
Alin Tomescu, CSE408
Thursday, May 12th, Lecture #27

Anonymity

Anonymity systems
Goal is to enable two parties to communicate such that an adversary can’t tell who is talking to whom.

- Hide the fact that you talked at all

- Hide conversational partners

Threat models
You may simply want to hide your identity from your conversant, for example if you wanted to visit amazon.com and

look at a product but you would not want them to know that you looked at it (weak threat model form).

Non-global adversary: the bad guy might be someone like the government. He can monitor a few people’s internet

connection, but not that many. He cannot see both your connection and Amazon’s connection. If he could see packets in

both our networks, he can do a timing attack and guess that you talked to Amazon.

Global adversary: where the adversary can monitor all the nodes on the network. So the protocol has to deal with

timing attacks. He can also control some nodes on the network, but not all of them.

Attacks on anonymity
Client talks to Amazon. Packets go through the network. Eve is watching. She can record the times at which packets go

out from the Client and the times at which Amazon.com receives them. This would give her a good assurance that the

client is talking to Amazon.

If Eve controls a node along the path she can introduce jitter and look for it on Amazon’s side.

Anonymity – hiding your identity. Privacy – hiding facts about yourself.

Anonymity applications: internet browsing, electronic voting protocols (learn the results of the elections without

learning what people voted)

Mix nets
Principle: you can be anonymous if you have a crowd of people to be anonymous in.

You have a bunch of people and they send messages to a Mix, which scrambles (permutes) their messages in a random

way and then outputs the messages. Scrambling is not enough, since the input and output can be easily related to each

other, so encryption is added under the public key of the Mix. The initial message could also be encrypted for the

recipient under his key. The mix decrypts and scrambles the messages.

You can have multiple mixes tied together. People would send 𝐸𝑚𝑖𝑥1
(𝐸𝑚𝑖𝑥2

(𝐸𝑚𝑖𝑥3
(𝑚))). What if mix1 and mix3 is bad

but mix2 is good?

Re-randomizing El Gamal
Good old El Gamal encryption:

𝑐𝑡𝑒𝑥𝑡 = 𝑔𝑟 , 𝑔𝑥𝑟𝑚

Alin Tomescu, CSE408
Thursday, May 12th, Lecture #27
You can re-radomize El Gamal by doing:

𝑐𝑡𝑒𝑥𝑡′ = (𝑔𝑟𝑔𝑟′
, 𝑔𝑥𝑟′

𝑔𝑥𝑟𝑚) = (𝑔𝑟+𝑟′
, 𝑔𝑥(𝑟+𝑟′)𝑚)

The mixes can shuffle and re-randomize if they use El-Gamal PKE.

𝑚𝑖𝑥𝑖 ℎ𝑎𝑠 𝑔𝑥𝑖 , 𝑥𝑖 𝑎𝑠 ℎ𝑖𝑠 𝑃𝐾. Together they can compute 𝑃𝐾𝑔𝑟𝑜𝑢𝑝 = 𝑔𝑥1𝑔𝑥2𝑔𝑥3 = 𝑔𝑥1+𝑥2+𝑥3

First mix gets 𝑔𝑟, 𝑔𝑟(𝑥1+𝑥2+𝑥3)𝑚 and he can divide 𝑔𝑟,
𝑔𝑟(𝑥1+𝑥2+𝑥3)𝑚

𝑔𝑟𝑥1
= 𝑔𝑟, 𝑔𝑟(𝑥2+𝑥3) and finally re-randomize. Mix2 and 3

repeat, getting the message 𝑚.

To verify that a mix only permuted and re-randomized and decrypted messages you can use ZKPs.

Low-latency anonymity systems
Tor is a system for browsing the web anonymously. It has found its application in helping people behind firewalls and

proxies to get access to website. People in Iran used tor to get to Twitter and the Chinese used it for Facebook.

Tor stands for The Onion Router. There’s a whole bunch of Tor nodes, all the clients have a list of them. About 2000

right now. When a client 𝑐 wants to connect to some website 𝑤 he picks 3 of these nodes. He constructs a tunnel to the

first one using SSL, telling it to connect to the second one using SSL, and this repeats. The client sends:

𝐸𝑛𝑜𝑑𝑒1 (𝐸𝑛𝑜𝑑𝑒2 (𝐸𝑛𝑜𝑑𝑒3(𝐸𝑑𝑒𝑠𝑡(𝑚))))

There are entry nodes, middle nodes, exit nodes. Many people don’t want to be exit nodes, since you open requests to

any website a Tor client wants. So from the outside it could look like you’re doing bad stuff.

