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Bit commitment, zero knowledge proofs 

Bit commitment 
Inspiration: Imagine we wanted to play poker over the telephone (or online). Someone could say he has 4 aces. We 

need a system where I can commit to my cards, and later on I can reveal my cards. The goal is that you can’t figure out 

what my cards were from my commitments. 

Model: We’ve got Alice and Bob. Alice wants to commit to some value 𝑣 (could be a single bit could be more). She needs 

to compute 𝑐 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑣) (there might be no secret key involved). She sends 𝑐 to Bob, and later on she could send 𝑣 

to Bob, and Bob can verify that 𝑐 = 𝑐𝑜𝑚𝑚𝑖𝑡(𝑣), but he cannot infer any info about 𝑣 from 𝑐. 

Example: To implement 𝑐𝑜𝑚𝑚𝑖𝑡(𝑣), Alice can send ℎ𝑎𝑠ℎ(𝑣) or 𝑓(𝑣) to Bob where 𝑓 is a OWP/F. If 𝑣 is small, you can 

pad it to ensure Bob won’t brute-force 𝑐𝑜𝑚𝑚𝑖𝑡(𝑣). 

Security goals: 

1. Alice can’t change her mind after committing. 

a. This means it should be difficult to find 𝑥1 and 𝑥2 such that 𝐻(𝑥1) = 𝐻(𝑥2).  

b. This is called strong collision resistance. 

2. Bob can’t learn any info about 𝑣 from 𝑐𝑜𝑚𝑚𝑖𝑡(𝑣) 

a. This means the hash can’t be invertible. 

Bit commitment using El Gamal 
Turns out El Gamal is very good for solving the bit commitment problem.  

Everyone has 𝑔 and 𝑝.  

Alice: 

- has 𝑣, a secret 𝑎, and computes 𝑔𝑎  mod 𝑝 

- she picks 𝑟 ← 𝑢 and sends (𝑔𝑎  mod 𝑝, 𝑔𝑟 mod 𝑝, 𝑔𝑎𝑟𝑣 mod 𝑝) to Bob 

o by the Diffie-Hellman problem, you can’t figure out what 𝑣 is 

- how will Alice reveal what 𝑣 is? 

o She can just send (𝑎, 𝑟, 𝑣) to Bob, and Bob will do the verification 

 Bob will first compute 𝑔𝑎  mod 𝑝, and check he got the same result as Alice 

 then he will compute 𝑔𝑎𝑟 mod 𝑝 

 then he will divide what he got from Alice by 𝑔𝑎𝑟 mod 𝑝, getting 𝑣 

 
𝑔𝑎𝑟𝑣 mod 𝑝

𝑔𝑎𝑟 mod 𝑝
= 𝑣 

Can Alice change her mind? We can set this up so that there’s only a single value 𝑎 that maps to 𝑔𝑎 mod 𝑝, and do the 

same thing for 𝑟. So Alice won’t even send 𝑣 and Bob can confirm that 𝑔𝑎 = 𝑥, 𝑔𝑟 = 𝑦, 𝑣 = 𝑧/𝑔𝑎𝑟, where 𝑧 =

𝑔𝑎𝑟𝑣 mod 𝑝 (sent by Alice initially). 

We can simplify this scheme by fixing 𝑔𝑎, sending it to Bob and having Alice just send (𝑔𝑟 mod 𝑝, 𝑔𝑎𝑟𝑣 mod p). 
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Zero knowledge proofs 
Zero knowledge proofs: Huge area with a lot of cool facts.  

Idea behind them is that you can prove some fact to a remote party without revealing any information about how you’re 

doing the proof. 

Idea: Graph coloring. Figuring out whether a graph has a 𝑘-coloring is NP-complete. 

Imagine that I have some graph, and you know it too, and I have somehow discovered a 𝑘-coloring. I want to prove to 

you I discovered this coloring but I don’t want you to know what it is. 

Suppose that I discovered 𝑐1, 𝑐2, … , 𝑐𝑘. I can just shuffle the colors around and it’ll still be a valid coloring. 

Alice is the prover, Bob is the verifier. 

- Alice will shuffle the colors, 𝑠ℎ𝑢𝑓𝑓𝑙𝑒(𝑐1, 𝑐2, … , 𝑐𝑘). 

- Alice sends the commitments of the colors of each vertex:  

o ∀𝑣 ∈ 𝑉(𝐺) she commits to 𝑐(𝑣), so she sends 𝐶𝑜𝑚𝑚𝑖𝑡(𝑐(𝑣)) for each vertex in some known order. 

o Warning: If the commitment is the deterministic then Bob could figure out the coloring, so we’d better 

use something like the El Gamal scheme above. 

- Bob picks a random edge in the graph and he just sends (𝑣𝑖 , 𝑣𝑗) to Alice where (𝑣𝑖, 𝑣𝑗) ∈ 𝐸(𝑉) 

- Alice decommits 𝑣𝑖 𝑎𝑛𝑑 𝑣𝑗  by sending 𝐷𝑒𝑐𝑜𝑚𝑚𝑖𝑡(𝑣𝑖), and 𝐷𝑒𝑐𝑜𝑚𝑚𝑖𝑡(𝑣𝑗) 

- Bob has to check that that the coloring is valid (and that Alice hasn’t changed her initial commitment) 

- Suppose they repeat this 𝑙 × |𝐸(𝑉)| (with Alice reshuffling every time) 

Let’s look at the chances of Alice winning this game. If Alice sends a bad coloring, there will be some adjacent vertices 

with identical colors. ∃(𝑣𝑖 , 𝑣𝑗) ∈ 𝐸(𝑉) s. t. 𝑐𝑜𝑙𝑜𝑟(𝑣𝑖) = 𝑐𝑜𝑙𝑜𝑟(𝑣𝑗) 

Pr[𝐴𝑙𝑖𝑐𝑒 𝑖𝑠 𝑛𝑜𝑡 𝑐𝑎𝑢𝑔ℎ𝑡] = (1 −
1

|𝐸|
)

𝑙|𝐸|

≈ 𝑒−𝑙 

Information extractors: Save the state of Alice (as a Turing machine) after she commits, and extract the coloring of the 

graph. 

Is it zero-knowledge? 

Could Alice and Bob fool an observer that Alice has a 𝑘-coloring? What if Alice and Bob are staging the game? 

Argument: Bob doesn’t learn anything because the observer is not convinced, since Alice and Bob could be staging the 

game. 

Everything that Bob learns in the protocol is just the transcript of the messages exchanged. These messages are kind of 

randomized. Bob can generate one of these transcripts on his own. If Bob doesn’t know a coloring, then Bob can pretend 

to be Alice and “fake” the game. Bob can generate valid transcripts. Therefore, Bob learns nothing from the protocol. 

Another zero-knowledge protocol 
Suppose Alice knows 𝑎 and bob knows 𝑔𝑎  mod 𝑝. 𝑔 and 𝑝 are fixed and known by both. 

- Alice sends 𝑡 = 𝑔𝑟  
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- Bob sends 𝑐 = 𝑟𝑎𝑛𝑑𝑜𝑚 

- Alice sends 𝑠 = 𝑟 + 𝑎𝑐 mod 𝑝 − 1 

- Bob verifies that 𝑔𝑠 = 𝑡(𝑔𝑎)𝑐 

Information extractor: Freeze Alice’s state after sending 𝑡, then repeat Bob’s stuff for a few times, and using linear 

equations you can figure out 𝑎. 


