
Alin Tomescu, CSE408
Thursday, March 31st, Lecture #17

Network protocols I (counters)

We will discuss network protocols in a more abstract setting, to understand some of the issues associated with them

and how to fix them.

Suppose you want to build a file-server. You have a client Alice and she wants to authenticate to a file server Bob

because she wants to issue the server a command. The file server wants to know who is executing this command.

Trial and error protocols
Let’s come up with a few authentication protocols in a public-key setting (Alice has a secret key 𝑠𝑘 and Bob has the

public key 𝑝𝑘 associated with it).

Protocol 1
Alice – the client Bob – the server

“Hi, I’m Alice” 

  Prove it!

𝑚 = 〈𝑟, 𝑆𝑖𝑔𝑠𝑘(𝑟)〉 

 Bob checks the signature on 𝑟 using 𝑉𝑟𝑓𝑦𝑝𝑘(𝑟, 𝑠𝑖𝑔𝑓𝑟𝑜𝑚 𝐴𝑙𝑖𝑐𝑒)

“delete 𝑓𝑖𝑙𝑒. 𝑡𝑥𝑡” 

Replay attack: Once a bad guy has seen such a signature pair 𝑚 = 〈𝑟, 𝑆𝑖𝑔𝑠𝑘(𝑟)〉, he can store it and authenticate later as

Alice.

Man in the middle attack: We can let Alice authenticate. After that, we intercept her messages, change them to

whatever we want and then have the server execute them (as if Alice was executing them).

Protocol 2
Alice – the client Bob – the server

“Hi, I’m Alice” 

  Here’s 𝑟 (random and big), sign it and prove it!

𝑚 = 𝑆𝑖𝑔𝑠𝑘(𝑟) 

 Bob checks the signature on 𝑟 using 𝑉𝑟𝑓𝑦𝑝𝑘(𝑟, 𝑚)

“delete 𝑓𝑖𝑙𝑒. 𝑡𝑥𝑡” 

Man in the middle attack as before.

Protocol 3
Alice – the client Bob – the server

“Hi, I’m Alice” 

  Here’s 𝐸𝑛𝑐𝑝𝑘(𝑟) (𝑟 is random and big), sign 𝑟 it and prove it!

𝑚 = 𝑆𝑖𝑔𝑠𝑘(𝑟) 

 Bob checks the signature on 𝑟 using 𝑉𝑟𝑓𝑦𝑝𝑘(𝑟, 𝑚)

“delete 𝑓𝑖𝑙𝑒. 𝑡𝑥𝑡” 

Encrypting helps to add some secrecy but still doesn’t solve the overall problem.

Alin Tomescu, CSE408
Thursday, March 31st, Lecture #17
The problems:

- After authentication the rest of the conversation is not signed (or authenticated). An attacker can therefore

jump in and send commands in the name of Alice.

o Having Alice sign her commands would solve this, but…

- There is nothing stopping an attacker to reissue a command once he sees one. Some state has to be maintained

on the server side to prevent this.

o Using counters, timestamps or nonces can help with this

Security principles
These principles will ensure that your protocol will not be susceptible to replay or MITM attacks:

- bind the messages together (previous schemes are vulnerable because commands are not bound to

authentication)

- explicit messages (each message should be self contained and interpretable on its own)

- replay protection (use nonces)

o counters

o timestamps

o nonces

A better protocol using counters
The file server Bob has the public-key 𝑝𝑘 of Alice and a counter 𝑐𝑡𝑟𝑏. Alice has her secret key 𝑠𝑘 and a counter 𝑐𝑡𝑟𝑎. We

will see how 𝑐𝑡𝑟𝑏 and 𝑐𝑡𝑟𝑎 are related to each other. Initially, both counters are set to 0. As messages get exchanged, the

counters get incremented and are kept “in-sync.”

When Alice issues a command 𝑐𝑚𝑑, she sends:

𝑚 = alice, bob, 𝑐𝑚𝑑, 𝑐𝑡𝑟𝑎 , 𝑆𝑖𝑔𝑠𝑘𝑎𝑙𝑖𝑐𝑒
(…)

So now, she is including her name and signing everything in the message. Therefore, the message is self contained, and

commands are bound to authentication. The counter 𝑐𝑡𝑟 will be used for replay protection.

Now, how should we handle these counters? Suppose authentication is done securely, as we’ve seen in the previous

examples and a message 𝑚 is sent to Bob from Alice.

𝑚 = alice, bob, 𝑐𝑚𝑑, 𝑐𝑡𝑟𝑎 , 𝑆𝑖𝑔𝑠𝑘𝑎𝑙𝑖𝑐𝑒
(…)

First way to handle counters: send and wait for an ACK

If 𝑐𝑡𝑟𝑎 = 𝑐𝑡𝑟𝑏, then:

- Bob replies with an ACK message 𝑚 = alice, bob, 𝐴𝐶𝐾, 𝑐𝑡𝑟𝑎 + 1, 𝑆𝑖𝑔𝑠𝑘𝑏𝑜𝑏
(…)

- Bob increments his counter 𝑐𝑡𝑟𝑏 = 𝑐𝑡𝑟𝑏 + 1

- Alice gets the ACK and increments her counter 𝑐𝑡𝑟𝑎 = 𝑐𝑡𝑟𝑎 + 1

- The two counters are kept in sync, as long as Alice gets Bob’s ACK.

- Messages cannot be pipelined. Alice can only send one message, wait for its ACK and then send the next one.

Otherwise, if 𝑐𝑡𝑟𝑎 > 𝑐𝑡𝑟𝑏 then Alice’s counter is too high. Since messages cannot be pipelined, Bob should discard this

message and maybe send an ACK to Alice letting her know which message he is expecting.

Alin Tomescu, CSE408
Thursday, March 31st, Lecture #17
Otherwise, if 𝑐𝑡𝑟𝑎 < 𝑐𝑡𝑟𝑏, then it’s probably because a message is being replayed. Bob should discard this message and

maybe send an ACK to Alice letting her know which message he is expecting.

Second way to handle counters: cumulative ACKs, TCP style

If 𝑐𝑡𝑟𝑎 ≥ 𝑐𝑡𝑟𝑏, then:

- Bob stores the message, but doesn’t execute the command until all the message from [𝑐𝑡𝑟𝑏 to 𝑐𝑡𝑟𝑎] have

arrived.

o This prevents attackers from discarding messages in a pipelined set

- If this message with 𝑐𝑡𝑟𝑎 fills a gap from [𝑐𝑡𝑟𝑏 to 𝑐𝑡𝑟𝑏 + 𝑛] then set 𝑐𝑡𝑟𝑏 = 𝑐𝑡𝑟𝑏 + 𝑛 and send an ACK back to

Alice with this new counter.

o Also execute the commands in these messages, now that they are all here in order.

o Note that this “filling the gap” condition covers the basic case where 𝑐𝑡𝑟𝑎 = 𝑐𝑡𝑟𝑏

- When Alice gets this ACK she will set her counter to the counter in the ACK message.

Otherwise, if 𝑐𝑡𝑟𝑎 < 𝑐𝑡𝑟𝑏, then:

- discard the message because this is a replay attack

Possible attacks to consider
What happens if Alice has 2 connections to the file server?

If there’s more than one file server then Alice has a counter for server A and a counter for server B, then the attacker

can wait for the counters to sync and can replay messages from one file server to another. Therefore, the file server’s

name needs to be included in the messages Alice sends, and in the ACKs from the server too, for friendliness.

What happens if the server crashes?

- server loses state

- a resynchronization protocol has to be executed

Session IDs
To enable Alice to have two connections (or sessions) open to Bob, another piece of information is added to the

messages: a Session ID number that identifies a communication session between Alice and Bob.

