
Alin Tomescu, CSE408
Tuesday, May 3rd, Lecture #24

Web security

Web security
Client has bank, Slashdot.org and Facebook with Farmville open on its browser, and they are all running JavaScript code.

HTTP is a stateless protocol. When you load a page or an image your browser sends a request (GET) and the server sends

back a response. Server closes the TCP connection and forgets you ever existed.

Cookies
There is a database of cookies on the client and each cookie has a domain, a name and a value.

Example: (𝑏𝑎𝑛𝑘. 𝑐𝑜𝑚, 𝑢𝑠𝑒𝑟𝑖𝑑, 𝑟𝑜𝑏)

The browser will send the contents of the bank.com cookie when it makes the request to bank.com. Most importantly, it

will only send the bank.com cookie and not other cookies from other websites.

The bank can then take the cookie and see that it’s Rob who did the request, so it’ll display his page.

This is screwed up because…

- easy to forge (fake) a cookie

- doesn’t have any timeouts

- the cookie is sent in clear, so it’s subject to man in the middle attacks.

Browser Facebook The Facebook server has a
database with session ID’s
and their associated
information:

- user name
- expiration date
- maybe IP address

(if you’re all
behind a NAT it
doesn’t help that
much)

𝑆𝑆𝐿(𝐺𝐸𝑇 𝑙𝑜𝑔𝑖𝑛. ℎ𝑡𝑚𝑙)

 𝑆𝑆𝐿(𝐻𝑇𝑇𝑃 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑤𝑖𝑡ℎ 𝐻𝑇𝑀𝐿 𝑐𝑜𝑑𝑒)

User types in username and password

𝑆𝑆𝐿(𝑃𝑂𝑆𝑇 𝑢𝑠𝑒𝑟 = ⋯ , 𝑝𝑎𝑠𝑠 = ⋯)

 𝑆𝑆𝐿(𝑆𝑒𝑡𝐶𝑜𝑜𝑘𝑖𝑒: (𝑠𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑑 = 123456)

User now request a page on Facebook:
𝐺𝐸𝑇 / 𝐶𝑜𝑜𝑘𝑖𝑒: 𝑠𝑒𝑠𝑠𝑖𝑜𝑛𝑖𝑑 = 123456

- this needs to be encrypted with SSL
to avoid MITM attack stealing the
cookie

 𝑆𝑆𝐿(𝐻𝑇𝑇𝑃 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 𝑤𝑖𝑡ℎ 𝐻𝑇𝑀𝐿 𝑐𝑜𝑑𝑒)

A program like Firesheep will sniff wireless networks, looking for packets going to Facebook or Gmail and grabbing the

cookies. In the end it will present you with a nice friendly list of websites and accounts for you to log in as another

person.

Cookies have a feature (a field) that specifies they should only be sent over SSL. This would solve the Firesheep problem.

Session IDs need to be big random numbers so that an attacker cannot ever guess a valid session ID for anyone.

The cookie database has Session ID, username, lifetime, and a lot of other data. Instead of storing this into the server’s

database you can put it all in the cookie, signed by the server using a MAC. In fact you don’t even need the session ID. So

the server will only store the key 𝑘.

Alin Tomescu, CSE408
Tuesday, May 3rd, Lecture #24

JavaScript and the same origin policy
JavaScript code runs on your browser and it can access and set your cookies. You wouldn’t want Slashdot to modify the

bank website with JavaScript or get its cookies. That’s why the same origin policy was created. Has been around for a

decade.

Same origin policy:

- An origin is a domain name like amazon.com

o What about www.amazon.com? Is that the same as amazon.com? Browser’s have different rules for

making educated guesses if these two are the same. Usually, JavaScript code running on cs.sunysb.edu can

mess around with *.cs.sunysb.edu stuff.

o What about country codes?

o Turns out a webpage contains a white-list of the same origin domains (equivalent domains).

- There are two types of resources in JavaScript

o HTML

o Cookies

o Network

- The rule is that JavaScript code from domain 𝑑 can access resources from domain 𝑑 only.

o For instance, from your bank website you can only open a network connection to your own bank

Ways to get around the same origin policy?

- cross site request forgeries attacks (CSRF)

- cross site scripting attacks (XSS)

Cross site request forgeries attacks (CSRF)
If I know what the link to add someone as your friend looks like on Facebook (Add as a

friend) then I can send you an email that says to click on this link (under an excuse) If you’re logged into Facebook,

clicking on that link will add the friend without you realizing it.

Ambient security: there is no connection between the action and the authority.

Facebook can stick an extra token after the ID in the link Add as a friend and

then validate the token. This token is associated with the user for which the link was generated. So the user cannot post

this link to someone else. Because when they click on it and request the resource the token check will fail, since the line

to the resource was not generated for them.

Another fix is to look at the referrer field. When you send a request, you tell the website you’re going to where you’re

coming from. If you’re going from Wikipedia to Amazon, the referrer is Wikipedia.

