
Alin Tomescu, CSE408
Tuesday, April 5th, Lecture #18

Network protocols II (nonces and timestamps)

Replay protection using nonces
As always, Alice wants to send a message to Bob, and we don’t want her messages being replayed.

- Alice requests a nonce: “Hi, I’m Alice, can I has nonce? Kthxbye.”

- The server sends her an 𝑟 (random and big), this is the nonce.

- Alice sends 𝑚 and 𝑟 signed with 𝑆𝑖𝑔𝑠𝑘𝑎(𝑚, 𝑟).

o The server needs to remember 𝑟, Alice’s identity and her public key.

- Bob validates the nonce and if it’s good, executes the command, and discards the nonce to avoid replay.

Attacks
If an attacker replays the message, Bob will know that the message has already been sent (𝑟 would’ve been crossed out

the first time).

Man in the middle attack: Attacker sends an 𝑟 to Alice, getting a message from her that he can replay later.

- So we’d better sign 𝑟 with Bob’s secret key, when we send it to Alice

Anyone can request a nonce from the server, which could be bad since nonces are not bound to the two parties

communicating. So the request message should be more specific:

- Alice requests nonce sending 𝑚 = alice, bob, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑛𝑜𝑛𝑐𝑒, 𝑆𝑖𝑔𝑠𝑘𝑎(…)

o But this is replayable

o Therefore, if the server already sent Alice an 𝑟, he shouldn’t send another one until he receives the

message for the first one.

- Bob responds with 𝑚 = bob, alice, 𝑟, 𝑆𝑖𝑔𝑠𝑘𝑏(…)

- Alice then responds with 𝑚 = alice, bob, 𝐸𝑛𝑐𝑝𝑘𝑏(𝑐𝑚𝑑), 𝑆𝑖𝑔𝑠𝑘𝑎(… + 𝑟)

o Encryption is used to protect the command and the nonce is not part of the message

DoS attack:

- Alice wants to send two commands 𝑚1 and 𝑚2

- Alice requests a nonce for the first command 𝑚1

- Server sends 𝑟1, 𝑆𝑖𝑔𝑠𝑘𝑏(𝑟1) for the first command,

- Alice sends the command 𝑚1, attacker discards 𝑚1 but remembers 𝑟1, 𝑆𝑖𝑔𝑠𝑘𝑏(𝑟1)

- Alice requests a nonce for the second command 𝑚2

- Server sends 𝑟2, 𝑆𝑖𝑔𝑠𝑘𝑏(𝑟2) for the second command, attacker discards it and replays the previous 𝑟1 to Alice

- Alice gets 𝑟1 and sends the command 𝑚2 but doesn’t realize 𝑚1 was never executed

o This can be prevented if you only allow one “active” nonce, so the second nonce would never be

granted to Alice until she sends the message for the first one

o ACKs and more nonces can also be used to solve this problem

Fix using ACKs:

- Send an ACK each time a command is executed and an 𝑟 is crossed out.

- Each message exchange (request 𝑟, get 𝑟, send 𝑚) is ACKed by Bob: 𝑚 = alice, bob, 𝑟, 𝐴𝐶𝐾, 𝑆𝑖𝑔𝑠𝑘𝑏(…)

Fix using extra nonces:

Alin Tomescu, CSE408
Tuesday, April 5th, Lecture #18

- Alice can send a nonce of hers when she requests the nonce from Bob

o 𝑚 = alice, bob, 𝑟𝑒𝑞𝑢𝑒𝑠𝑡 𝑛𝑜𝑛𝑐𝑒, 𝑟𝑎 , 𝑆𝑖𝑔𝑠𝑘𝑎(…)

- Bob replies as before but includes her nonce too

o 𝑚 = bob, alice, 𝑟𝑎 , 𝑟𝑏 , 𝑆𝑖𝑔𝑠𝑘𝑏(…)

- Alice sends her message with the nonce 𝑟𝑏 which was bound to it using the 𝑟𝑎 value

o 𝑚 = alice, bob, 𝐸𝑛𝑐𝑝𝑘𝑏(𝑐𝑚𝑑), 𝑆𝑖𝑔𝑠𝑘𝑎(… + 𝑟𝑏)

- Alice is now “a little” stateful (she has to remember her nonce for a while)

- Alice still never knows whether the copy command got to the server

- Attacker can still drop the last message since there’s no ACK

Advantages over the counter mode
- Alice is stateless, she does not need to maintain any state.

- No synchronization, synchronization is free.

- If the server crashes, no problem other that there could be an 𝑟 out there, so a message for that 𝑟 could be

replayed when that 𝑟 happens to be selected again later. The probability is low though.

Conclusion
- The client is stateless

- Synchronization is free

- Pipelining issues

Timers or timestamps
- Alice sends 𝑚 = alice, server, 𝑡, 𝑐𝑚𝑑, 𝑆𝑖𝑔𝑠𝑘𝑎(…)

- Server gets the time 𝑡′ and checks if 𝑡 ≥ 𝑡′ − 𝜀 ⇔ 𝑡′ − 𝑡 ≤ 𝜀

o 𝜀 is the time-window within which messages are accepted by the server

o If 𝑡′ − 𝑡 ≤ 𝜀 then accept the message, otherwise reject it

A major design decision: how big should the time-window 𝜀 be?

- a lower bound for 𝜀 is half the RTT for TCP (let’s say 30 ms)

- there’s also the issue of clock sync/drift

- 𝜀 ≥ 100𝑚𝑠 usually

Within 𝜀, the attacker might be able to do a lot of stuff on a fast network.

- drop, reorder and replay messages

Fixes:

- server should not allow two messages to have the same timestamp (solves replay)

- one suggested fix: is to buffer up all the incoming messages

o 𝑚 enters queue when it’s fresh (within the time window)

o 𝑚 exists queue when it’s rotten (when it’s not in the time window anymore)

 that’s when you execute 𝑚

By the time we fix all the deficiencies, timer mode becomes counter mode.

ACKs:

- Alice sends 𝑚 = alice, server, 𝑡, 𝑐𝑚𝑑, 𝑆𝑖𝑔𝑠𝑘𝑎(…)

Alin Tomescu, CSE408
Tuesday, April 5th, Lecture #18

- Server sends 𝑚 = server, alice, 𝐴𝐶𝐾, 𝑡, 𝑡′, 𝑆𝑖𝑔𝑠𝑘𝑏(…) as soon as it receives it, if it is accepted.

Key agreement protocols
- we have to rely on a third-party to do it

- we need some secret to separate the good guys from the bad guys

Needham Schroder
- out there for a while until people realized it was broken

- two version, public and symmetric key versions

- we have Trent, the trusted party (key distribution center)

- Trent has a secret that he shares with Alice and another secret that he shares with Bob

