ there needs to exist an isomorphism $f : \mathbb{Z}_{ab}^* \to \mathbb{Z}_a^* \times \mathbb{Z}_b^*$ between the two sets, such that:

- f is bijective
- $f(xy) = f(x)f(y), \forall x, y \in \mathbb{Z}_{ab}^*$

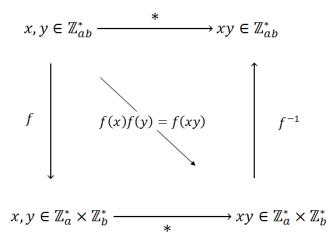
But first, how does $\mathbb{Z}_a^* \times \mathbb{Z}_b^*$ "work"?

$$\mathbb{Z}_a^* \times \mathbb{Z}_b^* = \{ (x, y) \mid x \in \mathbb{Z}_a^*, y \in \mathbb{Z}_b^* \}$$

- $(x, y) \times (z, w) = (xz \mod a, yw \mod b)$, where (x, y) and $(z, w) \in \mathbb{Z}_a^* \times \mathbb{Z}_b^*$
- there exists a neutral element, $(1,1) \times (x,y) = (x,y)$
- there exists an inverse $(x, y) \times (x^{-1}, y^{-1}) = (1, 1)$

Alin Tomescu, CSE408 Tuesday, March 10th, Lecture #12 **Proof:**

Now, to show that doing arithmetic in $\mathbb{Z}_a^* \times \mathbb{Z}_b^*$ is equivalent to doing arithmetic in \mathbb{Z}_{ab}^* if gcd(a, b) = 1



Let $f(x) = (x \mod a, x \mod b)$ be our isomorphism. We will prove that it satisfies all the conditions.

1. We need to show that f(x) maps correctly to the codomain. So we need to show that:

$$gcd(x, ab) = 1 \Rightarrow gcd(x \mod a, a) = 1$$

Suppose the above statement is false, then, there exists a common divisor m > 1 that divides both $x \mod a$, and a:

$$m \mid x - ka$$

 $m \mid a$

Therefore, subtracting the second equality times k from the first equality, we get:

m | *x*

Then $m \mid ab$ so gcd(x, ab) would not be 1 anymore. This is a contradiction. Therefore our initial assumption was true.

2. We need to prove that *f* is invertible.

Since gcd(a, b) = 1, then $\exists r, s$ such that ra + bs = 1.

We will define g((x, y)): $\mathbb{Z}_a^* \times \mathbb{Z}_b^* \to \mathbb{Z}_{ab}^*$ and prove that $g = f^{-1} \Leftrightarrow f(g((x, y))) = (x \mod a, y \mod b)$

$$g((x, y)) = bsx + ray \mod ab$$

Then $f(g((x,y))) = f(bsx + ray \mod ab) = ((bsx + ray \mod ab) \mod a, (bsx + ray \mod ab) \mod b)$

Since $a \mid ab$, then $f(g(x, y)) = (bsx + ray \mod a, bsx + ray \mod b) = (bsx \mod a, ray \mod b)$

But, $ra + bs = 1 \Leftrightarrow ra = -(bs - 1)$ so $bs \equiv 1 \pmod{a}$, The other way around, we also get $ra \equiv 1 \pmod{b}$

$$f(g((x,y))) = (x \mod a, y \mod b)$$

3. We need to prove that $f(xy) = f(x)f(y), \forall x, y \in \mathbb{Z}_{ab}^*$

Alin Tomescu, CSE408 Tuesday, March 10th, Lecture #12 $f(xy) = (xy \mod a, xy \mod b) = (x \mod a, x \mod b)(y \mod a, y \mod b) = f(x)f(y)$

Applying the Chinese remainder theorem

Now, we can finally apply the Chinese remainder theorem to compute the totient function:

$$gcd(a,b) = 1 \Rightarrow \phi(ab) = |Z_{ab}^*| = |Z_a^*||Z_b^*| = \phi(a) \times \phi(b)$$
$$\phi(a) = \phi(a_1^{r_1}) \times \phi(a_2^{r_2}) \times \dots \times \phi(a_n^{r_n})$$