
Alin Tomescu, CSE408
Tuesday, March 22nd, Lecture #15

Public-key signatures

Motivation: Since MACs use the secret key that everyone shares, you can’t assign identity by “signing” something with a

MAC. You can only protect integrity using a MAC. In public-key cryptography, it is sometimes useful to be able to sign a

message and have the receiver verify that the message was indeed signed by you and it was not tampered with. MACs

are for symmetric encryption schemes, public key signatures are for public-key encryption schemes.

Alice: has her secret key 𝑠𝑘

- 𝑠 = 𝑆𝑖𝑔𝑠𝑘(𝑚)

Bob: has a public key 𝑝𝑘

- 𝑉𝑟𝑓𝑦𝑝𝑘(𝑚, 𝑠) = {
𝑣𝑎𝑙𝑖𝑑

𝑖𝑛𝑣𝑎𝑙𝑖𝑑

Definition: A signature scheme is (𝑡, 𝑞, 𝜀)-secure against existential forgery if ∀𝐴 running in time ≤ 𝑡, making ≤ 𝑞

queries, where 𝑚 was not a query to 𝑆𝑖𝑔𝑠𝑘(∙), we have:

𝐴𝑑𝑣 𝐴 = Pr[𝐴𝑆𝑖𝑔𝑠𝑘(∙)(𝑝𝑘) = (𝑚, 𝑡) st. 𝑉𝑟𝑓𝑦𝑝𝑘(𝑚, 𝑡) = 𝑂𝐾] ≤ 𝜀

What might an attacker try to do in an attempt to forge a message signature?

- they might look at the messages being signed

- Eve can obtain the signatures on messages of her choice

- Eve has access to an oracle that signs any message

- Eve wins if she’s able to sign a message that was never queried to the oracle

Signature schemes

Textbook RSA
Consider the following scheme based on RSA:

𝑆𝑖𝑔(𝑛,𝑑)(𝑚) = 𝑚𝑑 mod 𝑛

𝑉𝑟𝑓𝑦(𝑛,𝑒)(𝑚, 𝑠) = {
valid, 𝑖𝑓 𝑠𝑒 mod 𝑛 = 𝑚

invalid, 𝑖𝑓 𝑠𝑒 mod 𝑛 ≠ 𝑚

It turns out this scheme is not secure. It turns out that you can pick any signature 𝑠 and create a message 𝑚 that has

that signature, which is a bad thing.

Attack: Pick any 𝑠 ∈ 𝑍𝑛
∗ , set 𝑚 = 𝑠𝑒, output the forged message-signature pair (𝑚, 𝑠)

- 𝑚 might not be the message the attacker wants to forge

TOWP scheme
Let 𝑓 be a TOWP. Consider the following scheme based on 𝑓:

𝑆𝑖𝑔𝑠𝑘(𝑚) = 𝑓𝑠𝑘
−1(𝑚)

Alin Tomescu, CSE408
Tuesday, March 22nd, Lecture #15

𝑉𝑟𝑓𝑦𝑝𝑘(𝑚, 𝑠) = {
valid, 𝑖𝑓 𝑓𝑝𝑘(𝑠) = 𝑚

invalid, 𝑖𝑓 𝑓𝑝𝑘(𝑠) ≠ 𝑚

This scheme is also insecure. As before, you can pick any signature 𝑠 and create a message 𝑚 that has that signature,

which is a bad thing.

Attack: Pick any 𝑠, set 𝑚 = 𝑓𝑝𝑘(𝑠), output (𝑚, 𝑠)

Hashing
To fix this “signature” problem, people introduced hashing.

Essentially the problem with the previous schemes was that given a signature 𝑠, a message 𝑚 with that signature

could’ve been easily forged. Why? Because in the 𝑉𝑟𝑓𝑦 function, if you fix 𝑠, the message 𝑚 can be easily computed by

just computing some TOWP in the forward direction, which is easy.

Popular hashing algorithms:

- MD5 – broken

- SHA1 – broken

- SHA256 – so far so god

Definition: A hash function takes an arbitrary length string and maps it to a fixed length string

𝐻: {0,1}∗ → {0,1}𝑙

Hashed RSA
Consider this revised RSA-based signing scheme:

𝑆𝑖𝑔(𝑛,𝑑)(𝑚) = 𝐻(𝑚)𝑑 mod 𝑛

𝑉𝑟𝑓𝑦(𝑛,𝑒)(𝑚, 𝑠) = {
valid, 𝑖𝑓 𝑠𝑒 mod 𝑛 = 𝐻(𝑚)?

invalid, 𝑖𝑓 𝑠𝑒 mod 𝑛 ≠ 𝐻(𝑚)?

Attack:

- pick any 𝑠 ∈ 𝑍𝑛
∗

- set ℎ = 𝑠𝑒

- find a message 𝑚 s.t. 𝐻(𝑚) = ℎ

o this step now becomes computationally unfeasible or hard

- output (𝑚, 𝑠)

The random oracle model
Random oracle model will define how we treat hash functions in our security model.

Note: In a hash function there’s no secret.

The random oracle model assumes the existence of a public, randomly-chosen function 𝐻 that can be evaluated only by

“querying” an oracle – which can be thought of as a magic box that returns 𝐻(𝑥) on input 𝑥.

Alin Tomescu, CSE408
Tuesday, March 22nd, Lecture #15
This model provides a formal methodology that can be used to design and validate cryptographic schemes via the

following two step approach:

1. First, a scheme is design and proven secure under the random oracle model. We assume the world contains a

random oracle, and construct and analyze the scheme based on this assumption.

2. Since a random oracle is not available in the real world, to construct the scheme we “instantiate” the random

oracle with a cryptographic function 𝐻 (like SHA-1).

The hope is that the cryptographic hash is “sufficiently good” at emulating the random oracle, so that the security proof

in the first step will carry over to the real world instantiation of the scheme.

- there is no theoretical justification for this presumptuous hope

- there exist schemes proven secure in the random oracle model which become insecure when instantiated in the

real world (apparently some contrived scheme will fail no matter how the random oracle is instantiated too)

- it is not clear what it means for a hash function to be “good” at emulating a random oracle

o it is not clear whether this is an achievable goal either

- a proof of security in the random oracle model should be viewed as providing evidence that the scheme has no

inherent design flaws

o it should not be taken as a rigorous proof that any real-world instantiation of the scheme is secure

Full domain hash
We assume 𝐻 is a random function. When we model our attacker we give him access to a signature oracle and a

hashing oracle (a random oracle). He doesn’t need access to a verify oracle, he has all the info he needs.

Theorem: If 𝑓 is TOWP and 𝐻 is a random oracle, then the signature scheme below is (𝑡 − 𝑂(𝑞), 𝑞𝑆, 𝑞𝐻 , 𝑞𝐻𝜀)-secure.

𝑆𝑖𝑔(𝑛,𝑑)(𝑚) = 𝑓𝑠𝑘
−1(𝐻(𝑚))

𝑉𝑟𝑓𝑦(𝑛,𝑒)(𝑚, 𝑠) = {
valid, 𝑖𝑓 𝑓𝑝𝑘(𝑡) = 𝐻(𝑚)

invalid, 𝑖𝑓 𝑓𝑝𝑘(𝑡) ≠ 𝐻(𝑚)

Note: It is important that if 𝑓: 𝑆 → 𝑆 then 𝐻: {0,1}∗ → 𝑆, and it is important that 𝐻 exhibits full domain hashing (just in

case 𝑓 is easily invertible on some part of 𝑆).

Proof:

Let 𝐴 be our adversary. If 𝐴 never queries 𝐻, then the 𝐻 function will choose its output with uniform probability from 𝑆,

and so we have:

Pr[𝑓𝑝𝑘(𝑡) = 𝐻(𝑚)] =
1

|𝑆|

So, in this case, all the attacker can do is pick a tag 𝑡 and guess an 𝑚 such that 𝑓𝑝𝑘(𝑡) = 𝐻(𝑚).

Therefore, to increase its chances 𝐴 must query 𝐻 on a lot of messages, especially on the message 𝑚 that 𝐴 is

attempting to forge, so that he can beat the 1/|𝑆| bound.

Assume 𝐴 queries 𝐻 on 𝑚, if 𝐴 wins then it found an 𝑚 where the tag 𝑡 is 𝑓𝑠𝑘
− (𝐻(𝑚)).

Alin Tomescu, CSE408
Tuesday, March 22nd, Lecture #15
Let’s build a bigger attacker 𝐵 to break f given the 𝑝𝑘 and the image 𝑦 of an unknown element 𝑥 through 𝑓 (so 𝑓(𝑥) =

𝑦). 𝐵 runs 𝐴 giving it access to the modified oracles 𝐻′ and 𝑆𝑖𝑔′.

𝐴 outputs (𝑚, 𝑡) such that 𝑓𝑝𝑘(𝑡) = 𝐻(𝑚).

To build 𝐻′, pick 𝑗 ∈ {1 … 𝑞ℎ} randomly and let:

𝐻′(𝑚𝑖) = {
𝑟𝑎𝑛𝑑𝑜𝑚, 𝑖 ≠ 𝑗

𝑦, 𝑖 = 𝑗

Claim: 𝐻′ is a random function.

We don’t know 𝑠𝑘, so we can’t compute 𝑓𝑠𝑘
−1 but we can compute 𝑓𝑝𝑘

Pick 𝑠1, … 𝑠𝑞 (where 𝑞 = 𝑞𝑠 + 𝑞ℎ) as the signatures our 𝑆𝑖𝑔′ oracle will be returning.

Let ℎ𝑖 = 𝑓𝑝𝑘(𝑠𝑖). If the 𝑠𝑖 are chose uniformly randomly and independently and 𝑓 is a TOWP then the distribution of the

ℎ𝑖’s will be uniformly randomly distributed and independent.

𝐻′(𝑚𝑖) = {
ℎ𝑖, 𝑖𝑓 𝑖 ≠ 𝑗
𝑦, 𝑖𝑓 𝑖 = 𝑗

𝑆𝑖𝑔′(𝑚) = {
𝑠𝑖, 𝑖𝑓 𝑚 ≠ 𝑚𝑗

𝐹𝐴𝐼𝐿 𝑖𝑓 𝑚 = 𝑚𝑗

A’s environment will be defined by the 𝐻′ and 𝑆𝑖𝑔′ oracles.

To successfully invert 𝑦

- A must output (𝑚𝑗 , 𝑡)

- (𝑚𝑗, 𝑡) must be a valid forgery

- 𝐴 did not query 𝑆𝑖𝑔(𝑚𝑗) (implied by the above since otherwise the 𝑆𝑖𝑔′ oracle would have “failed” the

experiment)

- the inverse of 𝑦 would be 𝑥 = 𝑡

𝐴𝑑𝑣 𝐵 =
𝐴𝑑𝑣 𝐴

𝑞𝐻 + 𝑞𝑆

𝐴𝑑𝑣 𝐴 = (𝑞𝐻 + 𝑞𝑆)𝐴𝑑𝑣𝐵 ≤ (𝑞𝐻 + 𝑞𝑆)𝜀

