
Towards Scalable Threshold Cryptosystems
∗Alin Tomescu, †Robert Chen, †Yiming Zheng,

‡Ittai Abraham, ‡§Benny Pinkas, ‡Guy Golan Gueta, ∗Srinivas Devadas

∗MIT CSAIL, †MIT PRIMES & Lexington High School, ‡VMware Research, §Bar Ilan University

Abstract—The resurging interest in Byzantine fault tolerant
systems will demand more scalable threshold cryptosystems.
Unfortunately, current systems scale poorly, requiring time
quadratic in the number of participants. In this paper, we present
techniques that help scale threshold signature schemes (TSS),
verifiable secret sharing (VSS) and distributed key generation
(DKG) protocols to hundreds of thousands of participants and
beyond. First, we use efficient algorithms for evaluating poly-
nomials at multiple points to speed up computing Lagrange
coefficients when aggregating threshold signatures. As a result, we
can aggregate a 130,000 out of 260,000 BLS threshold signature
in just 6 seconds (down from 30 minutes). Second, we show
how “authenticating” such multipoint evaluations can speed up
proving polynomial evaluations, a key step in communication-
efficient VSS and DKG protocols. As a result, we reduce the
asymptotic (and concrete) computational complexity of VSS and
DKG protocols from quadratic time to quasilinear time, at
a small increase in communication complexity. For example,
using our DKG protocol, we can securely generate a key for
the BLS scheme above in 2.3 hours (down from 8 days). Our
techniques improve performance for thresholds as small as 255
and generalize to any Lagrange-based threshold scheme, not
just threshold signatures. Our work has certain limitations: we
require a trusted setup, we focus on synchronous VSS and
DKG protocols and we do not address the worst-case complaint
overhead in DKGs. Nonetheless, we hope it will spark new
interest in designing large-scale distributed systems.

Index Terms—polynomial commitments, polynomial multi-
point evaluation, distributed key generation, verifiable secret
sharing, threshold signatures, BLS

I. INTRODUCTION

Due to the popularity of cryptocurrencies, interest in
Byzantine fault tolerant (BFT) systems has been steadily
increasing [1]–[9]. At the core of BFT systems often lie
simpler threshold cryptosystems such as threshold signature
schemes (TSS) [10], [11], verifiable secret sharing (VSS)
protocols [12]–[14] and distributed key generation (DKG)
protocols [15]–[17]. For example, TSS and DKG protocols are
used to scale consensus protocols [3], [5], [18]. Furthermore,
DKG protocols [16] are used to securely generate keys for
TSS [19], to generate nonces for interactive TSS [20], [21],
and to build proactively-secure threshold cryptosystems [22],
[23]. Finally, VSS is used to build multi-party computation
(MPC) protocols [24], random beacons [6], [9], [25] and is
the key component of DKG protocols.

Despite their usefulness, TSS, VSS and DKG protocols
do not scale well in important settings. For example, BFT
systems often operate in the honest majority setting, with
n total players where t > n/2 players must be honest. In

this setting, t-out-of-n threshold cryptosystems, such as TSS,
VSS and DKG, require time quadratic in n [10], [12], [14],
[26]. This is because of two reasons. First, reconstruction of
secrets, a key step in any threshold cryptosystem, is typically
implemented naively using Θ(t2) time polynomial interpo-
lation, even though faster algorithms exist [27]. This makes
aggregating threshold signatures and reconstructing VSS or
DKG secrets slow for large t. Second, either the dealing round,
the verification round or the reconstruction phase in VSS
and DKG protocols require Θ(nt) time. Fundamentally, this
is because current polynomial commitment schemes require
Θ(nt) time to either compute or verify all proofs [12], [14],
[26]. In this paper, we address both of these problems.

Contributions. Our first contribution is a BLS TSS [10] with
Θ(t log2 t) aggregation time, Θ(1) signing and verification
times and Θ(1) signature size (see §III-A). In contrast, pre-
vious schemes had Θ(t2) aggregation time (see §I-A1). We
implement our fast BLS TSS in C++ and show it outperforms
the naive BLS TSS as early as n ≥ 511 and scales to n as
large as 2 million (see §IV-A). At that scale, we can aggregate
a signature 3000× faster in 46 seconds compared to 1.5 days
if done naively. Our fast BLS TSS leverages a Θ(t log2 t) time
fast Lagrange interpolation algorithm [27], which outperforms
the Θ(t2) time naive Lagrange algorithm.

Our second contribution is a space-time trade-off for
computing evaluation proofs in KZG polynomial commit-
ments [14]. KZG commitments are quite powerful in that
their size and the time to verify an evaluation proof are both
constant and do not depend on the degree of the committed
polynomial. We show how to compute n evaluation proofs
on a degree t polynomial in Θ(n log t) time. Each proof is
of size blog tc − 1 group elements. Previously, each proof
was just one group element but computing all proofs required
Θ(nt) time. Our key technique is to authenticate a polynomial
multipoint evaluation at the first n roots of unity (see §II-4),
obtaining an authenticated multipoint evaluation tree (AMT).
Importantly, similar to KZG proofs, our AMT proofs remain
homomorphic (see §III-D1), which is useful when we apply
them to distributed key generation (DKG) protocols.

Our third contribution is AMT VSS, a scalable VSS with a
Θ(n log t) time sharing phase, an O(t log2 t + n log t) time
reconstruction phase, Θ(1)-sized broadcast (during dealing
round) and Θ(n log t) overall communication. AMT VSS
improves over previous VSS protocols which, in the worst
case, incur Θ(nt) computation. However, this improvement

comes at the cost of slightly higher verification times and
communication (see Table I). Nonetheless, in §IV, we show
AMT VSS outperforms eVSS [14], the most communication-
efficient VSS, as early as n = 63. Importantly, AMT VSS
is highly scalable. For example, for n ≈ 217, we reduce the
best-case end-to-end time of eVSS from 2.2 days to 8 minutes.

Our fourth contribution is AMT DKG, a DKG with a
Θ(n log t) time sharing phase (except for its quadratic time
complaint round), an O(t log2 t + n log t) time reconstruc-
tion phase, a Θ(1)-sized broadcast (during dealing round)
and Θ(n log t) per-player dealing communication. AMT DKG
improves over previous DKGs which, in the worst case, incur
Ω(nt) computation. Once again, this improvement comes at
the cost of slightly higher verification times and communica-
tion (see Table I). Nonetheless, in §IV, we show AMT DKG
outperforms eJF-DKG [17], the most communication-efficient
DKG, as early as n = 63. For n ≈ 217, we reduce the best-
case end-to-end time of eJF-DKG from 2.4 days to 4 minutes.

Our last contribution is an open-source implementation:

https://github.com/alinush/libpolycrypto

Limitations. Our work only addresses TSS, VSS and DKG
protocols secure against static adversaries. However, adaptive
security can be obtained, albeit with some overheads [26],
[28]–[31]. We only target synchronous VSS and DKG pro-
tocols, which make strong assumptions about the delivery of
messages. However, recent work [32] shows how to instantiate
such protocols using the Ethereum blockchain [2]. Our VSS
and DKG protocols require a trusted setup (see §V-1). Our
evaluation only measures the computation in VSS and DKG
protocols and does not measure network delays that would
arise in a full implementation on a real network. Our tech-
niques slightly increase the communication overhead of VSS
and DKG protocols from Θ(n) to Θ(n log t). However, when
accounting for the time savings, the extra communication
is worth it. Still, we acknowledge communication is more
expensive than computation in some settings. Finally, we do
not address the worst-case quadratic overhead of complaints
in DKG protocols. We leave scaling this to future work.

A. Related Work

1) Threshold signature schemes (TSS): Threshold signa-
tures and threshold encryption were first conceptualized by
Desmedt [33]. Since then, many threshold signatures based
on Shamir secret sharing (see §II-C) have been proposed
[?], [10], [11], [20], [21], [34]–[37]. To the best of our
knowledge, none of these schemes addressed the Θ(t2) time
required for polynomial interpolation. Furthermore, all current
BLS TSS [10] implementations seem to use this quadratic
algorithm [3], [38]–[40] and thus do not scale to large t. In
contrast, our work uses Θ(t log2 t) fast Lagrange interpolation
and scales to t = 220 (see §III-A).

An alternative to a TSS is a multi-signature scheme (MSS).
Unlike a TSS, an MSS does not have a unique, constant-
sized public key (PK) against which all final signatures can be
verified. Instead, the PK is dynamically computed given the

contributing signers’ IDs and their public keys. This means
that a t-out-of-n MSS must include the t signer IDs as part of
the signature, which makes it Ω(t)-sized. Furthermore, MSS
verifiers must have all signers’ PKs, which are of Ω(n) size. To
fix this, the PKs can be Merkle-hashed but this now requires
including the PKs and their Merkle proofs as part of the
MSS [41]. On the other hand, an MSS is much faster to
aggregate than a TSS. Still, due to its Ω(t) size, an MSS does
not always scale.

2) Verifiable secret sharing (VSS): VSS protocols were
introduced by Chor et al. [13]. Feldman proposed the first
efficient, non-interactive VSS with computational hiding and
information-theoretic binding [26]. Pedersen introduced its
counterpart with information-theoretic hiding and compu-
tational binding [12]. Both schemes require a Θ(t)-sized
broadcast during dealing. Kate et al.’s eVSS reduced this
to Θ(1) using constant-sized polynomial commitments [14].
eVSS also reduced the verification round time from Θ(t)
to Θ(1). However, eVSS’s Θ(nt) dealing time scales poorly
when t ≈ n. Our work improves eVSS to Θ(n log t) dealing
time at the cost of Θ(log t) verification round time. We also
increase communication from Θ(n) to Θ(n log t) (see Table I).

3) Publicly verifiable secret sharing (PVSS): Stadler pro-
posed publicly verifiable secret sharing (PVSS) protocols [42]
where any external verifier can verify the VSS protocol exe-
cution. As a result, PVSS is less concerned with players indi-
vidually and efficiently verifying their shares, instead enabling
external verifiers to verify all players’ (encrypted) shares.
Schoenmakers proposed an efficient (t, n) PVSS protocol [43]
where dealing is Θ(n log n) time and external verification
of all shares is Θ(nt) time, later improved to Θ(n) time
by Cascudo and David [25]. Unfortunately, when the dealer
is malicious, PVSS still needs Θ(nt) computation during
reconstruction. Furthermore, PVSS might not be a good fit
in protocols with a large number of players. In this setting,
it might be better to base security on a large, threshold
number of honest players who individually and efficiently
verify their own share rather than on a small number of
external verifiers who must each do Ω(n) work. Indeed, recent
work explores the use of VSS within BFT protocols without
external verifiers [44]. Nonetheless, our AMT VSS protocol
can be easily modified into a PVSS since an AMT for all n
proofs can be batch-verified in Θ(n) time (see §III-C3).

4) Distributed key generation (DKG): DKG protocols were
introduced by Ingemarsson and Simmons [45] and subse-
quently improved by Pedersen [12], [15]. Gennaro et al. [16]
noticed that if players in Pedersen’s DKG refuse to deal [15],
they cannot be provably blamed and fixed this in their new
JF-DKG protocol. They also showed that secrets produced
by Pedersen’s DKG can be biased, and fixed this in their
New-DKG protocol. Neji et al. gave a more efficient way of
debiasing Pedersen’s DKG [46]. Gennaro et al. also introduced
the first “fast-track” or optimistic DKG [24]. Canetti et al.
modified New-DKG into an adaptively-secure DKG [28]. So
far, all DKGs required a Θ(t)-sized broadcast by each player.

Kate’s eJF-DKG [17] reduced the dealer’s broadcast to Θ(1)

https://github.com/alinush/libpolycrypto

TABLE I
PER-PLAYER WORST-CASE ASYMPTOTIC COMPLEXITY OF (t, n) VSS/DKG PROTOCOLS.

Scheme Dealing
round time

Verification
round time

Complaint
round time

Reconstr. time
(no interpol.)

Dealing commun.
(broadcast)

Dealing commun.
(private)

Feldman VSS [26] n logn t t2 nt t n
JF-DKG [16] n logn nt t3 nt t n
eVSS [14] nt 1 t n 1 n
eJF-DKG [17] nt n t2 n 1 n

AMT VSS n log t log t t log t n log t 1 n log t
AMT DKG n log t n log t t2 log t n log t 1 n log t

via constant-sized polynomial commitments [14]. eJF-DKG
also reduced verification time from Θ(nt) per player to Θ(n)
but at the cost of Θ(nt) dealing time per player. All DKGs
so far require Θ(nt) computation per player (in the worst
case), while our AMT DKG requires Θ(n log t). Furthermore,
these DKGs assume a synchronous communication model
between players, which can be difficult to instantiate. Recently,
ETHDKG [32] surpasses this difficulty using Ethereum [2].
Kate et al. introduced asynchronous DKG protocols [17], [19]
based on bivariate polynomials. We have not investigated if
our techniques apply there.

5) Polylogarithmic DKG: Canny and Sorkin present a
polylogarithmic time DKG [47], a beautiful result that un-
fortunately has limitations. In certain settings, their protocol
only requires Θ(log3 n) computation and communication per
player. The key idea is that each player only talks to a
group of log n other players, leading to a Θ(log3 n) per-player
complexity. Unfortunately, their protocol centralizes trust in
a dealer who must “permute” the players before the protocol
starts. The authors argue the dealer can be distributed amongst
the players, but it is unclear how to do so securely while
maintaining the Θ(log3 n) per player complexity.

Furthermore, their protocol does not efficiently support all
thresholds (t, n). Instead, it only supports ((1/2 + ε)n, n)
thresholds and tolerates (1/2 − ε)n failures, where ε ∈
(0, 1/2). Thus, their protocol can tolerate more failures only
if ε is made very small. Unfortunately, a smaller ε causes the
group size to increase, driving up the per-player complexity
(see Appendix D). As a result, their protocol only scales in
settings where a small fraction of failures is tolerated (e.g., 1/5)
and a larger fraction of players is required to reconstruct (e.g.,
4/5). Nonetheless, for their protocol to be truly distributed, the
trusted dealer must be eliminated as a single point of failure.

6) DKG implementations: Finally, the increasing popularity
of BLS threshold signatures [10] has led to several DKG im-
plementations. For example, recent works implement a DKG
on top of the Ethereum blockchain [32], [48], [49]. Cryptocur-
rency companies such as DFINITY and GNOSIS implement
a DKG as well [50], [51]. Finally, Distributed Privacy Guard
(DKGPG) [52] implements a DKG for ElGamal threshold
encryption [53] and for DSS threshold signatures [28]. All
current implementations are based on Feldman [26] or Peder-
sen commitments [15] and require Θ(nt) time per player.

II. PRELIMINARIES

In this section we introduce some notation, our crypto-
graphic assumptions and the communication and adversarial
model for the distributed protocols in this paper. Then, we give
background on TSS, polynomial commitments, VSS, DKG
and polynomial multipoint evaluations.

1) Notation: Let Fp denote the finite field “in the exponent”
associated with a group G of prime order p with generator g.
We use multiplicative notation for all algebraic groups in this
paper. Let 1G denote the identity element of a group G. Let
s ∈R S denote sampling an element s uniformly at random
from some set S. Let log x be shorthand for log2 x. Let [i, j] =
{i, i+1, . . . , j−1, j} and [n] = [1, n] and. Let deg φ denote the
degree of a polynomial φ. We say a polynomial φ has degree-
bound m if deg φ < m. Let PPq(g; τ) = 〈gτ , gτ2

, . . . , gτ
q 〉

denote public parameters used in the q-SBDH assumption (see
Appendix B).

2) Cryptographic assumptions: Our work relies on the use
of pairings or bilinear maps, first introduced by Menezes et al.
[54]. Recall that a bilinear map e(·, ·) : G×G→ GT has useful
algebraic properties: e(ga, gb) = e(ga, g)b = e(g, gb)a =
e(g, g)ab. To simplify exposition, throughout the paper we
assume symmetric (Type I) pairings, but our results can be
re-stated in the setting of the more efficient asymmetric (Type
II and III) pairings in a straightforward manner. Our schemes
from §§III-C and III-D rely on the q-SBDH [55] and q-
polyDH [14] assumptions, both defined in Appendix B.

3) Communication and adversarial model: DKG and VSS
protocols assume a broadcast channel for all actors to reliably
communicate with each other [13], [15]. (In practice, this can
be implemented using BFT protocols [32].) In addition, some
protocols need private and authenticated channels between
actors [14]–[17], [26]. We focus on synchronous VSS and
DKG protocols, where parties communicate in rounds. Within
a round, each party performs some computation, (possibly)
sends private messages to other players and broadcasts a mes-
sage to everybody. By the end of the round, each party receives
all messages sent in that round by other players (whether pri-
vately or via broadcast). We assume computationally-bounded
adversaries A that control up to t − 1 players. We restrict
ourselves to static A’s who fix the set of < t corrupted players
before the protocol starts. We assume A can be rushing and
can wait to hear all messages from all honest players in a round
before privately sending or broadcasting his own message

within that same round. The protocols in this paper are robust:
there are always t honest players who can reconstruct the
secret. In the synchronous setting, robustness holds for all
t− 1 < n/2 [16].

4) FFT and Lagrange interpolation: We use the Fast
Fourier Transform (FFT) to multiply and divide polynomi-
als in Fp[X] of degree-bound N = 2k in Θ(N logN)
time [56], [57]. For this, we need a primitive N th root of
unity in Fp, which we denote by ωN [56]. Finally, given
(xi, yi = φ(xi))i∈[n], interpolating φ takes Θ(n log2 n) time
using fast Lagrange interpolation [27]. Specifically, recall that
φ(x) =

∑
i∈[n] L

[n]
i (x)yi where L[n]

i (x) =
∏
j∈[n]j 6=i

x−xj
xi−xj is

called a Lagrange polynomial [58]. Note that L[n]
i is defined

with respect to the set of points {xi}i∈[n]. Throughout this
paper, this set will typically be {xi}i∈T where T ⊂ [n], with
either xi = i or xi = ωi−1N and the Lagrange polynomial will
be denoted LTi (x).

A. Threshold Signature Schemes (TSS)

A (t, n)-threshold signature scheme (TSS) is a protocol
amongst n signers where only subsets of size ≥ t can
produce a digital signature [59] on a message m. Many
signature schemes can be turned into a TSS, such as RSA [11],
[59], Schnorr [20], [60], [61], ElGamal [35]–[37], [62],
ECDSA [21] and BLS [10], [63]. In this paper, we focus on
the BLS TSS because of its simplicity and efficiency.

1) (Threshold) BLS signatures: A normal BLS signature
on a message m ∈ {0, 1}∗ is σ = H(m)s where s ∈R Fp
is the secret key and H : {0, 1}∗ → G is a hash function
modeled as a random oracle. To verify the signature against
the public key gs, a bilinear map e is used to ensure that
e(H(m), gs)

?
= e(σ, g)⇔ e(H(m), g)s

?
= e(H(m)s, g).

To obtain a (t, n) BLS TSS [10], the secret key s is split
amongst the n signers using (t, n) Shamir secret sharing (see
§II-C). Specifically, each signer i has a secret key share si of
s along with a verification key gsi . To produce a signature on
m, each i computes a signature share σi = H(m)si . Then, all
σi’s are sent to an aggregator (e.g., one of the signers). Since
some signers are malicious, their σi might not be valid. Thus,
the aggregator verifies each σi by checking if e(gsi , H(m))

?
=

e(σi, g). (This works because σi is a normal BLS signature
that should verify under gsi .) This way, the aggregator finds
a subset T of t signers who produced a valid signature share
σi. Now, the aggregator can compute the final signature as
σ =

∏
i∈T σ

LTi (0)
i = H(m)

∑
i∈T siL

T
i (0) = H(m)s via

Lagrange interpolation (see §II-4). Importantly, aggregation
never exposes the secret key s, which is interpolated “in
the exponent.” The time to aggregate the signature is Θ(t2),
dominated by the time to (naively) compute the LTi (0)’s.

B. Constant-sized Polynomial Commitments

Kate, Zaverucha and Goldberg introduced constant-
sized polynomial commitments, often called KZG com-
mitments [14]. Their scheme requires `-SDH [64] public
parameters PP`(g; τ) = (gτ

i

)i∈[0,`] where τ denotes a

trapdoor. (These parameters are computed via a trusted
setup; see §V-1.) Their scheme is computationally-hiding
(see Definition A.5) under the discrete log assumption and
computationally-binding [14] under `-SDH. Unlike Pedersen
commitments [12], KZG can only commit to polynomials of
maximum degree `.

Let φ denote a polynomial of degree d ≤ ` with coefficients
c0, c1, . . . , cd in Fp. A KZG commitment to φ is a single group
element C =

∏d
i=0

(
gτ

i
)ci

= g
∑d
i=0 ciτ

i

= gφ(τ). Note that
committing to φ takes Θ(d) time. To compute an evaluation
proof that φ(a) = y, KZG leverages the polynomial remainder
theorem, which says:

φ(a) = y ⇔ ∃q, φ(x)− y = q(x)(x− a) (1)

The proof is just a KZG commitment to q: a single group
element π = gq(τ). Computing the proof takes Θ(d) time.
To verify π, one checks (in constant time) if e(C/gy, g) =
e(π, gτ/ga)⇔ e(g, g)φ(τ)−y = e(g, g)q(τ)(τ−a).

1) Batch proofs and homomorphism: Given a set of points
S and their evaluations {φ(i)}i∈S , KZG can prove all eval-
uations with one constant-sized batch proof rather than |S|
individual proofs [14]. The prover computes an accumulator
polynomial a(x) =

∏
i∈S(x − i) in Θ(|S| log2 |S|) time and

computes φ/a in Θ(d log d) time, obtaining a quotient q and
remainder r. The batch proof is π = gq(τ). To verify π against
{φ(i)}i∈S and C, the verifier first computes a from S and
interpolates r such that r(i) = φ(i),∀i ∈ S in Θ(|S| log2 |S|)
time. Next, he computes ga(τ) and gr(τ) commitments. Finally,
he checks if e(C/gr(τ), g) = e(gq(τ), ga(τ)). We stress that
batch proofs are only useful when |S| ≤ d. Otherwise, if
|S| > d, we can interpolate φ directly from the evaluations,
which makes verifying any evaluation trivial.

Finally, KZG proofs have a homomorphic property. Suppose
we have two polynomials φ1, φ2 with commitments C1, C2

and two proofs π1, π2 for φ1(a) and φ2(a), respectively. Then,
a commitment C to the sum polynomial φ = φ1 + φ2 can be
computed as C = C1C2 = gφ1(τ)gφ2(τ) = gφ1(τ)+φ2(τ) =
g(φ1+φ2)(τ). Even better, a proof π for φ(a) w.r.t. C can be
aggregated as π = π1π2. This homomorphism is necessary in
KZG-based protocols such as eJF-DKG (see §II-D).

C. (Verifiable) Secret Sharing

A (t, n) secret sharing scheme allows a dealer to split up
a secret s amongst n players such that only subsets of size
≥ t players can reconstruct s. Secret sharing schemes were
introduced independently by Shamir [65] and Blakley [66].
Shamir’s secret sharing (SSS) is split into two phases. In
the sharing phase, the dealer picks a degree t − 1, random,
univariate polynomial φ, lets s = φ(0) and distributes a share
si = φ(i) to each player i ∈ [n]. In the reconstruction
phase, any subset T ⊂ [n] of t honest players can recon-
struct s by sending their shares to a reconstructor. For each
i ∈ T , the reconstructor computes a Lagrange coefficient
LTi (0) =

∏
j∈T,j 6=i

0−j
i−j . Then, he computes the secret as

s = φ(0) =
∑
i∈T LTi (0)si (see §II-4).

Algorithm 1 eVSS: A synchronous (t, n) VSS

Sharing Phase
Dealing round:
1) The dealer picks φ ∈R Fp[X] of degree t− 1 with s = φ(0), computes

all shares si = φ(i), and commits to φ as c = gφ(τ).
2) Computes KZG proofs πi = gqi(τ), qi(x) =

φ(x)−φ(i)
x−i , ∀i ∈ [n].

3) Broadcasts c to all players. Then, sends (si, πi) to each player i ∈ [n]
over an authenticated, private channel.

Verification round:
1) Each player i ∈ [n] verifies πi against c by checking if e(c/gsi , g) =

e(πi, g
τ−i). If this check fails (or i received nothing from dealer), then

i broadcasts a complaint against the dealer.
Complaint round:
1) If the size of the set S of complaining players is ≥ t, the dealer is

disqualified. Otherwise, the dealer reveals the correct shares with proofs
by broadcasting {si, πi}i∈S .

2) If any one proof does not verify (or dealer did not broadcast), the dealer
is disqualified. Otherwise, each i ∈ [n] now has his correct share si.

Reconstruction Phase
Given commitment c and shares (i, si, πi)i∈T , |T | ≥ t, the reconstructor:
1) Verifies each si, identifying a subset V of t players with valid shares.
2) Interpolates s =

∑
i∈V LVi (0)si = φ(0).

Unfortunately, SSS does not tolerate malicious dealers who
distribute invalid shares, nor malicious players who might
send invalid shares during reconstruction. To deal with this,
Verifiable Secret Sharing (VSS) protocols enable players to
verify shares from a potentially-malicious dealer [12]–[14],
[26]. Furthermore, VSS also enables the reconstructor to verify
the shares before interpolating the (wrong) secret. Loosely
speaking, VSS protocols must offer two properties against
any adversary who compromises the dealer and < t players:
secrecy and correctness. Secrecy guarantees that no adversary
learns the secret s when the dealer is honest, since a malicious
one can simply reveal s. Correctness guarantees that, after the
sharing phase, either any set of ≥ t honest players can always
reconstruct s or the dealer is disqualified. We refer the reader
to [14] for more formal VSS definitions.

1) Kate et al.’s eVSS: At a high-level, eVSS follows the
style of previous VSS protocols [12], [26]. In the dealing
round, the dealer commits to φ and sends each player their
share and proof that their share is correct. In the verification
round, each player verifies the proof for his share and, if
incorrect, broadcasts a complaint. Finally, in the complaint
round, the dealer resolves complaints (if any) by broadcasting
the correct share of each complaining player. We give a
detailed description of eVSS in Algorithm 1 and its asymptotic
complexity in Table I.

From Algorithm 1, eVSS’s overall communication com-
plexity is Θ(n) (since at most 2n + (t − 1) shares and
proofs are sent while dealing, complaining and reconstructing).
eVSS’s reconstruction phase is O(t log2 t + n) time, since
at most n shares have to be verified before the secret can
be interpolated fast in Θ(t log2 t) time [27]. eVSS’s dealing
round is Θ(nt) time, since n KZG proofs must be computed.
The verification round is Θ(1) time (per player). If S is the
set of complaining players, the complaint round takes Θ(|S|)

Algorithm 2 eJF-DKG’s Sharing Phase
Dealing round: Each player i:

1) Picks fi ∈R Fp[X] of degree t− 1, sets zi = fi(0) and ci = gfi(τ).
2) Computes gzi = gfi(0), a KZG proof πi,0 for fi(0) and a NIZKPoK

πDLog
i for gfi(0) and broadcasts (ci, g

zi , πi,0, π
DLog
i).

3) Computes shares si,j = fi(j) and KZG proofs πi,j and sends (si,j , πi,j)
to each j ∈ [n] over an authenticated, private channel.

Verification round: For each (ci, g
zi , πi,0, π

DLog
i , si,j , πi,j) from i, each j:

1) Verifies πi,0 by checking e(ci/gzi , g) = e(πi,0, g
τ−0) and verifies the

πDLog
i NIZKPoK.

2) Verifies its share si,j using e(ci/gsi,j , g) = e(πi,j , g
τ−j).

3) If any of these checks fail (or nothing was received from i), then j
broadcasts a complaint against i.

Complaint round:
1) Let Si be the set of players complaining against i. If |Si| ≥ t, then i

is marked as disqualified by all honest players. Otherwise, i broadcasts
{si,j , πi,j}j∈Si .

2) If any one proof does not verify (or i did not broadcast), then i is
disqualified. Otherwise, each j ∈ Si now has his correct share si,j .

3) Let Q denote the set of players that were not disqualified. The agreed-
upon (unknown) secret key s =

∑
j∈Q zj . Each i sets c =

∏
j∈Q cj ,

sets the public key gs =
∏
j∈Q g

zj , sets his share si =
∑
j∈Q sj,i, and

sets his KZG proof πi =
∏
j∈Q πj,i.

time and communication for the dealer to send |S| shares with
proofs and Θ(|S|) time for each player to verify them.

D. Distributed Key Generation (DKG)

TSS protocols pose a key generation problem: if one party
P splits s to the n signers (via SSS), P would know s and
could sign on behalf of the group. This would make the TSS
insecure and thus motivates distributed key generation (DKG)
protocols [15], [16]. A (t, n) DKG protocol for discrete log
cryptosystems allows n players to jointly generate a secret key
s ∈R Fp with public key gs ∈ G such that only subsets of
size ≥ t can reconstruct s.

Unlike VSS protocols, where the dealer knows s (see §II-C),
DKG protocols guarantee nobody learns s during the execution
of the protocol. Typically, DKG protocols achieve this by
having each player i secret-share its own secret zi and setting
the final secret s to be

∑
i zi. Similar to VSS, DKG protocols

must offer two security properties against any adversary who
compromises < t players: secrecy and correctness. Informally,
secrecy guarantees that no adversary can learn any information
about s beyond what is leaked by gs. Correctness guarantees
that all honest players agree on gs and any subset with ≥ t
honest players can reconstruct s.

1) Kate’s eJF-DKG: In this paper, we focus on improv-
ing eJF-DKG which, at a high-level, consists of n parallel
executions of eVSS. We describe only its sharing phase in
Algorithm 2, since it has the same reconstruction phase as
eVSS. Note that eJF-DKG makes use of non-interactive zero-
knowledge proofs of knowledge (NIZKPoKs) [67]. Although
eJF-DKG is biasable and produces an s that is not guaranteed
to be uniform, computing discrete logs on gs is still hard [17],
[61]. Also, debiasing DKG protocols is possible [16], [32],
[46].

φ = q1,8(x− 1)(x− 2) . . . (x− 8) + r1,8

r1,8 = q1,4(x− 1)(x− 2) . . . (x− 4) + r1,4

r1,4 = q1,2(x− 1)(x− 2) + r1,2

r1,2 = q1,1(x− 1) + r1,1

r1,2 = q2,2(x− 2) + r2,2

r1,4 = q3,4(x− 3)(x− 4) + r3,4

r3,4 = q3,3(x− 3) + r3,3

r3,4 = q4,4(x− 4) + r4,4

r1,8 = q5,8(x− 5)(x− 6) . . . (x− 8) + r5,8

r5,8 = q5,6(x− 5)(x− 6) + r5,6

r5,6 = q5,5(x− 5) + r5,5

r5,6 = q6,6(x− 6) + r6,6

r5,8 = q7,8(x− 7)(x− 8) + r7,8

r7,8 = q7,7(x− 7) + r7,7

r7,8 = q8,8(x− 8) + r8,8

Fig. 1. A multipoint evaluation of polynomial φ at points [8] = {1, 2, . . . , 8}. Each node is expressed as a = q · b+ r: i.e., a polynomial a is being divided
by b, resulting in a quotient q and a remainder r. In the root node, φ is divided by the root accumulator

∏
i∈[8](x − i), obtaining a quotient q1,8 and a

remainder r1,8. Then, the root’s left child divides r1,8 by (x− 1) · · · (x− 4) while the right child divides it by (x− 5) · · · (x− 8). The process is repeated
recursively on the resulting r1,4 and r5,8 remainders. The remainders ri,i in the leaves are the evaluations φ(i).

E. Polynomial Multipoint Evaluation

We build upon polynomial multipoint evaluation tech-
niques [27]. Given a degree t polynomial φ, naively eval-
uating it at n > t points x1, . . . , xn requires Θ(nt) time.
This is fast when t is very small relative to n but can
be slow when t ≈ n, as is the case in many instantia-
tions of threshold cryptosystems. Fortunately, a multipoint
evaluation reduces this time to O(n log2 n) using a di-
vide and conquer approach. Specifically, one first computes
φL(x) = φ(x) mod (x− x1)(x− x2) · · · (x− xn/2) and then
φR(x) = φ(x) mod (x − xn/2+1)(x − xn/2+2) · · · (x − xn)
Then, one simply recurses on the two half-sized subprob-
lems: evaluating φL(x) at x1, x2, . . . , xn/2 and φR(x) at
xn/2+1, xn/2+2, . . . xn. Ultimately, the leaves of this recursive
computation store φ(x) mod (x − xi), which is exactly φ(i)
by the polynomial remainder theorem (see Figure 1).

For example, consider the multipoint evaluation of φ at
{1, 2, . . . , 8}, which we depict in Figure 1. We start at the root
node ε. Here, we divide φ by the accumulator polynomial (x−
1)(x− 2) . . . (x− 8) obtaining a quotient polynomial q1,8 and
remainder polynomial r1,8. Then, its left and right children di-
vide r1,8 by the left and right “half” of (x−1)(x−2) . . . (x−8),
respectively. This proceeds recursively: each node w divides
rparent(w) by its accumulator aw, obtaining a quotient qw and
remainder rw such that rparent(w) = qwaw + rw. Note that all
accumulator polynomials aw can be computed in O(n log2 n)
time by starting with the (x − i) monomials as leaves of a
binary tree and “multiplying up the tree.” Since division by a
degree-bound n accumulator takes O(n log n) time, the total
time is T (n) = 2T (n/2) +O(n log n) = O(n log2 n) [27].

III. SCALABLE THRESHOLD CRYPTOSYSTEMS

First, we show how to speed up and scale threshold sig-
nature aggregation as well as secret reconstruction in any
Lagrange-based threshold cryptosystem (see §III-A). Then, we
introduce authenticated multipoint evaluation trees (AMTs), a
new technique for precomputing logarithmic-sized evaluation
proofs much faster in KZG commitments (see §III-B). Last,
we use AMTs to speed up and scale Kate et al.’s eVSS and
Kate’s eJF-DKG (see §§III-C and III-D).

A. Scalable Threshold Signatures

In this section, we show how to reduce the time to aggregate
a (t, n) BLS threshold signature from Θ(t2) to Θ(t log2 t).
Although we focus on BLS, our techniques can be used in
any threshold cryptosystem (not just signatures) whose secret
key lies in a prime-order field Fp. This includes ElGamal
signatures [35]–[37], ElGamal encryption [53] and Schnorr
signatures [20], [61] (but not RSA-based schemes, whose
secret key does not lie in a prime-order field [11]).

Recall from §II-A that BLS TSS aggregation has two
phases: (1) computing Lagrange coefficients and (2) exponen-
tiating signature shares by these coefficients. Unfortunately, as
t gets large, naively computing Lagrange coefficients in Θ(t2)
time dominates exponentiating the shares (see Figure 2a). In
fact, current descriptions and implementations of threshold
schemes all seem to use this inefficient scheme, which we
dub naive Lagrange [10], [38]–[40], [68]. We make three
contributions. First, we adapt the fast polynomial interpolation
from [27] to compute just the Lagrange coefficients LTi (0) fast
in Θ(t log2 t) time. We call this scheme fast Lagrange. Second,
we speed up this scheme by using roots of unity rather than
{1, 2, . . . , n} as the signer IDs. Third, we implement a BLS
TSS based on fast Lagrange and show it outperforms the naive
one as early as n = 511 (see §IV-A).

1) Fast Lagrange-based BLS: Recall from §II-4 that a La-
grange polynomial LTi (x) is defined as LTi (x) =

∏
j∈T
j 6=i

x−j
i−j .

Let us define N(x) =
∏
i∈T (x− i). Then, let Ni(x) =

N(x)
x−i =

∏
j∈T,j 6=i (x− j) be the numerator and let Di =

Ni(i) =
∏
j∈T,j 6=i (i− j) be the denominator. Now, we can

rewrite LTi (x) = Ni(x)
Di

.
Our goal is to quickly compute LTi (0) for each signer ID

i ∈ T . In other words, we need to quickly compute all Ni(0)’s
and all Di’s. First, given the set of signer IDs T , we interpolate
N(x) in Θ(t log2 t) time by starting with the (x − i)’s as
leaves of a tree and “multiplying up the tree.” Second, we
can compute all Ni(0) = N(0)/(−i) in Θ(t) time. (Note that
N(0) is just the first coefficient of N(x).) However, computing
Di,∀i ∈ T appears to require Θ(t2) time. Fortunately, the
derivative N ′(x) of N(x) evaluated at i is exactly equal to

Di [27]. Thus, a Θ(t log2 t) multipoint evaluation of N ′(x) at
all i ∈ T can efficiently compute all Di’s!

To see why N ′(i) = Di, it is useful to look at the closed
form formula for N ′(x) obtained by applying the product rule
of differentiation (i.e., (fg)′ = f ′g + fg′). For example, for
N(x) = (x− 1)(x− 2)(x− 3):

N ′(x) = (x− 2)(x− 3) + (x− 1)(x− 3) + (x− 1)(x− 2)

= N1(x) +N2(x) +N3(x)

In general, we can prove that N ′(x) =
∑
i∈T Ni(x), where

degN ′ = t − 1. Since Nj(i) = 0 for all i 6= j, it follows
that N ′(i) = Ni(i) + 0 = Di. Lastly, computing N ′(x) only
takes Θ(t) time via polynomial differentiation. (i.e., N =
(ct, ct−1, . . . , c1, c0)⇒ N ′ = (t · ct, (t− 1)ct−1, . . . , 2c2, c1))

To summarize, given a set T of signer IDs, we can compute
the Lagrange coefficients LTi (0) = Ni(x)/N ′(i) by (1) com-
puting N(x) in Θ(t log2 t) time, (2) computing all Ni(0)’s
in Θ(t) time, (3) computing N ′(x) in Θ(t) time and (4)
evaluating N ′(x) at all i ∈ T in Θ(t log2 t) time. This reduces
the time to compute all LTi (0)’s from Θ(t2) to Θ(t log2 t).

2) Further speed-ups via roots of unity: The fast Lagrange
technique works for any threshold cryptosytem whose secret
key s lies in prime-order field Fp. However, for fields that
support roots of unity, further speed-ups are possible. (A caveat
is that pairings on the underlying elliptic curve can be up to 2×
slower.) Without loss of generality, assume the total number of
signers n is a power of two and let ωn denote a primitive nth
root of unity in Fp. If we replace the {1, . . . , n} signer IDs
with roots of unity {ωi−1n }i∈[n], then N ′(x) can be evaluated at
any subset of signer IDs with a single Fast Fourier Transform
(FFT). This is much faster than a polynomial multipoint
evaluation, which performs many polynomial divisions, each
involving many FFTs. Our fast Lagrange implementation from
§IV-A takes advantage of this optimization. Furthermore, we
use roots of unity to compute inverses faster in both our naive
and fast Lagrange implementations (see §IV-A). For example,
in naive Lagrange, we compute N(0) =

∏
i∈T (0−ωin) much

faster as (−1)|T | · ω
∑
i∈T i

n .

B. Authenticated Multipoint Evaluation Trees (AMTs)

In this section, we improve KZG’s Θ(nt) time for comput-
ing n proofs for a degree-bound t polynomial to Θ(n log t)
time. Our key technique is to commit to the quotients in
a polynomial multipoint evaluation (see §II-E), obtaining an
authenticated multipoint evaluation tree (AMT). However, our
new AMT evaluation proofs are logarithmic-sized, whereas
KZG proofs are constant-sized. As a result, when we apply
AMTs to scale VSS and DKG later in §§III-C and III-D,
we slightly increase communication complexity and recon-
struction time. Nonetheless, in §IV, we demonstrate that the
time saved in proof computation more than makes up for
these smaller increases. Throughout this section, we restrict
ourselves to computing AMTs at points {1, 2, . . . , n} on
polynomials of degree t− 1 < n, since this is the VSS/DKG
setting, (In §V-3, we discuss generalizing to any set of points.)

Finally, in Appendix C, we show AMT evaluation proofs are
secure under q-SBDH. In contrast, KZG proofs are secure
under a weaker assumption called q-SDH [64].

1) Computing AMT proofs: KZG evaluation proofs lever-
age the polynomial remainder theorem: ∀i ∈ Fp,∃qi of degree
t − 1 such that φ(x) = qi(x)(x − i) + φ(i). Specifically, a
constant-sized KZG proof for φ(i) is just a commitment to
the quotient polynomial qi (see §II-B) and takes Θ(t) time to
compute. Thus, computing KZG proofs for each i ∈ [n] takes
Θ(nt) time. We improve on this by looking at φ(x) from the
lens of a polynomial multipoint evaluation [27].

For example, consider the multipoint evaluation of φ at all
i ∈ [8] from Figure 1. Note that every node in the multipoint
evaluation tree stores a quotient and a remainder obtained
by dividing the parent node’s remainder by its accumulator
polynomial (see §II-E). The first key idea is that, for any
evaluation point i ∈ [8], φ(x) can be expressed as φ(i) plus a
linear combination of quotients and accumulator polynomials
along the path to φ(i)’s leaf in the multipoint evaluation tree.
For example, consider i = 1, which has the left-most path in
tree. Start with the root node in Figure 1, which says:

φ(x) = q1,8(x)(x− 1) . . . (x− 8) + r1,8(x)

Then, expand r1,8(x) by going left in the tree (down towards
φ(1)’s leaf), obtaining:

φ(x) = q1,8(x)(x− 1)(x− 2)(x− 3)(x− 4) · · · (x− 8)

+ q1,4(x)(x− 1)(x− 2)(x− 3)(x− 4) + r1,4

Repeat this process recursively by replacing r1,4(x) and then
r1,2(x) to get:

φ(x) = q1,8(x)(x− 1)(x− 2)(x− 3)(x− 4) · · · (x− 8)

+ q1,4(x)(x− 1)(x− 2)(x− 3)(x− 4)

+ q1,2(x)(x− 1)(x− 2)

+ q1,1(x)(x− 1) + φ(1).

Note that φ(x) can be re-expressed similarly for any other
points i ∈ [2, n]. Importantly, note that there are only Θ(n)
quotient and accumulator polynomials shared by all such
expressions of φ(i).

Our second key idea follows naturally: we commit to all
these Θ(n) quotient polynomials in the multipoint evaluation
of φ. This gives us logarithmic-sized evaluation proofs for
any point i ∈ [n]. We call these proofs AMT proofs. For
example, in Figure 1, the AMT proof for φ(4) would be
{gq1,8(τ), gq1,4(τ), gq3,4(τ), gq4,4(τ)}, where τ denotes the trap-
door used in KZG commitments (see §II-B).

2) Verifying AMT proofs: The next question is how to verify
our new logarithmic-sized AMT proofs. Recall that, given any
point i, φ(x) can be expressed as:

φ(x) = φ(i) +
∑

w∈path(i)

qw(x)aw(x) (2)

where path(i) is the set of nodes along the path from the
root to φ(i) and qw and aw denote the quotient and ac-
cumulator polynomials stored at node w in the multipoint

evaluation tree (see Figure 1). How can we verify a proof
πi =

(
gqw(τ)

)
w∈path(i) for φ(i) = yi? We simply use a bilinear

map to check that Equation (2) holds at x = τ :

e(gφ(τ), g)
?
= e(gyi , g)

∏
w∈path(i)

e(gqw(τ), gaw(τ))⇔ (3)

e(g, g)φ(τ)
?
= e(g, g)yi

∏
w∈path(i)

e(g, g)qw(τ)aw(τ) ⇔

e(g, g)φ(τ)
?
= e(g, g)yi+

∑
i∈path(w) qw(τ)aw(τ) ⇔

φ(τ)
?
= yi +

∑
w∈path(i)

qw(τ)aw(τ)

This is reminiscent of how KZG proofs are verified by
checking that φ(x) = qi(x)(x − i) + φ(i) holds at x = τ
(see §II-B). However, note that the verifier needs to have
the gaw(τ) accumulator commitments, which are not part of
the AMT proof. This implies AMT verifiers must have Θ(n)
public parameters, whereas KZG verifiers only need {gτ} as
their public parameters (see §II-B). Fortunately, in §III-B4 we
reduce the verifers’ public parameters to just Θ(log t).

3) Better AMTs using roots of unity: Instead of evaluating
φ at points {1, 2, 3, . . . , n}, we assume n = 2m and evaluate
φ at all n nth roots of unity in Fp. Specifically, we compute
φ(ωi−1n) rather than φ(i), where ωn is a primitive nth root of
unity. (We can generalize to any n by using the first n N th
roots of unity, where N = 2m is the smallest value such that
N ≥ n.) The main benefit of using roots of unity is they give
rise to simpler accumulator polynomials of the form (x2

k

+c)
in the multipoint evaluation tree (for some c). This speeds
up the multipoint evaluation (see Appendix A), since dividing
degree-bound 2n polynomials by (xn+c) can be done in Θ(n)
rather than Θ(n log n) time. In Appendix A, we show this new,
optimized AMT proof is blog (t− 1)c+1 group elements and
computing an AMT takes Θ(n log t) time.

The (x2
k

+ c) form of the accumulators is best illustrated
with an example. Let n = 8 and ω8 denote a primitive 8th
root of unity. Previously, in Figure 1, the evaluation points
{1, 2, . . . , 8} were ordered as 〈(x − 1), (x − 2), . . . , (x − 8)〉
monomials in the leaves. Then, the accumulators were com-
puted by multiplying “up the tree,” culminating in the root
accumulator

∏
i∈[8](x− i). In our case, the evaluation points

are {ωi−18 }i∈[8] but we reorder them using a bit-reversal
permutation [69] as 〈(x−ω0

8), (x−ω4
8), (x−ω2

8), (x−ω6
8), (x−

ω1
8), (x−ω5

8), (x−ω3
8), (x−ω7

8)〉. This ordering ensures that,
as we multiply “up the tree,” all accumulators are of the form
(x2

k

+ ωj8) for some j.
Let us see exactly how this happens. The parent accumulator

of the first two leaves (x− ω0
8) and (x− ω4

8) is their product
(x− ω0

8)(x− ω4
8) = x2 − ω4

8x− ω0
8x+ ω0

8ω
4
8 . Since ωinω

j
n =

ω
(i+j) mod n
n [56], this equals x2 − x(ω4

8 + ω0
8) + ω4

8 . Since
ω
k+n/2
n = −ωkn [56], this equals (x2 + ω4

8). The remaining
accumulators after (x2+ω4

8) on this level are {(x2+ω0
8), (x2+

ω6
8), (x2 +ω2

8)}. Recursing on the next level, its accumulators
are 〈(x4+ω4

8), (x4+ω0
8)〉. Finally, the root will be (x8−ω0

8) =
(x8 − 1) =

∏7
i=0(x− ωi8).

4) Do AMTs need extra public parameters?: Recall that
in KZG, given (t − 1)-SDH public parameters, one can
commit to any degree-bound t polynomials and compute any
number of KZG evaluation proofs. In contrast, computing an
AMT at n > t − 1 points seems to require committing to
degree n > t − 1 accumulator polynomials (e.g., to the root
accumulator (xn − 1)). Yet this is not possible given only
(t − 1)-SDH parameters, as ensured by the (t − 1)-polyDH
assumption (see Appendix B). Fortunately, when computing
an AMT, divisions by accumulators of degree > t− 1 always
give quotient zero (see Appendix A). This means that, when
pairing such quotients with their accumulators during proof
verification, the result will always be 1GT (see Equation (3)).
In other words, such pairings need never be computed and
so their corresponding accumulators (of degree > t − 1)
need never be committed to. Furthermore, quotients are not
problematic since they always have degree < deg φ = t − 1
(or are equal to zero).

Second, AMT verifiers only need a logarithmic number of
gτ

2k

powers to recreate any accumulator commitment gaw(τ).
(This is a bit worse than KZG verifiers, who only need gτ .)
Specifically, given a subset {gτ2k | 0 ≤ k ≤ blog(t− 1)c} of
the (t − 1)-SDH parameters, the verifier can commit to any
degree-bound t accumulator of the (x2

k

+ c) form. Thus, we
impose no additional overhead in the trusted setup. In contrast,
if we evaluated φ at {1, 2, . . . , n}, verifiers would need all (t−
1)-SDH public parameters to reconstruct the accumulators.

C. Scalable Verifiable Secret Sharing
In this section, we scale (t, n) VSS protocols to large n

in the difficult case when t > n/2. Specifically, we reduce
eVSS’s dealing time from Θ(nt) to Θ(n log t) by replacing
KZG proofs with AMT proofs. We call this new VSS protocol
AMT VSS and describe it below.

1) Faster dealing: The difference between AMT VSS and
eVSS is very small. First, players’ shares are computed as
si = φ(ωi−1N) (rather than φ(i) as in eVSS), where N is the
smallest power of two ≥ n. Second, instead of using (slow)
KZG proofs, the dealer computes an AMT for φ at points
{ωi−1N }i∈[n], obtaining the shares si for free in the process.
Then, as in eVSS, the dealer sends each player i its share si
but now with an AMT proof πi (see §III-B1). The verification
round, complaint round and reconstruction phase remain the
same, except they all use AMT proofs now.

AMT VSS’s dealing time is Θ(n log t), dominated by the
time to compute an AMT. This is a significant reduction from
eVSS’s Θ(nt) time, but comes at a small cost due to our larger
AMT proofs. First, the verification round time increases from
Θ(1) to Θ(log t). Second, the complaint round complexity
increases from O(t) to O(t log t) time and communication
(but we improve it in §III-C2). Third, the reconstruction phase
time increases from Θ(t log2 t+n) to O(t log2 t+n log t) (but
we improve it in §III-C3). Finally, the overall communication
increases from Θ(n) to Θ(n log t). Nonetheless, in §IV-B,
we show AMT VSS’s end-to-end time is much smaller than
eVSS’s, which makes these increases justifiable.

2) Faster complaints: Kate et al. previously point out that
KZG batch proofs (see §II-B1) can be used to reduce the
communication and the concrete computational complexity
of eVSS’s complaint round [14]. Suppose S is the set of
complaining players. Without batch proofs, the dealer only
has to broadcast |S| previously-computed KZG proofs and
each player has to verify them by computing 2|S| pairings.
With batch proofs, the dealer spends Θ(|S| log2 |S| + t log t)
time to compute the batch proof and each player spends
Θ(|S| log2 |S|)) to verify it.

While batch proofs increase asymptotic complexity for the
dealer and players, the concrete complexity decreases, since
players now only compute two pairings rather than 2|S|.
Furthermore, the communication complexity decreases, since
only 1 proof rather than |S| needs to be broadcast. Thus,
AMT VSS can also use batch proofs and maintain the same
performance as eVSS during the complaint round. (However,
in Table I, we do not assume this optimization.)

3) Efficient reconstruction: In some cases, we can reduce
the number of pairings computed during AMT VSS’s re-
construction phase. In this phase, the reconstructor is given
anywhere from t to n shares and their AMT proofs. His task
is to find a subset of t valid shares and interpolate the secret.
Let us first consider the best case, where all submitted shares
are valid. In this case, if the reconstructor naively verifies any
t AMT proofs, he spends Θ(t log t) time. But he would be
computing the same quotient-accumulator pairings multiple
times (as in Equation (3)), since proofs with intersecting
paths will share quotient commitments. By memoizing these
computations, the reconstructor can verify the t proofs in Θ(t)
time. Alternatively, this can be sped up by exposing a gs public
key during dealing (as in DKG protocols; see §III-D3).

Now let us consider the worst case, where n − t shares
are invalid and t shares are valid. The reconstructor wants to
find the t valid shares as fast as possible. Once again, he can
memoize the quotient-accumulator pairings that are part of
successfully validated proofs. This way, for the t valid proofs,
only Θ(t) pairings need to be computed. Thus, at most Θ((n−
t) log t) pairings could possibly be computed for the invalid
proofs. The worst-case reconstruction time remains Θ(n log t)
but, in practice, the number of pairings is reduced significantly
by the memoization.

4) Public parameters: The AMT VSS dealer needs (t−1)-
SDH public parameters, just like in eVSS. This is because
committing to accumulator polynomials of degree ≥ t is not
necessary, as discussed in §III-B4. In fact, adding more public
parameters for committing to degree ≥ t polynomials would
break the correctness of eVSS and thus of AMT VSS [14].
Specifically, if the dealer commits to a degree ≥ t polynomial
φ, then different secrets could be reconstructed, depending
on the subset of players whose shares are used. This is
why the (t − 1)-polyDH assumption (see Definition A.3) is
needed in both protocols. Finally, AMT VSS players (and the
reconstructor) need Θ(log t) public parameters to verify AMT
proofs, an increase from eVSS’ Θ(1) (i.e., gτ).

D. Scalable Distributed Key Generation

In this section, we scale (t, n) DKG protocols to large n
in the difficult case when t > n/2. We start from eJF-DKG,
where each player acts as an eVSS dealer (see Algorithm 2),
taking Θ(nt) time to compute n KZG evaluation proofs
and Θ(t) time to compute one KZG proof for gfi(0) (see
Algorithm 2). We simply replace eVSS with AMT VSS in
eJF-DKG, obtaining a new protocol we call AMT DKG with
smaller Θ(n log t) per-player dealing time. Importantly, we
keep the same KZG proof for gfi(0).

Compared to eJF-DKG, AMT DKG has slightly larger
communication (see §IV-C5), larger proof verification times
and a slower complaint round (see Table I). Fortunately, when
using KZG batch proofs (see §III-C2), the complaint round
can be made more efficient in both eJF-DKG and AMT DKG.
Furthermore, we show AMT DKG players can verify their
shares much faster under certain conditions (see §III-D2).
Finally, in §IV-C, we show that our smaller dealing time more
than makes up for these increases.

1) Homomorphic AMT proofs: At the end of eJF-DKG’s
sharing phase, each player must aggregate all his shares,
commitments and KZG proofs from the set of qualified players
into a final share, commitment and proof (see Algorithm 2).
But for this to work in AMT DKG, AMT proofs must be
homomorphic: ∀a ∈ Fp, a proof for f1(a) and a proof for
f2(a) must be aggregated into a proof for (f1 + f2)(a).

The key observation is that “adding up” the multipoint
evaluation trees of two polynomials φ and ρ at the same points
(i.e., at X = {ωj−1N }j∈[n]) results in a multipoint evaluation
tree of their sum φ+ ρ (also at X). In more detail, let qw,[ψ]
denote the quotient polynomial at node w in ψ’s multipoint
evaluation tree (at X). Then, one can show that qw,[φ+ρ] =
qw,[φ] + qw,[ρ] and that gqw,[φ+ρ](τ) = gqw,[φ](τ)+qw,[ρ](τ) =
gqw,[φ](τ)gqw,[ρ](τ). In other words, given an AMT for φ and
an AMT for ρ, we can obtain an AMT for φ+ρ by multiplying
quotient commitments at each node. It follows that a proof for
f1(a) and one for f2(a) can be aggregated into a proof for
(f1 + f2)(a) by multiplying commitments at each node.

2) Fast-track verification round: During the verification
round, each player j must receive and verify shares from
all players i ∈ [n], including himself (see Algorithm 2).
Specifically, each player i gives j: (1) a KZG commitment
ci of i’s polynomial fi, (2) a share si,j = fi(ω

j−1
N) with an

AMT proof πi,j and (3) gfi(0) with a NIZKPoK and KZG
proof. Next, player j must verify each si,j and gfi(0) against
their ci. With naive verification, this takes Θ(n log t) pairings
for all si,j’s (since πi,j’s are AMT proofs), and Θ(n) pairings
for the gfi(0)’s. We show how batch verification can do this
faster, with anywhere from Θ(log t) to Θ(n log t) pairings,
depending on the number of valid shares. (We will not address
the Θ(n) work required to verify all NIZKPoKs.)

First, consider the best case when all si,j’s are valid.
The key idea is player j will verify just one aggregated
share sj =

∑n
i=1 si,j against an aggregated commitment

call =
∏n
i=1 ci and aggregated proof πj from all πi,j’s (as

explained in §III-D1). (We ignore the gfi(0)’s for now.) This
takes Θ(n log t) aggregation work but only takes Θ(log t)
pairings. If successful, j has a valid share sj on fall =∑n
i=1 fi. The same aggregation can be done on the gfi(0)’s

and their KZG proofs. This way, the number of pairings is
reduced significantly to Θ(log t) for the shares and Θ(1) for
the gfi(0)’s. (Again, j still does Θ(n) work to verify the
NIZKPoKs individually, which we will not address.)

Since players can be malicious, let us consider an average
case when a small number of b shares are bad. In this case,
j can identify the b shares faster via batch verification [10].
Specifically, j starts with the shares, proofs and commitments
as leaves of a binary tree, where every node aggregates its
subtree’s shares, proofs and commitments. As a result, the
root will contain (call, sj , πj). If verification of the root fails, j
proceeds recursively down the tree. Whenever a node verifies,
shares in its subtree will no longer be checked individually,
saving work for j. In this fashion, j only computes Θ(b log t)
pairings if ≤ b shares are bad.

Unfortunately, in the worst case (i.e., t − 1 bad shares),
batch verification computes ≈ (2n − 1) log t pairings, which
is slower than the ≈ n log t pairings when done naively. Thus,
as pointed out by previous work [70], j should abort and verify
naively after too many nodes fail verification. To summarize, j
can compute fewer pairings by batch-verifying optimistically
to see if he is in the best or average case and downgrading
to naive verification otherwise. We stress that j still does
Θ(n log t) work to build the tree and Θ(n) work to verify
all NIZKPoKs, but fewer (expensive) pairings are computed.

3) Optimistic reconstruction: DKG protocols have the ad-
vantage that gs must be exposed to all players and the recon-
structor. Thus, the reconstructor can optimistically interpolate
s from any t shares (without verifying them) and check
the result against gs. In the best case, when all or most
shares are valid, this will recover the correct s very fast (see
§IV-C3). (Note that AMT VSS and eVSS do not expose gs

but they could be easily modified to do so and speed up the
reconstruction in the best case, at a very small increase in
dealing time.) In the worst case, AMT DKG’s reconstruction
time is the same as AMT VSS’s (see §III-C3).

IV. EVALUATION

In this section, we demonstrate the scalability of our pro-
posed cryptosystems. Our experiments focus on the difficult
case when t > n/2, specifically t = f+1 and n = 2f+1. We
benchmark TSS, VSS and DKG cryptosystems for thresholds
t ∈ {21, 22, 23, . . . , 220}. Although we did not benchmark
other thresholds, similar performance gains would have been
observed for other sufficiently large values of t (e.g., t = f+1
and n = 3f + 1). However, we acknowledge that, for
sufficiently small t, eVSS’s and eJF-DKG’s Θ(nt) dealing
would outperform ours. Similarly, in this small t setting, naive
Lagrange interpolation would outperform fast Lagrange. Our
experiments show that:
• Our BLS TSS scales to n ≈ 2 million signers and outper-

forms the naive scheme as early as n = 511 (see Figure 2a).

• AMT VSS scales to hundreds of thousands of participants,
and outperforms eVSS as early as n = 255 (see Figure 2f).

• AMT DKG scales to n ≈ 65,000 players and outperforms
eJF-DKG at n = 1023 (see Figure 2i).

Importantly, our VSS and DKG speed-ups come at the price
of a modest increase in communication (see Figure 2c). For
example, for n ≈ 65,000, a DKG player’s communication
during dealing increases by 4.11× from 18 MiB in eJF-DKG
to 74 MiB in AMT DKG. However, since the worst-case end-
to-end time decreases by 32× from 16.76 hrs in eJF-DKG to
30.83 mins in AMT DKG, the extra communication should be
worth it in many applications.

For prohibitively-slow experiments with large t, we repeat
them fewer times than experiments with smaller t. For brevity,
we specify the amount of times we repeat an experiment for
each threshold via a measurement configuration. For example,
the measurement configuration of our efficient BLS threshold
scheme is 〈7 × 100, 13 × 10〉. This means that for the first
7 thresholds t ∈ {21, 22, . . . , 27} we ran the experiment 100
times while for the last 13 thresholds we ran it 10 times.

1) Codebase and experimental setup: We implemented (1)
our BLS threshold signature scheme from §III-A, (2) eJF-
DKG [17] and AMT DKG and (3) eVSS [14] and AMT VSS
in 5700 lines of C++. We used a 254-bit Barretto-Naehrig
curve with a Type III pairing [71] from Zcash’s libff [72]
elliptic curve library. We used libfqfft [73] to multiply
polynomials fast using FFT. All experiments were run on an
Intel Core i7 CPU 980X @ 3.33GHz with 12 cores and 20
GB of RAM, running Ubuntu 16.04.6 LTS (64-bit version).
Since all benchmarked schemes would benefit equally from
multi-threading, we did not implement it.

2) Limitations: Our DKG and VSS evaluations do not
account for network delays. This is an important limitation.
Our focus was on the computational bottlenecks of these
protocols. Nonetheless, scaling and evaluating the broadcast
channel of VSS and DKG protocols is necessary, interesting
future work. In particular, ideas from scalable consensus
protocols [4] could be used for this. Finally, our VSS and DKG
“worst case” evaluations do not fully account for malicious
behavior. Specifically, they do not account for the additional
communication and computational cost associated with com-
plaint broadcasting. We leave this to future work (see §V-2).

A. BLS Threshold Signature Experiments

First, we sample a random subset of t signers T with
valid signature shares {σi}i∈T . Second, we compute Lagrange
coefficients LTi (0) w.r.t. points xi = ωi−1N (see §II-4) us-
ing both fast and naive Lagrange. Third, we compute the
final threshold signature σ =

∏
i∈T σ

LTi (0)
i using a multi-

exponentiation. The measurement configuration for fast La-
grange is 〈7 × 100, 13 × 10〉 while for naive Lagrange is
〈8× 100, 6× 10, 8, 4, 2, 1, 1, 1〉. We plot the average aggrega-
tion time in Figure 2a and observe that our scheme beats the
naive scheme as early as n = 511. We do not measure the time
to identify valid signature shares via batch verification [10],
which our techniques leaves unchanged.

(a) Threshold signature aggregation time (b) VSS & DKG deal time (c) DKG dealing communication (per player)

(d) VSS verify time (per-player) (e) VSS reconstruction time (f) VSS end-to-end time

(g) DKG verify time (per-player) (h) DKG reconstruction time (i) DKG end-to-end time

Fig. 2. All benchmarked threshold cryptosystems have threshold t = f +1 out of n = 2f +1. The x-axis always indicates log2 t. The y-axis is in seconds,
except in Figure 2c it is in MB and in Figure 2d it is in milliseconds.

Our results show that our fast Lagrange interpolation drasti-
cally reduces the time to aggregate when t ≈ n/2. Specifically,
for n ≈ 221, we aggregate a signature in 46.26 secs, instead of
1.59 days if aggregated via naive Lagrange (2964× faster). The
benefits are not as drastic for smaller thresholds, but remain
significant. For example, for n ≈ 215, we reduce the time by
41× from 29.74 secs to 719.65 ms. For n = 4095, we see a
6.6× speed-up from 636.6 ms to 96.17 ms. For n = 2047, we
see a 3× speed-up from 155.62 ms to 50.74 ms.

B. Verifiable Secret Sharing Experiments

In this section, we benchmark eVSS and AMT VSS. We do
not benchmark the complaint round since, when implemented
with KZG batch proofs, it remains the same (see §III-C2).

1) VSS dealing: For eVSS dealing, the measurement con-
figuration is 〈10 × 10, 3, 2, 2, 1, 1, 0, 0, 0, 0, 0〉. For large t ≥
216, eVSS dealing is too slow, so we extrapolate it from
the previous dealing time (i.e., we multiply by 3.5). For
AMT VSS dealing, the measurement configuration is 〈12 ×
100, 50, 22, 10, 5, 3, 2, 1, 1〉. In eVSS, we compute the shares
si “for free” as remainders of the φ(x)/(x− i) divisions. We

plot the average dealing time in AMT VSS and eVSS as a
function of n in Figure 2b. Our results show that AMT VSS’s
Θ(n log t) dealing scales much better than eVSS’s Θ(nt)
dealing. For example, for n ≈ 65, 000, eVSS takes 15.1 hrs
while AMT VSS takes 1.24 mins. For very large n ≈ 221,
eVSS takes a prohibitive 330 days while AMT VSS takes 42
mins. We find that AMT VSS’s dealing outperforms eVSS’s
as early as n = 31.

2) VSS verification round: In Figure 2d, we plot the
time for one player to verify its share. The measurement
configuration is 〈20 × 1000〉 for both schemes. In eVSS,
verification requires two pairings and one exponentiation in
G1, taking on average 2.15 ms. In AMT VSS, verification
requires blog (t− 1)c + 1 pairings and one exponentiation in
G1, ranging from 2.07 ms (n = 3) to 19.85 ms (n ≈ 221).

3) VSS reconstruction: In Figure 2e, we plot the time to re-
construct the secret. We consider the best-case and worst-case
times, as detailed in §III-C3. For eVSS, “best case” means the
first t share verifications are successful and “worst case” means
the first n − t are unsuccessful (see §III-C3). The measure-

ment configuration is 〈5× 1000, 500, 250, 120, 60, 30, 15, 5×
10, 8, 4, 2, 1〉 for eVSS and 〈9×100, 4×10, 4, 2, 5×1〉 for AMT
VSS. In both protocols, the (fast) Lagrange interpolation time
is insignificant compared to the time to verify shares during
reconstruction (e.g., for n ≈ 221 in eVSS, interpolation is only
25 secs out of the total 34 mins worst-case time).

AMT VSS’s best-case is very close to eVSS’s worst-case.
This is because, with the help of memoization, AMT VSS’s
best case only computes ≤ 2n − 1 pairings (i.e., the number
of nodes in a full binary tree with n leaves). This closely
matches the 2n pairings in eVSS’s worst case. (In practice, we
replace n of these pairings and G1 exponentiations by n GT
exponentiations, which are slightly faster.) AMT VSS’s worst
case is 1.12× to 6× slower than eVSS’s. But we show next
that our faster dealing more than makes up for this. Finally,
eVSS’s best-case time is half its worst-case time, as expected.

4) VSS end-to-end time: Finally, we consider the end-to-
end time, which is the sum of the sharing and reconstruction
phase times. (Again, a limitation of our work is ignoring the
overhead of the complaint round in the worst case.) Figure 2f
gives the best- and worst-case end-to-end times. The key
takeaway is that AMT VSS’s smaller dealing time makes up
for the increase in its verification round and reconstruction
phase times. AMT VSS outperforms eVSS’s worst-case time
at n ≥ 255 and its best-case time at n ≥ 63. For example,
for large n = 16, 383, we reduce the worst-case time from 1.1
hrs to 2.9 mins and the best-case time from 1.1 hrs to 51.48
secs. The best case improvement ranges from 1.26× (n = 63)
to 4484× (n ≈ 221). The worst case improvement ranges from
1.26× (n = 255) to 1055× (n ≈ 221). Thus, we conclude AMT
VSS scales better than eVSS.

C. Distributed Key Generation Experiments

Our DKG experiments mostly tell the same story as our
VSS experiments: AMTs drastically reduce the dealing time
of DKG players, which more than makes up for the slight
increase in verification and reconstruction time. However,
AMT DKG has a 1.2× to 5.2× communication overhead during
dealing. Still, we believe this is worth the drastic reduction in
end-to-end times (see §IV-C4).

1) DKG dealing: DKG dealing time is equal to VSS
dealing time (see §IV-B1) plus the time to compute a KZG
proof and a NIZKPoK for gfi(0). However, as n increases, the
time to compute these two proofs pales in comparison to the
time to compute the n evaluation proofs. Thus, in Figure 2b,
we treat DKG dealing times as equal to VSS dealing times.
As a result, the same observations apply here as in §IV-B1:
AMTs drastically reduce dealing times.

2) DKG verification round: We consider both the best case
and the worst case verification time, as discussed in §III-D2.
In our best-case experiment, each player j aggregates all its
shares as sj =

∑
i∈[n] si,j and their evaluation proofs as

πj . Then, j verifies sj against πj . Similarly, j aggregates
and efficiently verifies all its gfi(0)’s and their KZG proofs.
In the worst-case experiment, j individually verifies the si,j
shares and the gfi(0)’s. Importantly, in both experiments, j

individually verifies all n NIZKPoKs for gfi(0) in Θ(n) time.
The two experiments are meant to bound the time of a realistic
implementation that carefully uses batch verification [10], [70]
to not exceed the worst-case time too much.

The best-case eJF-DKG measurement configuration is
〈8 × 100, 50, 25, 12, 9 × 10〉 and the worst-case is 〈5 ×
100, 50, 25, 12, 12×10〉. For AMT DKG, the best-case config-
uration is 〈12×100, 80, 40, 20, 16, 8, 4, 3, 2〉 and the worst-case
is 〈5×100, 4×80, 40, 20, 8, 4, 2, 6×1〉. The average per-player
verification times are plotted in Figure 2g. In the best case,
both schemes perform roughly the same, since the verification
of the n NIZKPoKs quickly starts dominating the aggregated
proof verification. In the worst case, AMT DKG time ranges
from 8.96 ms (n = 3) to 12.92 hrs (n ≈ 221). In contrast, eJF-
DKG time ranges from 8.92 ms to 2.59 hrs (1.5× to 5× faster).
Nonetheless, eJF-DKG remains slower overall due to its much
slower dealing (see §IV-C4). Both best- and worst-case times
can be reduced by batch-verifying NIZKPoKs, which resemble
Schnorr signatures [60] and are amenable to batching [74].

3) DKG reconstruction: Here the measurement configura-
tion is 〈4 × 1000, 200, 50, 25, 13 × 10〉 and times are plotted
in Figure 2h. The best case is very fast in both eJF-DKG and
AMT DKG, taking only 24.71 secs for t = 220, since both
schemes interpolate the secret s without verifying shares and
check it against gs (see §III-D3). For the worst case, the time
is the sum of (1) the (failed) best-case reconstruction time and
(2) the worst-case time to identify t valid shares from n shares.
Since the best case is very fast, the DKG worst-case time (see
Figure 2h) looks almost identical to its VSS counterpart (see
Figure 2e). Note that the same AMT VSS speed-up techniques
for finding t valid shares apply in AMT DKG (see §III-C3).
AMT DKG’s worst case is anywhere from 1.1× to 6× slower
than eJF-DKG’s, much like AMT VSS. However, as we show
next, AMT DKG’s faster dealing more than makes up for this.

4) DKG end-to-end time: Similar to the VSS experiments
in §IV-B4, we consider the end-to-end time. Figure 2i plots
the best- and worst-case end-to-end times and shows that
AMT DKG outperforms eJF-DKG starting at n ≥ 63 (in the
best case) and at n ≥ 1023 (in the worst case). This is a
direct consequence of AMT VSS outperforming eVSS, since
the DKG protocols use these VSS protocols internally. For
example, for large n = 16, 383, we reduce the worst-case
end-to-end time from 1.19 hrs to 7.12 mins and the best-case
time from 1.16 hrs to 25.45 secs. The improvement in best-
case end-to-end time ranges from 1.6× (n = 63) to 8607×
(n ≈ 221) and, in the worst case, from 1.3× to 427×. Thus,
we conclude AMT DKG scales better than eJF-DKG.

5) DKG communication: We estimate each player’s upload
and download during the dealing round. For upload, each
eJF-DKG and AMT DKG player i has to broadcast a KZG
commitment gfi(τ) (32 bytes) and a commitment gfi(0) with
a NIZKPoK and a KZG proof (32 + 64 + 32 bytes). Then, i
has to send each j ∈ [n] its share (32 bytes) with an evaluation
proof (32 bytes for KZG or (blog (t− 1)c+ 1) · 32 bytes for
AMT). For download, each player i, has to download n − 1
shares, each with their KZG commitment and evaluation proof,

plus n−1 gfj(0)’s, each with their NIZKPoK and KZG proof.
Note that AMT DKG uses KZG proofs for gfi(0) to minimize
its communication overhead.

We plot the upload and download numbers for both schemes
in Figure 2c. eJF-DKG’s per-player upload ranges from 288
bytes to 128 MiB while download ranges from 448 bytes to
448 MiB. AMT VSS’s upload overhead ranges from 1.0×
to 10.5× and its download overhead ranges from 1.0× to
3.7×. Overall, AMT VSS’s upload-and-download overhead
ranges from 1.0× to 5.2×. Thus, we believe the 8607× and
427× reductions in best- and worst-case end-to-end times are
sufficiently large to make up for this overhead.

V. DISCUSSION AND FUTURE WORK

1) Generating public parameters: Similar to eVSS and
eJF-DKG, our protocols require a trusted setup to generate
`-SDH public parameters. Fortunately, this setup needs to be
done only once and can be securely implemented via MPC
protocols [75], [76]. In fact, currently deployed systems have
already demonstrated the practicality of this approach. In 2018,
approximately 200 participants used an MPC [76] to generate
new public parameters for the Sapling version of Zcash [77].
The MPC protocol allowed anyone to participate and only
required one honest party, making it a very good candidate.

2) Sortitioned DKG: To further reduce communication and
computation, we propose a sortitioned DKG where only a
small, random committee of c < n players deal. The key
question is where does the randomness to pick the committee
come from? When a DKG runs many times, this randomness
could come from previous DKG runs (e.g., DKGs for Schnorr
TSS nonces). To bootstrap securely, the first DKG run would
be with a full committee of size c = n. When a DKG runs
only once, such as when distributing the secret key of a (t, n)
TSS, the c players could be a decentralized cothority [41]
different than the TSS signers. The cothority would run the
DKG dealing round while the n signers would run the DKG
verification round (see Algorithm 2). The complaint round
would be split: accused cothority members would compute
the KZG batch proofs (see §III-C2) while the n signers
would receive and verify those proofs. Importantly, our AMT
technique would help cothority members deal much faster to
the n signers. We leave defining and proving the security of
sortitioned DKGs to future work.

3) Arbitrary points: AMTs can be generalized to any set
of points {xi}i∈[n] (not just xi = ωi−1N) for which verifiers do
not have the necessary accumulator commitments. The accu-
mulators gaw(τ) can be included as part of the proof but along
with (1) a subset proof w.r.t. the parent accumulator and (2) an
“extractable” counterpart gαaw(τ), where α is another trapdoor.
The asymptotic proof size remains the same but will increase
in practice by 4x (with Type III pairings). Furthermore, this
construction will need extra public parameters of the form
(gατ

i

)i∈[0,`]. On the other hand, proof verifiers now need
Θ(1) rather than Θ(log n) public parameters (see §§III-B4
and III-C4). We leave proving this construction secure under
`-PKE [78] to future work.

4) Information-theoretic hiding AMTs: We can devise an
information-theoretic hiding version of our AMT proofs that
is compatible with information-theoretic hiding KZG com-
mitments [14]. This version of AMTs can be used to speed
up the unbiasable New-DKG protocol [16]. Let h = gκ be
another generator of G such that nobody knows the discrete
log κ = logg(h). Assume that, in addition to PPq(g; τ),
we also have public parameters PP`(h; τ). An information-
theoretic hiding KZG commitment to φ of degree d is c =
gφ(τ)hr(τ) = gφ(τ)+κr(τ) where r is a random, degree d
polynomial [14]. Note that c is just a commitment to the
polynomial ψ(x) = φ(x) + κr(x). As a consequence, all we
have to do is build an AMT for ψ. For this, we compute an
AMT for φ with public parameters PP`(g; τ) and one for r but
with parameters PP`(h; τ). By homomorphically combining
these two AMTs we get exactly the AMT for ψ (see §III-D1).
We leave proving this construction is information-theoretic
hiding to future work.

5) Vector commitments (VCs): AMTs naturally give rise to
a VC scheme with logarithmic-sized proofs [79]. Similar to
the multivariate polynomial-based VC from [80], this scheme
would also support efficiently updating proofs and updating
VC digests after vector updates. Thus, our VC could also be
used for building stateless cryptocurrencies [80], [81]. Our VC
can be extended with zero-knowledge-like properties using the
information-theoretic variant of AMTs (see §V-4).

6) Batch AMT verification: The efficient reconstruction
techniques from §III-C3 reduced the number of pairings when
verifying an AMT, but still required Θ(t+(n−t) log t) pairings
in the worst case. At the cost of doubling the prover time
and proof size, this can be reduced to ≈ 2n − 1 pairings,
independent of how many proofs are valid. The key idea is to
also include commitments to the remainder polynomials from
the multipoint evaluation tree in the AMT (see Figure 1). This
way, an entire AMT tree can be verified node-by-node, top-to-
bottom by checking that the division at each node is correct.
We leave proving this approach secure to future work.

VI. CONCLUSION

We introduced new techniques that both speed up and
scale threshold cryptosystems. First, we showed how com-
puting Lagrange coefficients efficiently can drastically reduce
threshold signature aggregation time. We believe our fast BLS
threshold signature scheme can be used to design simple,
large-scale, decentralized random beacons. Second, we intro-
duced a quasilinear time technique for precomputing proofs
in KZG polynomial commitments. When applied to VSS and
DKG protocols, this technique drastically reduces computation
without increasing communication too much. We left scaling
the broadcast channel and the complaint round to future work.

REFERENCES

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” https:
//bitcoin.org/bitcoin.pdf, 2008, Accessed: 2017-03-08.

[2] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction
Ledger,” http://gavwood.com/paper.pdf, Accessed: 2016-05-15.

[3] G. Golan Gueta, I. Abraham, S. Grossman, D. Malkhi, B. Pinkas,
M. Reiter, D. Seredinschi, O. Tamir, and A. Tomescu, “SBFT: A
Scalable and Decentralized Trust Infrastructure,” in DSN’19.

[4] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and N. Zeldovich, “Algorand:
Scaling Byzantine Agreements for Cryptocurrencies,” in ACM SOSP’17.

[5] T. Hanke, M. Movahedi, and D. Williams, “DFINITY Technology
Overview Series, Consensus System,” CoRR, vol. abs/1805.04548,
2018. [Online]. Available: http://arxiv.org/abs/1805.04548

[6] A. Kiayias, A. Russell, B. David, and R. Oliynykov, “Ouroboros: A
Provably Secure Proof-of-Stake Blockchain Protocol,” in CRYPTO’17.

[7] B. David, P. Gaži, A. Kiayias, and A. Russell, “Ouroboros Praos: An
Adaptively-Secure, Semi-synchronous Proof-of-Stake Blockchain,” in
EUROCRYPT’18.

[8] C. Badertscher, P. Gaži, A. Kiayias, A. Russell, and V. Zikas, “Ouroboros
Genesis: Composable Proof-of-Stake Blockchains with Dynamic Avail-
ability,” in ACM CCS’18.

[9] E. Syta, P. Jovanovic, E. K. Kogias, N. Gailly, L. Gasser, I. Khoffi, M. J.
Fischer, and B. Ford, “Scalable Bias-Resistant Distributed Randomness,”
in IEEE S&P’17.

[10] A. Boldyreva, “Threshold Signatures, Multisignatures and Blind Signa-
tures Based on the Gap-Diffie-Hellman-Group Signature Scheme,” in
PKC’03.

[11] V. Shoup, “Practical Threshold Signatures,” in EUROCRYPT’00.
[12] T. P. Pedersen, “Non-Interactive and Information-Theoretic Secure Ver-

ifiable Secret Sharing,” in CRYPTO’91.
[13] B. Chor, S. Goldwasser, S. Micali, and B. Awerbuch, “Verifiable Secret

Sharing and Achieving Simultaneity in the Presence of Faults,” in IEEE
FOCS’85.

[14] A. Kate, G. M. Zaverucha, and I. Goldberg, “Constant-Size Commit-
ments to Polynomials and Their Applications,” in ASIACRYPT’10.

[15] T. P. Pedersen, “A Threshold Cryptosystem without a Trusted Party,” in
EUROCRYPT’91.

[16] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure Distributed
Key Generation for Discrete-Log Based Cryptosystems,” Journal of
Cryptology, vol. 20, no. 1, 2007.

[17] A. Kate, “Distributed Key Generation and Its Applications,” Ph.D.
dissertation, Waterloo, Ontario, Canada, 2010.

[18] C. Cachin, K. Kursawe, and V. Shoup, “Random Oracles in Constantino-
ple: Practical Asynchronous Byzantine Agreement Using Cryptography,”
Journal of Cryptology, vol. 18, no. 3, Jul 2005.

[19] A. Kate and I. Goldberg, “Distributed Key Generation for the Internet,”
in IEEE ICDCS’09.

[20] D. R. Stinson and R. Strobl, “Provably Secure Distributed Schnorr
Signatures and a (t, n) Threshold Scheme for Implicit Certificates,” in
ACISP’01.

[21] R. Gennaro, S. Goldfeder, and A. Narayanan, “Threshold-Optimal
DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security,”
in ACNS’16.

[22] A. Herzberg, S. Jarecki, H. Krawczyk, and M. Yung, “Proactive Secret
Sharing Or: How to Cope With Perpetual Leakage,” in CRYPT0’95.

[23] A. Herzberg, M. Jakobsson, S. Jarecki, H. Krawczyk, and M. Yung,
“Proactive Public Key and Signature Systems,” in ACM CCS’97.

[24] R. Gennaro, M. O. Rabin, and T. Rabin, “Simplified VSS and Fast-track
Multiparty Computations with Applications to Threshold Cryptography,”
in ACM PODC’98.

[25] I. Cascudo and B. David, “SCRAPE: Scalable Randomness Attested
by Public Entities,” in ACNS’17.

[26] P. Feldman, “A Practical Scheme for Non-interactive Verifiable Secret
Sharing,” in IEEE FOCS’87.

[27] J. von zur Gathen and J. Gerhard, “Fast polynomial evaluation and
interpolation,” in Modern Computer Algebra, 3rd ed. Cambridge
University Press, 2013, ch. 10.

[28] R. Canetti, R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Adap-
tive Security for Threshold Cryptosystems,” in CRYPTO’99.

[29] M. Abe and S. Fehr, “Adaptively Secure Feldman VSS and Applications
to Universally-Composable Threshold Cryptography,” in CRYPTO’04.

[30] Y. Frankel, P. MacKenzie, and M. Yung, “Adaptively-Secure Distributed
Public-Key Systems,” in Algorithms - ESA’99.

[31] S. Jarecki and A. Lysyanskaya, “Adaptively Secure Threshold Cryp-
tography: Introducing Concurrency, Removing Erasures,” in EURO-
CRYPT’00.

[32] P. Schindler, A. Judmayer, N. Stifter, and E. Weippl, “ETHDKG: Dis-
tributed Key Generation with Ethereum Smart Contracts,” Cryptology
ePrint Archive, Report 2019/985, 2019, https://eprint.iacr.org/2019/985.

[33] Y. Desmedt, “Society and Group Oriented Cryptography: A New Con-
cept,” in CRYPTO’87.

[34] Y. Desmedt and Y. Frankel, “Shared generation of authenticators and
signatures,” in CRYPTO’91.

[35] L. Harn, “Group-oriented (t, n) threshold digital signature scheme
and digital multisignature,” IEE Proceedings - Computers and Digital
Techniques, vol. 141, no. 5, Sep. 1994.

[36] C. Park and K. Kurosawa, “New ElGamal Type Threshold Digital
Signature Scheme,” 1996.

[37] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Robust Threshold
DSS Signatures,” in EUROCRYPT’96.

[38] Chia Network, “BLS signatures in C++ using the RELIC toolkit,” https:
//github.com/Chia-Network/bls-signatures, Accessed: 2019-05-06.

[39] DFINITY, “go-dfinity-crypto,” https://github.com/dfinity/go-dfinity-
crypto, Accessed: 2019-05-06.

[40] Mitsunari Shigeo, “BLS threshold signature,” https://github.com/herumi/
bls/, Accessed: 2019-05-06.

[41] E. Syta, I. Tamas, D. Visher, D. I. Wolinsky, P. Jovanovic, L. Gasser,
N. Gailly, I. Khoffi, and B. Ford, “Keeping Authorities “Honest or Bust”
with Decentralized Witness Cosigning,” in IEEE S&P’16.

[42] M. Stadler, “Publicly Verifiable Secret Sharing,” in EUROCRYPT’96.
[43] B. Schoenmakers, “A Simple Publicly Verifiable Secret Sharing Scheme

and Its Application to Electronic Voting,” in CRYPTO’99.
[44] S. Basu, A. Tomescu, I. Abraham, D. Malkhi, M. K. Reiter, and E. G.

Sirer, “Efficient Verifiable Secret Sharing with Share Recovery in BFT
Protocols,” in ACM CCS’19.

[45] I. Ingemarsson and G. J. Simmons, “A Protocol to Set Up Shared
Secret Schemes Without the Assistance of a Mutually Trusted Party,”
in EUROCRYPT’90.

[46] W. Neji, K. Blibech, and N. Ben Rajeb, “Distributed key generation
protocol with a new complaint management strategy,” SCN’16.

[47] J. Canny and S. Sorkin, “Practical large-scale distributed key genera-
tion,” in EUROCRYPT’04.

[48] Philipp Schindler, “Ethereum-based Distributed Key Generation Proto-
col,” https://github.com/PhilippSchindler/ethdkg, Accessed: 2019-05-07.

[49] “Orbs Network: DKG for BLS threshold signature scheme on the EVM
using Solidity,” https://github.com/orbs-network/dkg-on-evm, 2018, Ac-
cessed: 2019-02-15.

[50] DFINITY, “Distributed Key Generation in JS,” https://github.com/
dfinity/dkg, Accessed: 2019-05-07.

[51] GNOSIS, “Distributed Key Generation,” https://github.com/gnosis/dkg,
Accessed: 2019-05-07.

[52] Heiko Stamer, “Distributed Privacy Guard,” https://www.nongnu.org/
dkgpg/, Accessed: 2019-05-07.

[53] Y. Desmedt and Y. Frankel, “Threshold cryptosystems,” in CRYPTO’89.
[54] A. Menezes, S. Vanstone, and T. Okamoto, “Reducing Elliptic Curve

Logarithms to Logarithms in a Finite Field,” in ACM STOC’91.
[55] V. Goyal, “Reducing Trust in the PKG in Identity Based Cryptosystems,”

in CRYPTO’07.
[56] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction

to Algorithms, 3rd ed. The MIT Press, 2009.
[57] J. von zur Gathen and J. Gerhard, “Newton iteration,” in Modern

Computer Algebra, 3rd ed. Cambridge University Press, 2013, ch. 9.
[58] J. Berrut and L. Trefethen, “Barycentric Lagrange Interpolation,” SIAM

Review, vol. 46, no. 3, 2004.
[59] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining

Digital Signatures and Public-key Cryptosystems,” Commun. ACM,
vol. 21, no. 2, Feb. 1978.

[60] C. P. Schnorr, “Efficient Identification and Signatures for Smart Cards,”
in CRYPTO’89.

[61] R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin, “Secure Applica-
tions of Pedersen’s Distributed Key Generation Protocol,” in CT-RSA’03.

[62] T. Elgamal, “A public key cryptosystem and a signature scheme based on
discrete logarithms,” IEEE Transactions on Information Theory, vol. 31,
no. 4, July 1985.

[63] D. Boneh, B. Lynn, and H. Shacham, “Short Signatures from the Weil
Pairing,” in ASIACRYPT’01.

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
http://gavwood.com/paper.pdf
http://arxiv.org/abs/1805.04548
https://eprint.iacr.org/2019/985
https://github.com/Chia-Network/bls-signatures
https://github.com/Chia-Network/bls-signatures
https://github.com/dfinity/go-dfinity-crypto
https://github.com/dfinity/go-dfinity-crypto
https://github.com/herumi/bls/
https://github.com/herumi/bls/
https://github.com/PhilippSchindler/ethdkg
https://github.com/orbs-network/dkg-on-evm
https://github.com/dfinity/dkg
https://github.com/dfinity/dkg
https://github.com/gnosis/dkg
https://www.nongnu.org/dkgpg/
https://www.nongnu.org/dkgpg/

[64] D. Boneh and X. Boyen, “Short signatures without random oracles and
the SDH assumption in bilinear groups,” Journal of Cryptology, vol. 21,
no. 2, pp. 149–177, 2008.

[65] A. Shamir, “How to Share a Secret,” Commun. ACM, vol. 22, no. 11,
Nov. 1979.

[66] G. R. Blakley, “Safeguarding cryptographic keys,” in International
Workshop on Managing Requirements Knowledge (AFIPS), 1979.
[Online]. Available: doi.ieeecomputersociety.org/10.1109/AFIPS.1979.
98

[67] J. Camenisch and M. Stadler, “Proof Systems for General Statements
about Discrete Logarithms,” ETH Zurich, Tech. Rep., 1997.

[68] VMware, “threshsign library,” https://github.com/vmware/concord-bft/
tree/master/threshsign, Accessed: 2019-05-06.

[69] Wikipedia contributors, “Bit-reversal permutation — Wikipedia,
The Free Encyclopedia,” 2019, Accessed: 2019-07-24. [On-
line]. Available: https://en.wikipedia.org/w/index.php?title=Bit-reversal
permutation&oldid=883335942

[70] L. Law and B. J. Matt, “Finding Invalid Signatures in Pairing-Based
Batches,” in Cryptography and Coding, S. D. Galbraith, Ed., 2007.

[71] P. S. L. M. Barreto and M. Naehrig, “Pairing-Friendly Elliptic Curves
of Prime Order,” in Selected Areas in Cryptography, 2006.

[72] SCIPR Lab, “libff,” https://github.com/scipr-lab/libff, 2016, Accessed:
2018-07-28.

[73] ——, “libfqfft,” https://github.com/scipr-lab/libfqfft, 2016, Accessed:
2018-07-28.

[74] D. J. Bernstein, N. Duif, T. Lange, P. Schwabe, and B.-Y. Yang, “High-
speed high-security signatures,” Journal of Cryptographic Engineering,
vol. 2, no. 2, Sep 2012.

[75] S. Bowe, A. Gabizon, and M. D. Green, “A Multi-party Protocol for
Constructing the Public Parameters of the Pinocchio zk-SNARK,” in
FC’18, 2018.

[76] S. Bowe, A. Gabizon, and I. Miers, “Scalable Multi-party Computation
for zk-SNARK Parameters in the Random Beacon Model,” Cryptology
ePrint Archive, Report 2017/1050, 2017, https://eprint.iacr.org/2017/
1050.

[77] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash Pro-
tocol Specification,” https://github.com/zcash/zips/blob/master/protocol/
protocol.pdf, Accessed: 2017-11-17.

[78] J. Groth, “Short Pairing-Based Non-interactive Zero-Knowledge Argu-
ments,” in ASIACRYPT’10.

[79] D. Catalano and D. Fiore, “Vector Commitments and Their Applica-
tions,” in PKC’13.

[80] A. Chepurnoy, C. Papamanthou, and Y. Zhang, “Edrax: A Cryptocur-
rency with Stateless Transaction Validation,” Cryptology ePrint Archive,
Report 2018/968, 2018, https://eprint.iacr.org/2018/968.

[81] D. Boneh, B. Bünz, and B. Fisch, “Batching Techniques for Accu-
mulators with Applications to IOPs and Stateless Blockchains,” in
CRYPTO’19.

[82] A. Kate, G. M. Zaverucha, and I. Goldberg, “Polynomial commitments,”
Tech. Rep., 2010. [Online]. Available: https://pdfs.semanticscholar.org/
31eb/add7a0109a584cfbf94b3afaa3c117c78c91.pdf

APPENDIX

A. AMT Prover Time and Proof Sizes

We will restrict ourselves to our n = 2m and deg φ =
t−1 < n setting. We first show that computing our optimized,
roots-of-unity-based AMT takes O(n log t) time (see §III-B3).
The key observation is that, when computing the AMT,
divisions at higher levels (i.e., closer to the root) in the tree are
trivial and need not be performed. Specifically, at sufficiently
high levels, the degree of the divisors (i.e., accumulators) are
larger than the degrees of the dividends (i.e., remainders), and
always give quotients equal to zero. Since zero quotients can
be easily recreated by verifiers, their commitments need not
be included in the proof. We expand on this next.

Let us number levels differently, from log n (the root) to
0 (the leaves), so that level i has n/2i nodes, each with an
accumulator of degree 2i. Now, let k be the smallest value

such that 2k ≤ deg φ < 2k+1. In other words, k is the level at
which accumulator degrees are ≤ deg φ and thus divisions are
non-trivial. Put differently, each node on level k will be the
root node of an (authenticated) multipoint evaluation (sub)tree.
We argue that the time to compute any one such subtree is
O(2k log 2k) and, since there are n/2k such subtrees, the final
AMT takes O(n log 2k) = O(n log t) time since 2k ≤ t−1 =
deg φ. We prove this inductively next.

At the root node of a level k subtree, the dividend dk = φ
has deg dk < 2k+1 (by definition of k above). The accumulator
ak has deg ak = 2k. Thus, the quotient qk = dk/ak will have
deg qk = deg dk−deg ak < 2k+1−2k = 2k and the remainder
rk = dk mod ak will have deg rk < deg ak = 2k. The divi-
sion at this level will only take O(deg dk) = O(2k+1) time,
thanks to the (x2

k

+c) form of ak. Committing to the quotient
will take O(2k) time. To summarize, at level k we are doing
O(2k+1) work and deg dk < 2k+1,deg ak = 2k,deg qk <
2k,deg rk < 2k. Next, we argue that the amount of work per
node on level k− 1 is half the work per node at level k. This
is because (1) the dividend dk−1 is set to the remainder rk
from the parent, so deg dk−1 < 2k, (2) deg ak−1 = 2k−1, (3)
deg qk−1 = deg dk−1 − deg ak−1 < 2k − 2k−1 = 2k−1 and
(4) deg rk−1 < deg ak−1 = 2k−1. Thus, at level k − 1, the
division takes O(2k) time and committing to the quotient takes
O(2k−1) time. As a result, the time to compute the subtree
can be expressed as T (2k+1) = 2T (2k+1/2) + O(2k+1) =
O(2k log 2k).

Finally, an AMT proof is O(log t)-sized. Recall that quo-
tients in the AMT are non-zero only at levels k and below,
where 2k ≤ t − 1 < 2k+1. Thus, an AMT proof will only
have non-zero quotients at levels k, k−1, k−2, . . . , 1, 0. Since
k = blog2(t − 1)c the exact proof size is blog2(t − 1)c + 1
group elements.

B. Cryptographic Assumptions

Let poly(·) denote any function upper-bounded by some
univariate polynomial.

Definition A.1 (Bilinear pairing parameters). Let G(·) be a
randomized polynomial algorithm with input a security pa-
rameter λ. Then, 〈G,GT , p, g, e〉 ← G(1λ) are called bilinear
pairing parameters if G and GT are cyclic groups of prime
order p where discrete log is hard, G has generator g and if e
is a bilinear map, e : G×G→ GT such that GT = 〈e(g, g)〉.

Definition A.2 (`-Strong Bilinear Diffie-Hellman (SBDH)
Assumption). Given as input security parameter 1λ, bilinear
pairing parameters 〈G,GT , p, g, e〉 ← G(1λ), public parame-
ters PPq(g; τ) = 〈g, gτ , gτ2

, . . . , gτ
`〉 where ` = poly(λ) and

τ is chosen uniformly at random from Z∗p, no probabilistic
polynomial-time adversary can output a pair 〈c, e(g, g)

1
τ+c 〉

for some c ∈ Zp, except with probability negligible in λ.

Definition A.3 (`-Polynomial Diffie-Hellman (polyDH) As-
sumption). Given as input security parameter 1λ, bilinear
pairing parameters 〈G,GT , p, g, e〉 ← G(1λ), public param-
eters PPq(g; τ) = 〈g, gτ , gτ2

, . . . , gτ
`〉 where ` = poly(λ)

doi.ieeecomputersociety.org/10.1109/AFIPS.1979.98
doi.ieeecomputersociety.org/10.1109/AFIPS.1979.98
https://github.com/vmware/concord-bft/tree/master/threshsign
https://github.com/vmware/concord-bft/tree/master/threshsign
https://en.wikipedia.org/w/index.php?title=Bit-reversal_permutation&oldid=883335942
https://en.wikipedia.org/w/index.php?title=Bit-reversal_permutation&oldid=883335942
https://github.com/scipr-lab/libff
https://github.com/scipr-lab/libfqfft
https://eprint.iacr.org/2017/1050
https://eprint.iacr.org/2017/1050
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://github.com/zcash/zips/blob/master/protocol/protocol.pdf
https://eprint.iacr.org/2018/968
https://pdfs.semanticscholar.org/31eb/add7a0109a584cfbf94b3afaa3c117c78c91.pdf
https://pdfs.semanticscholar.org/31eb/add7a0109a584cfbf94b3afaa3c117c78c91.pdf

and τ chosen uniformly at random from Z∗p, no probabilis-
tic polynomial-time adversary can output (φ(x), gφ(τ)) ∈
Zp[X]×G, such that 2λ > deg φ > `, except with probability
negligible in λ.

C. AMT Proofs are Computationally Hiding and Binding

Recall from [14] that a polynomial commitment scheme
consists of six algorithms: Setup, Commit, Open, VerifyPoly,
CreateWitness, VerifyEval. We show our modified KZG
scheme with AMT proofs satisfies computational hiding (see
Definition A.5) under the discrete log (DL) assumption and
evaluation binding (see Definition A.4) under the `-Strong
Bilinear Diffie-Hellman (`-SBDH) assumption. These proper-
ties were originally defined in [14]. We prove these properties
hold for a more general scheme that builds AMTs for an
arbitrary set X of n points (rather than just for the set of
roots of unity). For this scheme, Setup returns not only `-SDH
public parameters, but also the accumulator commitments
necessary to verify AMT proofs. In other words, given an
evaluation point x∗ ∈ X , verifiers have access to accumulators
{gaw(τ)}w∈path(x∗) necessary to verify x∗’s AMT proof.

Definition A.4 (Evaluation binding). ∃ negligible function
negl(·), ∀ security parameters λ, ∀` > 0,∀ adversaries A:

Pr

pp← Setup(1λ, `),

(c, x0, φ(x0), π, φ′(x0), π′)← A(pp) :
VerifyEval(pp, c, x0, φ(x0), π) = 1 ∧
VerifyEval(pp, c, x0, φ

′(x0), π′) = 1 ∧
φ(x0) 6= φ′(x0)

 = negl(λ)

Definition A.5 (Computational hiding). Given pp randomly
generated via Setup(1λ, d), c ∈ G, φ ∈R Fp[X] of de-
gree d and (xi, φ(xi), πi)

d
i=1 for distinct xi’s such that

VerifyEval(pp, c, xi, φ(xi), πi) = 1,∀i ∈ [d], no adversary A
can output φ(x̂) for any x̂ where x̂ 6= xi,∀i ∈ [d], except with
probability negligible in the security parameter λ.

Computational hiding proof. Suppose there exists an adver-
sary A that breaks computational hiding and outputs φ(x̂) for
an unqueried x̂ 6= xi,∀i ∈ [d]. Then, we show how to build an
adversary B that takes as input a random discrete log instance
(g, ga) and uses A to break it and output a. (Our proof is
in the same style as Kate et al.’s proof for PolyCommitDL’s
computational hiding [82].)
B runs Setup(1λ, d) which picks τ ∈R Fp and outputs

public parameters pp = PPd(g; τ). Importantly, since B runs
the setup he will know the trapdoor τ . Then, B picks random
points (xi, yi) ∈ X × Fp,∀i ∈ [0, d] with distinct xi’s,
except he sets y0 = a. (Since B does not know a, he just
sets gy0 = ga.) Note that (xi, yi)

d
i=0 determines a degree d

polynomial φ where φ(xi) = yi,∀i ∈ [0, d]. Since B does not
know a (only ga), it will interpolate φ’s commitment gφ(τ)

“in the exponent” as:

gφ(τ) =
∏
i∈[0,d]

(gyi)L
T
i (τ)

Here T = {xi}i∈[0,d] and recall that LTi (τ) =
∏
j∈T,j 6=i(τ −

xj)/(xi − xj) (see §II-4). To summarize, B “embeds” the
(g, ga) challenge in an (unknown-to-B-but-determined) poly-
nomial φ with commitment c = gφ(τ).

Next, B has to simulate AMT proofs πi for yi = φ(xi),∀i ∈
[d]. To do this, recall that at each node w in the AMT, we
have quotient and remainder polynomials qw, rw such that
rparent(w) = qwaw + rw (see Figure 1). Also, recall that B
knows τ so he can compute accumulator evaluations aw(τ),∀
nodes w in the AMT. Now, B can simulate proofs as follows.

For the root node w = ε, we have rparent(ε) = φ, so B
picks a random rε(τ) ∈ Fp, and computes the root quotient
commitment as gqε(τ) = (gφ(τ)/grε(τ))

1
aε(τ) . At the next level,

consider the children nodes u and v of the root ε. For each
child w ∈ {u, v}, B must commit to a quotient qw that satisfies
rε(τ) = qw(τ)aw(τ) + rw(τ) for some rw. So B proceeds
similarly: for each child w ∈ {u, v}, he picks a random rw(τ)

and computes a commitment gqw(τ) = (grε(τ)/grw(τ))
1

aw(τ) .
B will do this recursively until it reaches leaf nodes in the
AMT. For each leaf l, instead of picking rl(τ) randomly, B
will set it to the yi corresponding to that leaf. This way, B
can simulate quotient commitments {gqw(τ)}w∈path(xi) for all
i ∈ [d] that pass the AMT proof verification in Equation (3).

Next, B calls A with (pp, c, (xi, yi, πi)
d
i=1) as input, hoping

that A outputs another point x̂ and its evaluation φ(x̂).
Since A breaks computational hiding, this happens with non-
negligible probability. (Note that B can check A succeeds by
interpolating gφ(x̂) “in the exponent”.) When A succeeds, if
x̂ = x0, then a = φ(x̂), so B breaks discrete log on (g, ga).
Otherwise, B uses the first d points (xi, yi = φ(xi))i∈[d] and
this new distinct (x̂, φ(x̂)) point to interpolate φ and as a result
obtain a = φ(x0). (Recall that, by Definition A.5, we have
x̂ 6= xi,∀i ∈ [d].) As a result, B breaks discrete log on (g, ga).
Evaluation binding proof. Suppose there exists an adversary
A that outputs a commitment c, with two contradicting proofs
π, π′ attesting that φ(k) is equal to v and v′, respectively.
We show how to build another adversary B that breaks q-
SBDH. First, B runs A to get (c, π, π′, φ(k), v, v′). Let W =
path(k) denote the nodes along k’s path in the AMT. Let
(πi)i∈W denote the quotient commitments in π. Similarly, let
(π′i)i∈W denote the quotient commitments in π′. Since both
proofs verify, we have:

e(c, g) = e(gv, g)
∏
i∈W

e(πi, g
ai(τ))

e(c, g) = e(gv
′
, g)

∏
i∈W

e(π′i, g
ai(τ))

Dividing the first equation by the second, we get:

1GT =
e(gv, g)

e(gv′ , g)

∏
i∈W e(πi, g

ai(τ))∏
i∈W e(π′i, g

ai(τ))
⇔

1GT = e(gv−v
′
, g)

∏
i∈W

e(πi, g
ai(τ))

e(π′i, g
ai(τ))

⇔

e(gv
′−v, g) =

∏
i∈W

e(πi/π
′
i, g

ai(τ))

Now, recall that one of the accumulators (ai(x))i∈W is
the monomial (x − k), and all the other ai(x)’s contain
(x − k) as a term, which means it can be factored out of
them. Thus, since (x − k) perfectly divides all ai(x)’s, let
ri(x) = ai(x)/(x − k),∀i ∈ W . Importantly, the adversary
B can compute all ri(x)’s in polynomial time, since it can
reconstruct all the accumulator polynomials (ai(x))i∈W . As a
result, B can compute all commitments (gri(τ))i∈W . Then, B
breaks `-SBDH as follows:

e(gv
′−v, g) =

∏
i∈W

e(πi/π
′
i, g

ri(τ)(τ−k))

e(gv
′−v, g) =

∏
i∈W

e(πi/π
′
i, g

ri(τ))(τ−k)

e(gv
′−v, g) =

[∏
i∈W

e(πi/π
′
i, g

ri(τ))

](τ−k)

e(g, g)
1

τ−k =

[∏
i∈W

e(πi/π
′
i, g

ri(τ))

] 1
v′−v

D. Polylogarithmic DKG Configurations

As discussed in §I-A, Canny and Sorkin presented a sparse
matrix DKG with O(m3) time and communication per player,
where m is a group size [47]. Depending on the desired
threshold (t, n) and the number f of malicious nodes tolerated,
the group size m can be as small as Θ(log3(n)). Unfortunately,
for f sufficiently close to t, the group size becomes too large,
approaching n/2 (see Table II).

TABLE II
THE GROUP SIZE m AND FOR VARIOUS (t, n) SPARSE MATRIX DKGS

WITH f FAILURES TOLERATED.

ε Group size m f = (1/2− ε)n t = (1/2 + ε)n n

0.1 50,598 26,214 39,321 65,536
0.15 14,222 22,937 42,598 65,536
0.2 5,691 19,660 45,875 65,536

0.25 2,735 16,384 49,152 65,536
0.3 1,475 13,107 52,428 65,536

0.33 1,057 11,141 54,394 65,536
0.4 505 6,553 8,982 65,536

0.05 445,909 471,859 576,716 1,048,576
0.1 53,022 419,430 629,145 1,048,576

0.15 14,949 367,001 681,574 1,048,576
0.2 5,977 314,572 734,003 1,048,576

0.25 2,871 262,144 786,432 1,048,576
0.3 1,548 209,715 838,860 1,048,576

0.33 1,107 178,257 870,318 1,048,576
0.4 527 104,857 943,718 1,048,576

	Introduction
	Related Work
	Threshold signature schemes (TSS)
	Verifiable secret sharing (VSS)
	Publicly verifiable secret sharing (PVSS)
	Distributed key generation (DKG)
	Polylogarithmic DKG
	DKG implementations

	Preliminaries
	Notation
	Cryptographic assumptions
	Communication and adversarial model
	FFT and Lagrange interpolation

	Threshold Signature Schemes (TSS)
	(Threshold) BLS signatures

	Constant-sized Polynomial Commitments
	Batch proofs and homomorphism

	(Verifiable) Secret Sharing
	Kate et al.'s eVSS

	Distributed Key Generation (DKG)
	Kate's eJF-DKG

	Polynomial Multipoint Evaluation

	Scalable Threshold Cryptosystems
	Scalable Threshold Signatures
	Fast Lagrange-based BLS
	Further speed-ups via roots of unity

	Authenticated Multipoint Evaluation Trees (AMTs)
	Computing AMT proofs
	Verifying AMT proofs
	Better AMTs using roots of unity
	Do AMTs need extra public parameters?

	Scalable Verifiable Secret Sharing
	Faster dealing
	Faster complaints
	Efficient reconstruction
	Public parameters

	Scalable Distributed Key Generation
	Homomorphic AMT proofs
	Fast-track verification round
	Optimistic reconstruction

	Evaluation
	Codebase and experimental setup
	Limitations

	BLS Threshold Signature Experiments
	Verifiable Secret Sharing Experiments
	VSS dealing
	VSS verification round
	VSS reconstruction
	VSS end-to-end time

	Distributed Key Generation Experiments
	DKG dealing
	DKG verification round
	DKG reconstruction
	DKG end-to-end time
	DKG communication

	Discussion and Future Work
	Generating public parameters
	Sortitioned DKG
	Arbitrary points
	Information-theoretic hiding AMTs
	Vector commitments (VCs)
	Batch AMT verification

	Conclusion
	References
	Appendix
	AMT Prover Time and Proof Sizes
	Cryptographic Assumptions
	AMT Proofs are Computationally Hiding and Binding
	Polylogarithmic DKG Configurations

