
Alin Tomescu, CSE408
Tuesday, April 12th, Lecture #20

Kerberos v5 and PKI

Kerberos v5
Three main building blocks:

- protocol for initial ticket

- protocol for additional tickets

- protocol for server connection setup

Protocol for initial ticket

There’s going to be a user that sits down at a client. The client talks to the KDC (the AS), which has a database of all the

users and their keys, and it also has a database of all the servers on the system and their keys.

User will type in their username 𝑐 and their password 𝑝𝑎𝑠𝑠, and the client will compute 𝑘𝑐 = ℎ𝑎𝑠ℎ(𝑝𝑎𝑠𝑠), and send a

message to the KDC saying that user 𝑐 is talking to him and he wants a ticket for server 𝑠. The client also puts a nonce 𝑛

in the message. Server uses 𝑐 to look up 𝑘𝑐 and he also looks up 𝑘𝑠 from 𝑠. He generates a session key 𝑘𝑐,𝑠 and responds

with 𝐸𝑘𝑐
(𝑘𝑐,𝑠, 𝑁), 𝐸𝑘𝑠

(𝑇𝑐,𝑠), where 𝑇𝑐,𝑠 = (𝑐, 𝑘𝑐,𝑠, 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒). This message is missing the name of the client and server,

which violates the “explicit messages” principle. Even though the nonce 𝑁 is associated with 𝑐, 𝑠 and 𝐴𝑆, apparently that

won’t suffice.

Issue: 𝐸𝑘𝑐
(𝑘𝑐,𝑠, 𝑁) can be brute-forced offline and an attacker could find a client’s password.

Issue: Bad guy can change 𝑆 𝑡𝑜 𝑆′ (as the client sends his first request) and he can “force” the client to talk to 𝑆′ instead

of S. To fix this, 𝐸𝑘𝑐
(𝑘𝑐,𝑠, 𝑁) should be 𝐸𝑘𝑐

(𝑘𝑐,𝑠, 𝑐, 𝑠, 𝑁). Add the 𝑐 in there just to be sure multiple clients are dealt with

securely as well.

The client extracts 𝑘𝑐,𝑠 from 𝐸𝑘𝑐
(𝑘𝑐,𝑠, 𝑁).

Protocol for client-server connection setup

Now the client and the server have to set up their connections. Server has 𝑘𝑠, client has 𝑘𝑐,𝑠 and 𝐸𝑘𝑠
(𝑇𝑐,𝑠 = 𝑐, 𝑘𝑐,𝑠, 𝐿)

Alin Tomescu, CSE408
Tuesday, April 12th, Lecture #20

Client sends 𝐸𝑘𝑠
(𝑇𝑐,𝑠), 𝐸𝑘𝑐,𝑠

(𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑜𝑟) to the server, where authenticator is a timestamp and checked against the

lifetime of the ticket. Server extracts 𝑘𝑐,𝑠 from ticket and then uses it to extract the authenticator and checks it against

the lifetime of the ticket.

Optional: Server responds to prove that it knows 𝑘𝑐,𝑠 with 𝐸𝑘𝑐,𝑠
(𝑎𝑢𝑡ℎ𝑒𝑛𝑡𝑖𝑐𝑎𝑡𝑜𝑟 + 1).

Protocol for additional tickets
If you are a client and you want more tickets, you don’t want to go back to AS. There are subsidiary servers that are

there to issue more tickets.

Client has 𝑘𝑐,𝑡𝑔𝑠, 𝐸𝑘𝑡𝑔𝑠
(𝑇𝑐,𝑡𝑔𝑠) (obtained from the AS, by running the initial ticket protocol with 𝑠 = 𝑡𝑔𝑠)

TGS has hi 𝑘𝑡𝑔𝑠 key and the table of all the servers and their keys that the KDC had: 𝑠𝑒𝑟𝑣𝑒𝑟 → 𝑘𝑒𝑦𝑠𝑒𝑟𝑣𝑒𝑟

Client does the connection setup protocol above with the TGS. At the end of it the TGS will know 𝑘𝑐,𝑡𝑔𝑠 and the client’s

identity 𝑐.

Then the client says to the TGS “I want to talk to 𝑠, here’s a nonce 𝑁”, by sending 𝑠, 𝑁 and the TGS responds

𝐸𝑘𝑐,𝑡𝑔𝑠
(𝑘𝑐,𝑠, 𝑠, 𝑁), 𝐸𝑘𝑠

(𝑇𝑐,𝑠)

Overall protocol
User enters his ID and password into the client, the client will engage the initial ticket protocol with the KDC/AS for a

TGS server to obtain 𝑘𝑐,𝑡𝑔𝑠 and 𝐸𝑘𝑡𝑔𝑠
(𝑇𝑐,𝑡𝑔𝑠). Then the client will perform the additional ticket protocol with the TGS for

some server 𝑠 (this will perform the connection setup protocol between 𝑐 and the TGS). At the end of it 𝑐 and the TGS

will have the shared key 𝑘𝑐,𝑡𝑔𝑠 and 𝑐 and 𝑠 will have 𝑘𝑐,𝑠.

Public-key infrastructure
We’ve got Alice and Bob. Alice has 𝑝𝑘𝑎 and 𝑠𝑘𝑎. Alice can’t just send her 𝑝𝑘𝑎 to Bob because of a MITM attack.

Trent comes into the picture. Alice has 𝑝𝑘𝑡 and so does Bob. Also, Alice and Bob have their public and secret keys.

Somehow in an offline protocol, Alice is going to obtain

𝑆𝑖𝑔𝑠𝑘𝑡
(alice, 𝑝𝑘𝑎) = 𝐶𝑡𝑎

𝐶𝑡𝑎 is a certificate from Trent of Alice’s identity. Bob has to trust Trent, and so does Alice because if Trent wants to

pretend to be Alice, Trent can issue himself a certificate saying he’s Alice. Trent is trusted in two different ways. Bob is

trusting Trent not to impersonate Alice and to issue certificates correctly.

Alin Tomescu, CSE408
Tuesday, April 12th, Lecture #20

Now, Alice can safely send to Bob her public key as 𝑚 = alice, 𝑝𝑘𝑎 , 𝐶𝑡𝑎

Let 𝐶𝑡𝑎 = (alice, 𝑝𝑘𝑎 , 𝑆𝑖𝑔𝑠𝑘𝑡
(alice, 𝑝𝑘𝑎)) to ease notation.

So Alice just sends the certificate. Bob is now sure he’s talking to Alice. If Bob wants to sign his response to Alice then he

needs to send Alice a certificate 𝐶𝑡𝑏 so that Alice can get his public key securely.

A real certificate will have a lifetime. Lifetime can be a year or two years in something like SSL.

The issue in public-key infrastructure (PKI) is who is Trent, how many Trent’s are there and how are they related?

The trust relationship is different. Alice has to trust Trent not to impersonate her. Imagine there are a Trent and a Terry.

Alice’s certificate could be signed by Terry, and Bob’s by Trent. What matters is that Bob’s certificate is signed by

someone that Alice trusts, and vice-versa. So Alice needs to trust Trent and Bob needs to trust Terry.

The holder of a certificate doesn’t have to trust the issuer, the receiver/verifier has to.

We don’t all have to trust the same Trent. This can be interpreted in different ways.

