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Primality, RSA and El Gamal encryption 

Previously, in CSE508… 
𝜑(𝑝𝑘) = 𝑝𝑘 − 𝑝𝑘−1 = (𝑝 − 1)𝑝𝑘−1 

gcd(𝑎, 𝑏) = 1 ⇒ 𝜑(𝑎, 𝑏) = 𝜑(𝑎)𝜑(𝑏) 

𝑛 = 𝑝1
𝑘1𝑝2

𝑘2 … 𝑝𝑛
𝑘𝑛 ⇒ 𝜑(𝑛) = 𝜑(𝑝1

𝑘1)𝜑(𝑝2
𝑘2) … 𝜑(𝑝𝑛

𝑘𝑛) 

𝑛 = 𝑝𝑞, where 𝑝 and 𝑞 are primes ⇒ 𝜑(𝑛) = (𝑝 − 1)(𝑞 − 1) 

Logarithmic exponentiation 
We showed that to compute 𝑎𝑘  mod 𝑛, we can reduce 𝑎 mod 𝑛 and reduce 𝑘 mod 𝜑(𝑛), obtaining the following 

equality: 

𝑎𝑘  mod 𝑛 = (𝑎 mod 𝑛)𝑘 mod 𝜑(𝑛) mod 𝑛 

However, this is still problematic since 𝑘 mod 𝜑(𝑛) might be very large requiring us to do a lot of multiplications. 

Logarithmic exponentiation is here to solve that problem. 

Let’s see how we can compute 𝑎𝑏 mod 𝑛, by doing around log2 𝑏 multiplications. 

Let 𝑏 = 2𝑘𝑏𝑘 + 2𝑘−1𝑏𝑘−1 + ⋯ + 𝑏0, where 𝑏𝑖 = ith bit of 𝑏 

Then, 𝑎𝑏 = 𝑎2𝑘𝑏𝑘+2𝑘−1𝑏𝑘−1+⋯+𝑏0 = 𝑎2𝑘𝑏𝑘𝑎2𝑘−1𝑏𝑘−1 … 𝑎𝑏0 = (𝑎2𝑘
)

𝑏𝑘
(𝑎2𝑘−1

)
𝑏𝑘−1

… (𝑎20
)

𝑏0
 

We can compute all the values 𝑎1, 𝑎2, 𝑎4, 𝑎8, … 𝑎2𝑘
 by doing only 𝑘 = log2 𝑏 multiplications as follows: 

The trick is to start with 𝑎1 and then square repeatedly, obtaining each power along the way. 

 

Note: The values 𝑎1, 𝑎2, 𝑎4, 𝑎8, … 𝑎2𝑘
 can be computed mod 𝑛, since it won’t affect the final result of 𝑎𝑏 mod 𝑛.  

Now, that we have 𝑎1, 𝑎2, 𝑎4, 𝑎8, … 𝑎2𝑘
, since 𝑏𝑖 = either 0 or 1, then some of the (𝑎2𝑖

)
𝑏𝑖

 powers will be equal to 

(𝑎2𝑖
)

0
= 1 and others will be equal to (𝑎2𝑖

)
1

= 𝑎2𝑖
. We can now compute 𝑎𝑏 mod 𝑛 by multiplying the 𝑎2𝑖

 powers for 

which 𝑏𝑖 = 1. 

// Let a[i] denote the value of 𝑎2𝑖
 

 

int i = 0; 

a[i++] = 1; 

while(i <= k) 

{ 

a[i] = a[i-1] * a[i-1] 

i++; 

} 



Alin Tomescu, CSE408 
Tuesday, March 15th, Lecture #13 
 This algorithm runs in 𝑂(log2 𝑏). The exact running time will be 𝑂(log2 𝑏) multiplications of 𝑂(log2 𝑛)-bit integers. 

The pseudocode for 𝑀𝑂𝐷𝐸𝑋𝑃(𝑎, 𝑏, 𝑛) can be found below: 

 

How do you pick a huge prime? 

The prime number theorem 

Theorem: The number of primes ≤ 𝑛 ≈
𝑛

ln 𝑛
 

Easy prime picking algorithm: 

1. Pick a random number 

2. Test it for primality 

3. Repeat until the test succeeds 

a. The theorem above essentially tells us that the odds of picking a prime will not be so bad 

Miller-Rabin primality test 
For many years, poly-time algorithms for primality testing weren’t known until 2002 when the AKS (Agrawal-Kayal-

Saxena) primality test was developed. 

The Miller-Rabin primality test is a primality-testing probabilistic algorithm. 

- randomized algorithm 

- outputs either: definitely composite or probably prime 

- the probability of error can be made as small as desired 

How does it work? 

Theorem: There are only two roots of unity in ℤ𝑝, where 𝑝 is prime: the trivial roots 1 and −1. 

 

Proof: 𝑝 is prime. 

Let 𝑎 ∈ ℤ𝑝 such that that 𝑎2 ≡ 1 (mod 𝑝) ⇒ 𝑝 | 𝑎2 − 1 ⇒ 𝑝 | (𝑎 − 1)(𝑎 + 1) ⇒ 𝑝 | (𝑎 − 1) or 𝑝 | (𝑎 + 1) 

So 𝑎 ≡ 1 (mod 𝑝) or 𝑎 ≡ −1 (mod 𝑝)  

So the there are only two square roots of 1 in ℤ𝑝: 1 and −1. QED. 

Main point to get across: There are only two roots of unity in ℤ𝑝, where 𝑝 is prime: the trivial roots 1 and −1. 

MODEXP(a, b, n): 

 

r = 1    // the result of 𝑎𝑏 mod 𝑛 

k = length_in_bits(b) // the length in bits of b 

m = a    // the current value of 𝑎2𝑖
 

 

for i = 0 to k-1 

 if b_i = 1 

  r = (r * m) mod n 

 m = m^2 mod n 

 

return r 
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Important consequence: This means that if you can find a number 𝑎 ≠ ±1 in ℤ𝑝 such that 𝑎2 = 1 (mod 𝑝) then 𝑝 is not 

prime. 

 

Let’s think what happens mod a composite number 𝑛 = 𝑎𝑏 (in ℤ𝑎𝑏
∗ ).  

Suppose we have a composite number 𝑛 = 𝑎𝑏, such that gcd(𝑎, 𝑏) = 1, then ℤ𝑛
∗ ≅ ℤ𝑎

∗ × ℤ𝑏
∗ . 

What are the square roots of (1,1) in ℤ𝑎
∗ × ℤ𝑏

∗ ? (1,1), (−1, −1), (1, −1), (−1,1). 

Therefore, by the isomorphism of the two groups, there are 4 square roots of 1 in ℤ𝑛
∗ . 

The Miller-Rabin test, assume 𝑛 is odd and not a perfect power of a prime (since this can be easily tested for).  

We let 𝑛 − 1 = 2𝑠 × 𝑑, where 𝑑 will be odd (so we subtract one from 𝑛 and dived the result by 2, until we get an odd 

number 𝑑). 

 

Description: 

- write 𝑛 − 1 in the form 𝑛 − 1 = 2𝑠𝑑 

- choose a random base 𝑎 and check the value of 𝑎𝑛−1 (mod 𝑛), but… 

- perform this computation by first determining 𝑎𝑑  (mod 𝑛), and then repeatedly squaring to get the sequence: 

o 𝑎𝑑 , 𝑎2𝑑 , 𝑎22𝑑 , … , 𝑎2𝑠−1𝑑 , 𝑎2𝑠𝑑 = 𝑎𝑛−1 (mod 𝑛) 

 every power in this sequence here is computed mod 𝑛 of course 

- If 𝑎𝑛−1 ≠ 1 (mod 𝑛) ⇔ gcd(𝑎, 𝑛) ≠ 1 , then 𝑛 is composite (by the contrapositive of Fermat’s little theorem), 

and we’re done 

- But if 𝑎𝑛−1 = 1 (mod 𝑛), we conduct a little follow-up test: 

MillerRabin(𝒏, 𝒌) { 

if [𝑛 is even] 

return COMPOSITE 

if [𝑛 is a prime power 𝑛 = 𝑝𝑘]  

return COMPOSITE 

 

repeat 𝑘 times 

 pick random 𝑎 ∈ ℤ𝑛 (exclude 1, -1 and 0) 

 if [gcd(𝑎, 𝑛) ≠ 1] 

return COMPOSITE 

 

 𝑥 = 𝑎𝑑  (mod 𝑛) 

if [𝑥 = 1 (mod 𝑛) or 𝑥 = −1 = 𝑛 − 1 (mod 𝑛)]  

then do next LOOP 

 

for 𝑟 = 1, 𝑟 ≤ 𝑠 − 1 

      𝑥 = 𝑥2 (mod 𝑛) 

      if [𝑥 = 1 (mod 𝑛)]  

then return COMPOSITE 

      if [𝑥 = −1 = 𝑛 − 1 (mod 𝑛)]  

then do next LOOP 

return COMPOSITE 

 return PRIME 

} 
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o if 𝑎𝑛−1 = 1 (mod 𝑛) then somewhere in the preceding sequence, we must have ran into a 1 for the first 

time.  

 If this happened after the first position (that is, if 𝑎𝑠 ≠ 1 (mod 𝑛)), and if the preceding value in 

the list is not −1 = 𝑛 − 1 (mod 𝑛) then we declare 𝑛 composite, because we have just found a 

non-trivial square root of 1 modulo 𝑛 (a number that is not ±1 (mod 𝑛) but that when squared 

is equal to 1 (mod 𝑛)), and such a root can only exist when 𝑛 is composite. 

 Note that  if the preceding value is −1 we haven’t found a non-trivial square root of 1, 

since we found −1 squaring to 1 which is a trivial square root of 1 

 If this happened on the first position then we haven’t found a non-trivial square root of 1, since 

all the positions after it, being the squares of the first position will also be 1 

Another way of thinking about this is by looking at the sequence 𝑎𝑑 , 𝑎2𝑑 , 𝑎22𝑑 , … , 𝑎2𝑠−1𝑑 , 𝑎2𝑠𝑑 = 𝑎𝑛−1 (mod 𝑛) and 

realizing that in the interesting case when 𝑎𝑛−1 = 1 (mod 𝑛) in which you can’t really tell whether 𝑛 is prime or not, 

you have computed a series of squares that eventually yielded a 1, so you definitely have either a trivial or a non-trivial 

square root of unity in that sequence. 

The non-trivial roots will only arise when 𝑎𝑑 ≠ ±1. When that happens, if as you repeatedly square, you keep getting 

numbers different that −1 finally getting a 1 then you found a non-trivial square root of 1. 

If you kept squaring and you got −1 then obviously after squaring −1 you will get 1, but that’s of no use since it’s a 

trivial square root. 

Think about it a lot, it might take reading few articles and some textbook chapters to get it  

Definition: 𝑎 is a Miller-Rabin liar for 𝑛 if 𝑛 is composite and 𝑀𝑅(𝑎, 𝑛) outputs prime, instead of composite. 

The 𝑎’s that will tell you a composite number 𝑛 is prime are called liars. The bound on the number of such 𝑎’s if 𝑛 is 

composite is: 

Pr[𝑎 = 𝑀𝑅 𝑙𝑖𝑎𝑟 𝑓𝑜𝑟 𝑛] =
1

4
 

To overcome this, you repeat the test 𝑘 times, so the Pr[𝑎𝑐𝑐𝑒𝑝𝑡𝑖𝑛𝑔 𝑎 𝑐𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 𝑎𝑠 𝑎 𝑝𝑟𝑖𝑚𝑒] ≤ 4−𝑘 

Note that if 𝑛 is really prime, the algorithm will always correctly say it’s a prime. However, when 𝑛 is composite and you 

pick  𝑎’s to test it against, you might be unlucky, pick all the 𝑎’s as liars and the algorithm will tell you 𝑛 is prime. The 

probability of that happening is ≤ 4−𝑘 though. 

Running time of 𝑀𝑅(𝑎, 𝑛) is roughly doing one logarithmic exponentiation, so repeating 𝑘 times will be 𝑘 log 𝑛. 

RSA encryption 
RSA is a public-key cryptosystem. 

A real-world analogy: Alice wants to receive messages from Bob, and in the real world she buys a lock, gives it to Bob, 

Bob puts his message in it and sends the lock to Alice. Alice can unlock it with her key and read the message. 

Alice: 

- pick large primes 𝑝 and 𝑞, compute 𝑛 = 𝑝𝑞 

- pick 𝑒 such that gcd(𝑒, 𝜑(𝑛)) = 1 
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- compute 𝑑 such that 𝑒𝑑 = 1 (mod 𝜑(𝑛)) ⇔ 𝑑 = 𝑒−1 (mod 𝜑(𝑛)) 

o use the Extended Euclidian Algorithm to compute 𝑑 

o run 𝐸𝐸𝐴(𝑒, 𝜑(𝑛)), getting 𝑒𝑥 + 𝜑(𝑛)𝑦 = 1 ⇒ 𝜑(𝑛) | 𝑒𝑥 − 1 ⇒ 𝑒𝑥 = 1 mod 𝜑(𝑛) 

 𝑑 = 𝑥 

- send (𝑛, 𝑒) to Bob as the public key 

- keep (𝑛, 𝑑) as the private key 

Bob: 

- has a message 𝑚 ∈ ℤ𝑛
∗  

- encrypts 𝑚 as 𝑐 = 𝑚𝑒 mod 𝑛 

- sends 𝑐 to Alice 

Alice:  

- decrypts 𝑐 by computing 𝑐𝑑 = 𝑚𝑒𝑑  mod 𝑛 

- 𝑚𝑒𝑑  mod 𝑛 = 𝑚𝑒𝑑 mod 𝜑(𝑛) mod 𝑛 = 𝑚 mod 𝑛 

Public exponent 𝒆 can be fixed: Turns out, Alice can pick 3 as 𝑒, which will make encryption extremely fast, without loss 

of security.  

- Ron Rivest disagrees about the security of 𝑒 = 3 under some conditions in one of his papers.  

- 𝑒 = 216 − 1 seems to be a good choice too. 

Why can’t the adversary compute 𝑑 given (𝑛, 𝑒)? Because he needs to compute 𝜑(𝑛) in order to compute 𝑑 using EEA, 

and that is equivalent to factoring 𝑛, a hard problem. 

RSA attacks 

Encrypting short messages using small 𝒆 

Say 𝑒 = 3,  and 𝑚 < 𝑁
1

3 is unknown to the attacker. Then 𝑐 = 𝑚3 mod 𝑁 = 𝑚3 and so 𝑚 = √𝑐
3

 

More general attack with small 𝒆 
Let’s extend the above attack for any message length of 𝑚. 

Let 𝑒 = 3. Suppose, three messages are sent to three parties encrypted with public keys (𝑁1, 3), (𝑁2, 3) and (𝑁3, 3) 

𝑐𝑖 = 𝑚3 mod 𝑁𝑖  

We’ll assume gcd(𝑁𝑖 , 𝑁𝑗) = 1, ∀𝑖, 𝑗 since if that were not the case then you could easily factor one of the 𝑁𝑖’s and easily 

recover 𝑚. 

Let 𝑁∗ = 𝑁1𝑁2𝑁3. An extended version of the Chinese Remainder Theorem says there exists a 𝑐 < 𝑁∗ such that: 

𝑐 = 𝑐𝑖  mod 𝑁𝑖, ∀𝑖 

This 𝑐 can be computed easily (no clue how) given the public keys and the ciphertexts. 

Note that 𝑐 = 𝑚3 mod 𝑁∗. 

Since 𝑚 < min{𝑁1, 𝑁2, 𝑁3} we have 𝑚3 < 𝑁∗. We can now apply the previous attack to get 𝑚 from 𝑐.  
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𝑚 = √𝑐
3

 

Quadratic improvement in recovering m 

If 1 ≤ 𝑚 < 𝐿 (when interpreting 𝑚 as an integer), then we can recover 𝑚 in √𝐿 time. 

Attack: assume 𝑚 < 2𝑙 , so 𝐿 = 2𝑙 and that the attacker knows 𝑙. 𝛼 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡,
1

2
< 𝛼 < 1 

- Input: Public key (𝑁, 𝑒), ciphertext 𝑐 and parameter 𝑙 

- Output: 𝑚 < 2𝑙 such that 𝑚𝑒 = 𝑐 mod 𝑁 

 

Time complexity is dominated by the time taken to sort the 2𝛼𝑙 pairs. Binary search is used to find whether ∃𝑟, 𝑥𝑟 =

𝑠𝑒 mod 𝑁. 

If 𝑚 is chosen as a random 𝑙-bit integer, it can be shown that with good probability ∃𝑟, 𝑠 with 1 < 𝑟, 𝑠 < 2𝛼𝑙 and 𝑚 =

𝑟𝑠. The algorithm essentially looks for these 𝑟 and 𝑠 values. 

Common modulus attack I 
Company shares keys to each employee 𝑖 as 𝑝𝑘𝑖 = (𝑁, 𝑒𝑖) and 𝑠𝑘𝑖 = (𝑁, 𝑑𝑖) 

𝑒𝑖𝑑𝑖 = 1 mod 𝜙(𝑛), ∀𝑖 

So each employee has their 𝑒𝑖, 𝑑𝑖  pair which means they can easily factor 𝑁, which allows the to obtain the decryption 

key of all the other employees by computing: 

𝑑𝑗 = 𝑒𝑗 mod 𝜙(𝑛) 

Common modulus attack II 
Suppose 𝑚 is encrypted and sent to two different employees with public keys (𝑁, 𝑒1) and(𝑁, 𝑒2) where 𝑒1 ≠ 𝑒2. Further 

assume that gcd(𝑒1, 𝑒2) = 1 

Eve sees two ciphertexts: 

𝑐1 = 𝑚𝑒1  mod 𝑁 and 𝑐2 = 𝑚𝑒2  mod 𝑁 

gcd(𝑒1, 𝑒2) = 1 ⇒ ∃𝑥, 𝑦, 𝑒1𝑥 + 𝑒2𝑦 = 1 

Eve computes 𝑥 and 𝑦 using EEA. Then… 

𝑐1
𝑥𝑐2

𝑦
= (𝑚𝑒1  mod 𝑁)𝑥(𝑚𝑒2  mod 𝑁)𝑦 = (𝑚𝑒1𝑥 mod 𝑁)(𝑚𝑒2𝑦 mod 𝑁) = 𝑚𝑒1𝑥𝑚𝑒2𝑦 mod 𝑁 = 𝑚𝑒1𝑥+𝑒2𝑦 mod 𝑁 = 𝑚 

𝑇 = 2𝛼𝑙  

for 𝑟 = 1 𝑡𝑜 𝑇: 

 𝑥𝑖 = 𝑐/𝑟𝑒  mod 𝑁 

 

sort the pairs {(𝑟, 𝑥𝑟)}𝑟=1
𝑇  by their second component 

 

for 𝑠 = 1 𝑡𝑜 𝑇: 

 if 𝑠𝑒  mod 𝑁 = 𝑥𝑟 for some r 

  return 𝑟𝑠 mod 𝑁 
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Weak and strong RSA assumptions 
Weak RSA assumption: Given 𝑥, 𝑒, 𝑛 (composite 𝑛) computing 𝑦 such that 𝑦𝑒 = 𝑥 mod 𝑛 is really hard. 

If I give you a composite 𝑛 and you can find a 𝑑 such that 3𝑑 = 1 mod 𝜑(𝑛), then you know that 𝜑(𝑛) | 3𝑑 − 1. It turns 

out that given this you can compute 𝜑(𝑛), and given 𝜑(𝑛) you can factor 𝑛. 

Equivalence: Given 𝑒, 𝑛 compute 𝑑 (RSA problem), given 𝑛 compute 𝜑(𝑛), and factoring 𝑛 are all equivalent problems. 

Interesting fact: It is not known whether decrypting RSA is equivalent to factoring 𝑛. It is assumed decrypting RSA is a 

little easier actually. 

Strong RSA assumption: Given 𝑥, 𝑛 computing any 𝑦, 𝑒 ≠ ±1  s.t. 𝑦𝑒 = 𝑥 mod 𝑛 is really hard. The attacker is given 

more freedom here: he can actually choose 𝑒. 

Note: With public key cryptography, the public key only has to be transmitted to Bob with integrity (Eve should not be 

able to modify it), no secrecy is needed. 

El Gamal  
Definition: El Gamal is an encryption system based on Diffie-Hellman. 

We have Alice, Bob and global parameters 𝑝 and 𝑔 

Alice: 

- picks a random 𝑎, her secret key 

- she sends the public key 𝑔𝑎  mod 𝑝 to Bob 

Bob: 

- To encrypt 𝑚 ∈ ℤ𝑝
∗  , Bob picks a random 𝑠 

- sends (𝑔𝑠 mod 𝑝, 𝑔𝑎𝑠 × 𝑚 mod 𝑝) to Alice 

Alice: 

- decrypts by computing: 

𝑔𝑎𝑠 ×  𝑚 mod 𝑝

(𝑔𝑠 mod 𝑝)𝑎
=

𝑔𝑎𝑠 ×  𝑚 mod 𝑝

𝑔𝑎𝑠 mod 𝑝
= 𝑚 mod 𝑝 

CCA attack on El Gamal 
Eve can always win the CCA game because she can decrypt the received challenge: 

Let 𝑔 and 𝑝 be the public parameters. Alice has her secret key 𝑎 and 𝑔𝑎 is known by everyone 

𝑐 = (𝑔𝑠 mod 𝑝, 𝑔𝑎𝑠 ×  𝑚 mod 𝑝) 

Eve computes 𝑐′ = (𝑔𝑠 mod 𝑝, 𝑔𝑎𝑠 ×  𝑚 × 2 mod 𝑝) 

Eve queries the decryption oracle with 𝑐′ which will gladly decrypt it to 𝑚′ = 𝑚 × 2 mod 𝑝. 

Eve can now compute 𝑚′ × 2−1 = 𝑚 mod 𝑝 getting 𝑚. 


