
Alin Tomescu, CSE408
Thursday, April 14th, Lecture #21

More public key infrastructure

Transitive trust
As always 𝐶𝑡𝑎 is defined as a certificate from Trent to Alice, proving her identity to the world. This certificate also

includes a lifetime.

𝐶𝑡𝑎 = (alice, 𝑝𝑘𝑎 , 𝑙𝑖𝑓𝑒𝑡𝑖𝑚𝑒, 𝑆𝑖𝑔𝑠𝑘𝑡
(…))

Alice obtains a certificate (offline) 𝐶𝑡𝑎 from Trent.

Trent, referred to as 𝑇𝑟𝑒𝑛𝑡0, can delegate his authority to other CA’s like 𝑇𝑟𝑒𝑛𝑡1 and 𝑇𝑟𝑒𝑛𝑡2

𝑇𝑟𝑒𝑛𝑡0 issues 𝐶𝑡0𝑡1
 to 𝑇𝑟𝑒𝑛𝑡1 and 𝐶𝑡0𝑡2

 to Trent2 (out of band).

And so now Alice can get a certificate 𝐶𝑡1𝑎 from 𝑇𝑟𝑒𝑛𝑡1 who will also send his certificate 𝐶𝑡0𝑡1
. Alice sends these to Bob.

Since Bob trusts 𝑇𝑟𝑒𝑛𝑡0 and 𝑇𝑟𝑒𝑛𝑡1 has a certificate from 𝑇𝑟𝑒𝑛𝑡0 proving his identity and trustworthiness, Bob will trust

𝑇𝑟𝑒𝑛𝑡1.

The format for a certificate from one Trent to another Trent is:

𝐶𝑇𝑟𝑒𝑛𝑡0𝑇𝑟𝑒𝑛𝑡1
= (Trent1, 𝑝𝑘𝑇𝑟𝑒𝑛𝑡1

, 0/1, 𝑆𝑖𝑔𝑇𝑟𝑒𝑛𝑡0
(…))

0 would mean 𝑇𝑟𝑒𝑛𝑡1 should not be necessarily trusted, 1 means he should be trusted.

Secure Sockets Layer PKI
Identifier = www.amazon.com

In SSL there are about 650 𝑇𝑟𝑒𝑛𝑡0’s. These are Certificate Authorities (CAs) such as VeriSign.

- all of their public keys are preloaded into your browser

SSL doesn’t enable you to easily customize who you trust. A global trust decision is made for you: you trust all the CAs.

Extended validation certificates (green bar in your browser) – extra checking that CAs are doing additional work when

issuing certificates.

Certificate revocation
CA’s can issue lists of bad certificates. Unfortunately, they can’t force you to download that list. Most web browsers

don’t get the list automatically.

Two ideas proposed for fixing the SSL PKI
1. Multiple certificates (no reason for Alice to just get one certificate from 𝑇𝑟𝑒𝑛𝑡1, she could get more certificates

from a lot of CAs and if Bob trusts one of them then it’s good)

2. Perspectives

a. new trust

Alin Tomescu, CSE408
Thursday, April 14th, Lecture #21

DNSsec
DNS is distributed, fast, lightweight and cached.

There’s no authentication in DNS. An attacker can tell you made a request for amazon.com and can do a MITM

responding with a bad IP address. Your computer will connect to that illegitimate website thinking it’s on the legitimate

one.

Resolver asks .com NS for the amazon NS, he gets 𝑟 = 𝐼𝑃 𝑜𝑓 𝑎𝑚𝑎𝑧𝑜𝑛 𝑁𝑆, 𝑝𝑘𝑎𝑚𝑎𝑧𝑜𝑛 𝑁𝑆, 𝑆𝑖𝑔𝑠𝑘.𝑐𝑜𝑚
(…)

How does he get the public key for the .com NS? He gets it from the previous query to the top-level domain (TLD) NS.

How does he get the public key of the TLD NS? There are only 13 of top-level domain servers, so he can remember them.

