
Alin Tomescu, CSE408
Thursday, April 7th, Lecture #19

Key agreement protocols

Needham Schroder
- has been out there for a while until people realized it was broken

- both asymmetric and symmetric key versions

- we have Trent, the trusted party (key distribution center, a.k.a. the KDC)

- Trent has a secret that he shares with Alice 𝑘𝑇𝐴 and another secret that he shares with Bob 𝑘𝑇𝐵

- the description of the protocol assumes the encryption scheme used is CCA-secure (no explicit signing)

Protocol
Here’s how the protocol works.

Alice (has 𝒌𝒕𝒂) Trent (has 𝒌𝒕𝒂, 𝒌𝒕𝒃) Bob (has 𝒌𝒕𝒃)

𝑟𝑒𝑞 = alice, bob, 𝑛1

 𝐸𝑛𝑐𝑘𝑇𝐴
(𝑛1, 𝐾𝑠,bob, 𝐹), 𝐹 = 𝐸𝑘𝑇𝐵

(𝐾𝑠, alice)

𝐹 = 𝐸𝑘𝑇𝐵
(𝐾𝑠, alice)

 𝐸𝑛𝑐𝑘𝑆
(𝑛2)

𝐸𝑛𝑐𝑘𝑆
(𝑛2 + 1)

Outline:

- Hey Trent, I’m Alice, I’d like to talk to Bob, here’s a nonce

o 𝑟𝑒𝑞 = alice, bob, 𝑛1

o without t𝑛1 the attacker with an old session key can impersonate Bob

- Trent will send back to Alice 𝐸𝑛𝑐𝑘𝑇𝐴
(𝑛1, 𝐾𝑠,bob, 𝐹), where 𝐹 = 𝐸𝑘𝑇𝐵

(𝐾𝑠, alice)

- Alice sends 𝐹 to Bob

- Bob sends 𝐸𝑛𝑐𝑘𝑆
(𝑛2)

- Alice sends 𝐸𝑛𝑐𝑘𝑆
(𝑛2 + 1) (purpose of this is to show that Alice is using the specified session key and is able to

decrypt.

Suppose an attacker is able to steal an old session key, and he has the 𝐹 associated with it then he can impersonate

Alice.

To fix this issue, we have to redesign the protocol. A timestamp on 𝐹 would work decently, making the attack window

very small. Another fix is adding more nonces. We are slowly converging to Kerberos.

Fixed protocol
- Alice sends a message to Bob, saying “Hi I’m Alice and I want to talk to you.”

o 𝐴, 𝑁𝐴

- Bob sends an encrypted message to Trent, saying “Hi, I’m Bob and Alice wants to talk to me.”

o 𝐵, 𝐸𝑛𝑐𝐾𝐵
(𝐴, 𝑁𝐴, 𝑅𝐵), 𝑁𝐵

- Trent sends to Alice 𝐸𝑛𝑐𝐾𝐴
(𝐵, 𝑁𝐴, 𝐾𝑆, 𝑅𝐵) and 𝐸𝑛𝑐𝐾𝐵

(𝐴, 𝐾𝑆, 𝑅𝐵), 𝑁𝐵

- Alice sends 𝐸𝐾𝐵
(𝐴, 𝐾𝑆, 𝑅𝐵), 𝑁𝐵 and 𝐸𝐾𝑆

(𝑁𝐵 , 𝑅𝐴) to Bob

o 𝑅𝐵 makes sure that 𝐾𝑆 is not vulnerable to stolen key attack, so that the 𝐾𝑆 is fresh

o 𝑁𝐵 proves that Alice knows 𝐾𝑆

Alin Tomescu, CSE408
Thursday, April 7th, Lecture #19

o Is there any proof that Bob knows 𝐾𝑆?

 Not exactly clear

 So Alice sends 𝐸𝐾𝑆
(𝑁𝐵 , 𝑅𝐴)

 And Bob replies with 𝐸𝐾𝑆
(𝑅𝐴 + 1)

Kerberos
Kerberos is distributed authentication service. MIT had thousands of students accessing servers from all around the

campus so they wanted a single user authentication server for a bunch of different services. The goal was to outsource

authentication from the application-specific servers (file server, mail server) to a specialized authentication server.

- users log in with passwords

- users can log in from any workstation

- users don’t have to log in all the time

Kerberos is based on the symmetric Needham-Schroeder protocol. It uses a trusted third party, called the key

distribution center (KDC), consisting of an Authentication Server (AS) and a Ticket Granting Server (TGS). Kerberos uses

“tickets” to prove the identity of users. The KDC maintains a database of secret keys. Each client on the network

whether it’s a WS or a server S shares a secret key known with the KDC. Knowledge of this key serves to prove identity.

In the following descriptions, we have the user, who will type in his name and password through a work station (WS).

The user wants to access a server 𝑆. We’re also going to have a special authentications server (AS).

Kerberos v1
Protocol:

- User types in his name and password through a WS. He wants to access server 𝑆.

- The WS goes to the AS and says: 𝑟𝑒𝑞 = 𝐼𝐷, 𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑, 𝑆

o Attack: You can steal the password (sent in clear)

- AS sends the WS a ticket 𝑡 = 𝐸𝑛𝑐𝑘𝑠𝑒𝑟𝑣𝑒𝑟
(𝐼𝐷, 𝑆)

o Ticket has no freshness

o No shared key establishment

- WS goes to 𝑆 and says 𝑚 = 𝐼𝐷, 𝑇𝑖𝑐𝑘𝑒𝑡

Kerberos v2
Kerberos v2 has two separate servers for handling authentication:

- main authentication server (AS)

- a ticketing granting server (TGS)

Protocol:

- User enters ID and password into WS

- User sends a message to the AS saying: “Hi, I’m user with ID and I want to talk to TGS for a ticket.”

o 𝑚 = 𝐼𝐷, 𝑇𝐺𝑆

- AS responds sending 𝐸𝑛𝑐𝑘𝐼𝐷
(𝑡𝑖𝑐𝑘𝑒𝑡1)

o AS has a table mapping user ID’s to the hash of their passwords

o 𝑘𝐼𝐷 = ℎ𝑎𝑠ℎ(𝑝𝑎𝑠𝑠𝑤𝑜𝑟𝑑 𝑓𝑜𝑟 𝑢𝑠𝑒𝑟 𝑤𝑖𝑡ℎ 𝐼𝐷)

o 𝑡𝑖𝑐𝑘𝑒𝑡1 = 𝐸𝑛𝑐𝑘𝑇𝐺𝑆
(𝐼𝐷, 𝑇𝐺𝑆, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝1, 𝑡𝑖𝑚𝑒𝑙𝑖𝑚𝑖𝑡1)

 𝑡𝑖𝑚𝑒𝑙𝑖𝑚𝑖𝑡 = lifetime of the ticket

Alin Tomescu, CSE408
Thursday, April 7th, Lecture #19

- User gets it, and decrypts it (he can since the key is the hash of his password), retrieving 𝑡𝑖𝑐𝑘𝑒𝑡1

- User sends 𝐼𝐷, server, 𝑡𝑖𝑐𝑘𝑒𝑡1 to TGS

o We need a secure channel between WS and TGS

o We’ll use the AS as a KDC between the WS and TGS

o We then use the TGS as a KDC between the WS and S

- TGS sends back 𝑡𝑖𝑐𝑘𝑒𝑡2 = 𝐸𝑛𝑐𝑘𝑠𝑒𝑟𝑣𝑒𝑟
(𝐼𝐷, 𝑆, 𝑡𝑖𝑚𝑒𝑠𝑡𝑎𝑚𝑝2, 𝑡𝑖𝑚𝑒𝑙𝑖𝑚𝑖𝑡2)

- Alice sends 𝑡𝑖𝑐𝑘𝑒𝑡2to server: 𝐼𝐷, 𝑡𝑖𝑐𝑘𝑒𝑡2

