
Timed Consistent Network Updates

Tal Mizrahi, Efi Saat, Yoram Moses∗
Technion — Israel Institute of Technology

{dew@tx, efisaat@tx, moses@ee}.technion.ac.il

Abstract
Network updates such as policy and routing changes occur
frequently in Software Defined Networks (SDN). Updates
should be performed consistently, preventing temporary dis-
ruptions, and should require as little overhead as possible.
Scalability is increasingly becoming an essential requirement
in SDN. In this paper we propose to use time-triggered net-
work updates to achieve consistent updates. Our proposed
solution requires lower overhead than existing update ap-
proaches, without compromising the consistency during the
update. We demonstrate that accurate time enables far
more scalable consistent updates in SDN than previously
available. In addition, it provides the SDN programmer with
fine-grained control over the tradeoff between consistency
and scalability.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

Keywords
SDN, PTP, IEEE 1588, clock synchronization, management,
time.

1. INTRODUCTION
1.1 Background
Traditional network management systems are in charge of
initializing the network, monitoring it, and allowing the op-
erator to apply occasional changes when needed. Software
Defined Networking (SDN), on the other hand, requires a
central controller to routinely perform frequent policy and
configuration updates in the network.

The centralized approach used in SDN introduces challenges
in terms of consistency and scalability. The controller must

∗
The Israel Pollak academic chair at Technion.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOSR2015, June 17 - 18, 2015, Santa Clara, CA, USA

take care to minimize network anomalies during update pro-
cedures, such as packet drops or misroutes caused by tempo-
rary inconsistencies. Updates must also be planned with
scalability in mind; update procedures must scale with the
size of the network, and cannot be too complex. In the face
of rapid configuration changes, the update mechanism must
allow a high update rate.

Two main methods for consistent network updates have been
thoroughly studied in the last few years.

• Ordered updates. This approach uses a sequence of
configuration commands, whereby the order of execution
guarantees that no anomalies are caused in intermediate
states of the procedure [11, 18, 45, 24]; at each phase
the controller waits until all the switches have completed
their updates, and only then invokes the next phase in the
sequence.

• Two-phase updates. In the two-phase approach [42,
20], configuration version tags are used to guarantee con-
sistency; in the first phase the new configuration is in-
stalled in all the switches in the middle of the network,
and in the second phase the ingress switches are instructed
to start using a version tag that represents the new config-
uration. During the update procedure every switch main-
tains two sets of entries: one for the old configuration
version, and one for the new version. The version tag at-
tached to the packet determines whether it is processed
according to the old configuration or the new one. Af-
ter the packets carrying the old version tag are drained
from the network, garbage collection is performed on the
switches, removing the duplicate entries and leaving only
the new configuration.

In previous work [29] we argued that time is a powerful
abstraction for coordinating network updates. We defined
an extension [33] to the OpenFlow protocol [39] that al-
lows time-triggered operations. This extension has been ap-
proved and integrated into OpenFlow 1.5 [41], and into the
OpenFlow 1.3.x extension package [40].

1.2 Time for Consistent Updates
In this paper we study the use of accurate time to trigger
consistent network updates. We define a time-based order
approach, where each phase in the sequence is scheduled to
a different execution time, and a time-based two-phase ap-

proach, where each of the two phases is invoked at a different
time.

We show how the order and two-phase approaches benefit
from time-triggered phases. Contrary to the conventional
order and two-phase approaches, timed updates do not re-
quire the controller to wait until a phase is completed before
invoking the next phase, significantly simplifying the con-
troller’s involvement in the update process, and reducing
the update duration.

The time-based method significantly reduces the time dura-
tion required by the switches to maintain duplicate policy
rules for the same flow. In order to accommodate the du-
plicate policy rules, switch flow tables should have a set of
spare flow entries [42, 20] that can be used for network up-
dates. Timed updates use each spare entry for a shorter
duration than untimed updates, allowing higher scalability.

Accurate time synchronization has evolved over the last
decade, as the Precision Time Protocol (PTP) [16] has be-
come a common feature in commodity switches, allowing
sub-microsecond accuracy in practical use cases (e.g., [4]).
However, even if switches have perfectly synchronized clocks,
it is not guaranteed that updates are executed at their sched-
uled times. We argue that a carefully designed switch can
schedule updates with a high degree of accuracy. Moreover,
we show that even if switches are not optimized for accurate
scheduling, then the timed approach outperforms conven-
tional update approaches.

The use of time-triggered updates accentuates a tradeoff
between update scalability and consistency. At one end
of the scale, consistent updates come at the cost of a poten-
tially long update duration, and expensive memory waste
due to rule duplication.1 At the other end, a network-
wide update can be invoked simultaneously, using Time-
Conf [29], allowing a short update time, preventing the need
for rule duplication, but yielding a brief period of inconsis-
tency. In this paper we show that timed updates can be
tuned to any intermediate point along this scale.

1.3 Contributions
The main contributions of this paper are as follows.

• We propose to use time-triggered network updates in a
way that requires a lower overhead than existing update
approaches without compromising the consistency during
the update.

• We show that timed consistent updates require a shorter
duration than existing consistent update methods.

• We define an inconsistency metric, allowing to quantify
how consistent a network update is.

1As shown in [20], the duration of an update can be traded
for the update rate. The flow table will typically include a
limited number of excess entries that can be used for dupli-
cated rules. By reducing the update duration, the excess en-
tries are used for a shorter period of time, allowing a higher
number of updates per second.

• We show that accurate time provides the SDN program-
mer with a knob for fine-tuning the tradeoff between con-
sistency and scalability.

• We present an experimental evaluation on a 50-node testbed,
demonstrating the significant advantage of timed updates
over other update methods.

For the sake of brevity, proofs have been omitted from this
paper, and are presented in [35].

2. TIME-BASED CONSISTENT UPDATES
We now describe the concept of time-triggered consistent up-
dates. We assume that switches keep local clocks that are
synchronized to a central reference clock by a synchroniza-
tion protocol, such as the Precision Time Protocol (PTP) [16]
or ReversePTP [32, 31], or by an accurate time source such
as GPS. The controller sends network update messages to
switches using an SDN protocol such as OpenFlow [41]. An
update message may specify when the corresponding update
is scheduled to be performed.

S2 S1

S3 S4 after

before

12

3

(a) Ordered update of
a path.

S2 S1

S3

1
2

3

S4

(b) Two-phase update of a
multicast distribution tree.

Figure 1: Update procedure examples.

2.1 Ordered Updates
Fig. 1a illustrates an ordered network update. We would
like to reconfigure the path of a traffic flow from the ‘before’
to the ‘after’ configuration. An ordered update proceeds as
described in Fig. 2; the phases in the procedure correspond
to the numbers in Fig. 1a.

Untimed Ordered Update

1 Controller sends the ‘after’ configuration to S1.
2 Controller sends the ‘after’ configuration to S2.
3 Controller updates S3 (garbage collection).

Figure 2: Ordered update procedure for the scenario
of Fig. 1a.

The ordered update procedure guarantees that if every phase
is performed after the previous phase was completed, then
no packets are dropped during the process. A time-based
order update procedure is described in Fig. 3.

Notably, the ordered approach requires the controller to be
involved in the entire update procedure, making the update
process sensitive to the load on the controller, and to the
communication delays at the time of execution. In contrast,
in the time-base protocol, the controller is only involved in

Timed Ordered Update

0 Controller sends timed updates to all switches.
1 S1 enables the ‘after’ configuration at time T1.
2 S2 enables the ‘after’ configuration at time T2 > T1.
3 S3 performs garbage collection at time T3 > T2.

Figure 3: Timed Ordered update procedure for the scenario
of Fig. 1a.

phase 0, and if T1 is timed correctly, the update process is
not influenced by these issues.

2.2 Two-phase Updates
An example of a two-phase update is illustrated in Fig. 1b;
the figure depicts a multicast distribution tree through a
network of three switches. Multicast packets are distributed
along the paths of the ‘before’ tree. We would like to recon-
figure the distribution tree to the ‘after’ state.

Untimed Two-phase Update

1 Controller sends the ‘after’ configuration to S1.
2 Controller instructs S2 to start using the ‘after’

configuration with the new version tag.
3 Controller updates S1 (garbage collection).

Figure 4: Two-phase update procedure for the scenario
of Fig. 1b.

The two-phase procedure [42, 20] is described in Fig. 4. In
the first phase, the new configuration is installed in S1, in-
structing it to forward packets that have the new version tag
according to the ‘after’ configuration. In the second phase,
S2 is instructed to forward packets according to the ‘after’
configuration using the new version tag. The ‘before’ con-
figuration is removed in the third phase. As in the ordered
approach, the two-phase procedure requires every phase to
be invoked after it is guaranteed that the previous phase was
completed.

Timed Two-phase Update

0 Controller sends timed updates to all switches.
1 S1 enables the ‘after’ configuration at time T1.
2 S2 enables the ‘after’ configuration with the

new version tag at time T2 > T1.
3 S1 performs garbage collection at time T3 > T2.

Figure 5: Timed two-phase update procedure for the sce-
nario of Fig. 1b.

In the timed two-phase approach, specified in Fig. 5, phases 1,
2, and 3 are scheduled in advance by the controller. The
switches then execute phases 1, 2, and 3 at times T1, T2,
and T3, respectively.

2.3 k-Phase Consistent Updates
The order approach guarantees consistency if updates are
performed according to a specific order. More generally, we
can view an ordered update as a sequence of k phases, where
in each phase j, a set of Nj switches is updated. For each
phase j, the updates of phase j must be completed before
any update of phase j + 1 is invoked.

The two-phase approach is a special case, where k = 2; in
the first phase all the switches in the middle of the network
are updated with the new policy, and in the second phase the
ingress switches are updated to start using the new version
tag.

2.4 The Overhead of Network Updates
Both the order method and the two-phase method require
duplicate configurations to be present during the update
procedure. In each of the protocols of Fig. 2-5, both the ‘be-
fore’ and the ‘after’ configurations are stored in the switches’
expensive flow tables from phase 1 to phase 3. The unnec-
essary entries are removed only after garbage collection is
performed in phase 3.

In the timed protocols of Fig. 3 and 5 the switches receive the
update messages in advance (phase 0), and can temporar-
ily store the new configurations in a non-expensive mem-
ory. The switches install the new configuration in the ex-
pensive flow table memories only at the scheduled times,
thereby limiting the period of duplication to the duration
from phase 1 to phase 3.

The overhead cost of the duplication depends on the time
elapsed between phase 1 and phase 3. Hence, throughout the
paper we use the update duration as a metric for quantifying
the overhead of a consistent update that includes a garbage
collection phase.

3. TERMINOLOGY AND NOTATIONS
3.1 The Network Model
We reuse some of the terminology and notations of [42]. Our
system consists of N+1 nodes: a controller c, and a set of N
switches, S = {S1, . . . , SN}. A packet is a sequence of bits,
denoted by pk ∈ Pk, where Pk is the set of possible packets
in the system. Every switch Si ∈ S has a set Pri of ports.

The sources and destinations of the packets are assumed
to be external; packets are received from the ‘outside world’
through a subset of the switches’ ports, referred to as ingress
ports. An ingress switch is a switch that has at least one
ingress port. Every packet pk is forwarded through a se-
quence of switches (Si1 , . . . , Sim), where the first switch Si1

is an ingress switch. The last switch in the sequence, Sim ,
forwards the packet through one of its ports to the outside
world.

When a packet pk is received by a switch Si through port
p ∈ Pri, the switch uses a forwarding function Fi : Pk ×
Pri −→ A, where A is the set of possible actions a switch
can perform, e.g., ‘forward the packet through port q’. The
packet content and the port through which the packet was
received determine the action that is applied to the packet.

It is assumed that every switch maintains a local clock. As is
standard in the literature (e.g., [23]), we distinguish between
real time, an assumed Newtonian time frame that is not
directly observable, and local clock time, which is the time
measured on one of the switches’ clocks. We denote values
that refer to real time by lowercase letters, e.g. t, and values
that refer to clock time by uppercase, e.g., T .

We define a packet instance to be a tuple (pk, Si, p, t), where
pk ∈ Pk is a packet, Si ∈ S is the ingress switch through
which the packet is received, p ∈ Pri is the ingress port at
switch Si, and t is the time at which the packet instance is
received by Si.

3.2 Network Updates
We define a singleton update u of switch Si to be a partial
function, u : Pk×Pri ⇀ A. A switch applies a singleton up-
date, u, by replacing its forwarding function, Fi with a new
forwarding function, F′i, that behaves like u in the domain
of u, and like Fi otherwise. We assume that every singleton
update is triggered by a set of one or more messages sent by
the controller to one of the switches.

We define an update U to be a set of singleton updates U =
{u1, . . . , um}.

We define an update procedure, U, to be a set U =
{(u1, t1, phase(u1)), . . . , (um, tm, phase(um))} of 3-tuples,
such that for all 1 ≤ j ≤ m, we have that uj is a single-
ton update, phase(uj) is a positive integer specifying the
phase number of uj , and tj is the time at which uj is per-
formed. Moreover, it is required that for every 1 ≤ i, j ≤ m
if phase(ui) < phase(uj) then ti < tj . This definition im-
plies that an update procedure is a sequence of one or more
phases, where each phase is performed after the previous
phase is completed, but there is no guarantee about the or-
der of the singleton updates of each phase.

A k-phase update procedure is an update procedure U =
{(u1, t1, phase(u1)), . . . , (um, tm, phase(um))} in which for
all 1 ≤ j ≤ m we have 1 ≤ phase(uj) ≤ k, and for all
1 ≤ i ≤ k there exists an update uj such that (uj , tj , i) ∈ U.

We define a timed singleton update uT to be a pair
(u, T), where u is a singleton update, and T is a clock
value that represents the scheduled time of u. We as-
sume that every switch maintains a local clock, and that
when a switch receives a message indicating a timed sin-
gleton update uT it implements the update as close as
possible to the instant when its local clock reaches the
value T . Similar to the definition of an update proce-
dure, we define a timed update procedure UT to be a set
UT = {(uT

1 , t1, phase(u1)), . . . , (uT
m, tm, phase(um))}.

An update procedure U =
{(u1, t1, phase(u1)), . . . , (um, tm, phase(um))}
and a timed update procedure UT =
{(vT 1, t1, phase(v

T
1)), . . . , (vT n, tn, phase(v

T
n))} =

{((v1, T1), t1, phase(v
T
1)), . . . , ((vn, Tn), tn, phase(v

T
n))}

are said to be similar, denoted by UT ∼ U if m = n
and for every 1 ≤ j ≤ m we have uj = vj and
phase(uj) = phase(vj).

Given an untimed update, U , the original configuration, be-
fore any of the singleton updates of U takes place, is given
by the set of forwarding functions, {F1, . . . ,FN}. We denote
the new configuration, after all the singleton updates of U
have been implemented, by {F′1, . . . ,F′N}.

We define consistent forwarding based on the per-packet
consistency definition of [42]. Intuitively, a packet is con-
sistently forwarded if it is processed either according to the
new configuration or according to the old one, but not ac-
cording to a mixture of the two. Formally, let (pk, Si1 , p1, t)
be a packet instance that is forwarded through a sequence of
switches Si1 , Si2 , . . . , Sim through ports p1, p2, . . . , pm, re-
spectively, and is assigned the actions a1, a2, . . . , am. The
packet instance (pk, Si1 , p1, t) is said to be consistently for-
warded if one of the following is satisfied:

(i) Fij (pk, pj) = aj for all 1 ≤ j ≤ m, or

(ii) F′ij (pk, pj) = aj for all 1 ≤ j ≤ m.

A packet instance that is not consistently forwarded, is said
to be inconsistently forwarded.

Dc An upper bound on the controller-to-switch
delay, including the network latency, and the
internal switch delay until completing the up-
date.

Dn An upper bound on the end-to-end network
delay.

∆ An upper bound on the time interval between
the transmission times of two consecutive up-
date messages sent by the controller.

δ An upper bound on the scheduling error; an
update that is scheduled to be performed at T
is performed in practice during the time inter-
val [T, T + δ].

Tsu The timed update setup time; in order to in-
voke a timed update that is scheduled to time
T , the controller sends the update messages no
later than at T − Tsu.

Table 1: Delay-related Notations

3.3 Delay-related Notations
Table 1 presents key notations related to delay and perfor-
mance. The attributes that play a key role in our analysis
are Dc, Dn, and δ. These attributes are discussed further
in Section 4.

4. UPPER AND LOWER BOUNDS
4.1 Delay Upper Bounds
Both the order and the two-phase approaches implicitly as-
sume the existence of two upper bounds, Dc and Dn (see
Table 1):

• Dc: both approaches require previous phases in the up-
date procedure to be completed before invoking the cur-
rent phase. Therefore, after sending an update message,
the controller must wait for a period of Dc until it is
guaranteed that the corresponding update has been per-
formed; only then can it invoke the next phase in the

procedure. Alternatively, explicit acknowledgments can
be used to indicate update completions; when a switch
completes the update it notifies the controller. Unfortu-
nately, OpenFlow [41, 26] currently does not support such
an acknowledgment mechanism. Hence, one can either
use other SDN protocols that support explicit acknowl-
edgment (as was assumed in [18]), or wait for a period of
Dc until the switch is guaranteed to complete the update.

• Dn: garbage collection can take place after the update
procedure has completed, and all en-route packets have
been drained from the network. Garbage collection can
be invoked either after waiting for a period of Dn after
completing the update, or by using soft timeouts.2 Both
of these approaches assume there is an upper bound, Dn,
on the end-to-end network latency.

Is it practical to assume that the upper bounds Dc and Dn

exist? Network latency is often modeled using long-tailed
distributions such as exponential or Gamma [37, 13], imply-
ing that network latency is often unbounded.

We demonstrate the long-tailed behavior of network latency
by analyzing measurements performed on production net-
works. We analyze 20 delay measurement datasets from [6,
2] taken at various sites over a one-year period, from Novem-
ber 2013 to November 2014. 3 The measurements cap-
ture the round-trip time (RTT) using ICMP Echo requests.
The measurements show (Fig. 6) that in some networks
the 99.999th percentile is almost two orders of magnitude
higher than the average RTT. Table 2 summarizes the ra-
tio between tail latency values and average values in the 20
traces we analyzed.

0

200

400

600

800

1000

1200

1400

1600

0 50 100 150 200 250

T
a

il
 l

a
te

n
cy

 [
m

s]

Average latency [ms]

99.9th percentile

99.99th percentile

99.999th percentile

Figure 6: Long-tail latency

In typical networks we expect Dn to have long-tailed behav-
ior. Similar long-tailed behavior has also been shown for Dc

in [18, 43].

2Soft timeouts are defined in the OpenFlow protocol [41] as a
means for garbage collection; a flow entry that is configured
with a soft timeout, Dn, is cleared if it has not been used
for a duration Dn.
3Details about the measurements can be found in Ap-
pendix A.

99.9th

percentile
99.99th

percentile
99.999th

percentile

4.88 10.49 19.45

Table 2: The mean ratio between the tail latency and the
average latency.

At a first glance, these results seem troubling: if network
latency is indeed unbounded, neither the order nor the two-
phase approaches can guarantee consistency, since the con-
troller can never be sure that the previous phase was com-
pleted before invoking the next phase.

In practice, typical approaches will not require a true upper
bound, but rather a latency value that is exceeded with a
sufficiently low probability. Service Level Agreement (SLA)
in carrier networks is a good example of this approach; per
the MEF 10.3 specification [27], a Service Level Specifica-
tion (SLS) defines not only the mean delay, but also the
Frame Delay Range (FDR), and the percentile defining this
range. Thus, service providers must guarantee that the rate
of frames that exceed the delay range is limited to a known
percentage.

Throughout the paper we use Dc and Dn, referring to the
upper bounds of the delays. In practice, these may refer to
a sufficiently high percentile delay. Our analysis in Section 6
revisits the upper bound assumption.

4.2 Delay Lower Bounds
Throughout the paper we assume that the lower bounds
of the network delay and the controller-to-switch delay are
zero. This assumption simplifies the presentation, although
the model can be extended to include non-zero lower bounds
on delays.

4.3 Scheduling Accuracy Bound
As defined in Table 1, δ is an upper bound on the scheduling
error, indicating how accurately updates are scheduled; an
update that is scheduled to take place at time T is performed
in practice during the interval [T, T+δ].4 A switch’s schedul-
ing accuracy depends on two factors: (i) how accurately its
clock is synchronized to the system’s reference clock, and
(ii) its ability to perform real-time operations.

Most high-performance switches are implemented as a com-
bination of hardware and software components. A schedul-
ing mechanism that relies on the switch’s software may be
affected by the switch’s operating system and by other run-
ning tasks, consequently affecting the scheduling accuracy.
Furthermore, previous work [18, 43] has shown high vari-
ability in rule installation latencies in Ternary Content Ad-
dressable Memories (TCAMs), resulting from the fact that
a TCAM update might require the TCAM to be rearranged.

Nevertheless, existing switches and routers practice real-
time behavior, with a predictable guaranteed response time
to important external events. Traditional protection switch-
ing and fast reroute mechanisms require the network to react

4An alternative representation of δ assumes a symmetric
error, T ± δ/2. The two approaches are equivalent.

Ck,N-2

Ck,N-1

Ck,N

Sk,N-2

Sk,N-1

Sk,N

Cfin
0

0

0

Dc

Dc

Dc

Phase k

DcC1,1

C1,2

C1,3

S1,1

S1,2

S1,3

C2,4

C2,5

C2,6

S2,4

S2,5

S2,6

Dc

Dc

0

0

0

0

0

0

Dc

Dc

Dc

Phase 1 Phase 2

0
Cstart

max(,Dc)
max(,Dc)

C3,1 ...

Figure 7: PERT graph of a k-phase update.

to a path failure in less than 50 milliseconds, implying that
each individual switch or router reacts within a few millisec-
onds, or in some cases less than one millisecond (e.g. [38]).
Operations, Administration, and Maintenance (OAM) pro-
tocols such as the IEEE 802.1ag [1] require faults to be de-
tected within a strict timing constraint of ±0.42 millisec-
onds.5

Measures can be taken to implement accurate scheduling of
timed updates:

• Common real-time programming practices can be applied
to ensure guaranteed performance for time-based update,
by assigning a constant fraction of time to timed updates.

• When a switch is aware of an update that is scheduled
to take place at time Ts, it can avoid performing heavy
maintenance tasks near this time, such as TCAM entry
rearrangement.

• Untimed update messages received slightly before time Ts

can be queued and processed after the scheduled update
is executed.

• If a switch receives a time-based command that is sched-
uled to take place at the same time as a previously received
command, it can send an error message to the controller,
indicating that the last received command cannot be ex-
ecuted.

• It has been shown that timed updates can be scheduled
with a very high degree of accuracy, on the order of 1 mi-
crosecond, using TimeFlip [34]. This approach provides
a high scheduling accuracy, potentially at the cost of some
overhead in the switch’s flow tables.

Observation 1. In typical settings δ < Dc.

The intuition behind Observation 1 is that δ is only affected
by the switch’s performance, whereas Dc is affected by both
the switch’s performance and the network latency. We ex-
pect Observation 1 to hold even if switches are not designed
for real-time performance. We argue that in switches that

5Faults are detected using Continuity Check Messages
(CCM), transmitted every 3.33 ms. A fault is detected when
no CCMs are received for a period of 11.25± 0.42 ms.

use some of the real-time techniques above, δ << Dc, mak-
ing the timed approach significantly more advantageous, as
we shall see in the next section.

5. WORST-CASE ANALYSIS
5.1 Worst-case Update Duration
We define the duration of an update procedure to be the time
elapsed from the instant at which the first switch updates its
forwarding function to the instant at which the last switch
completes its update.

We use Program Evaluation and Review Technique (PERT)
graphs [25] to illustrate the worst-case update duration anal-
ysis. Fig. 7 illustrates a PERT graph of an untimed ordered
k-phase update, where three switches are updated in each
phase. Switches S1, S2, and S3 are updated in the first
phase, S4, S5, and S6 are updated in the second phase, and
so on. In this procedure, the controller waits until phase j
is guaranteed to have been completed before starting phase
j + 1.

Each node in the PERT graph represents an event, and each
edge represents an activity. A node labeled Cj,i represents
the event ‘the controller starts transmitting a phase j update
message to switch Si’. A node labeled Sj,i represents ‘switch
Si has completed its phase j update’. The weight of each
edge indicates the maximal delay to complete the transition
from one event to another. Cstart and Cfin represent the
start and finish times of the update procedure, respectively.
The worst-case duration between two events is given by the
longest path between the two corresponding nodes in the
graph.

Throughout the section we focus on greedy update proce-
dures. An update procedure is said to be greedy if the con-
troller invokes each update message at the earliest possible
time that guarantees that for every phase j all the singleton
updates of phase j are completed before those of phase j+1
are initiated.

5.2 Worst-case Analysis of Untimed Updates
5.2.1 Untimed Updates

We start by discussing untimed k-phase update procedures,
focusing on a single phase, j, in which Nj switches are up-
dated. In Lemma 1 and in the upcoming lemmas in this
section we focus on greedy updates.

C3,1

C3,2

C3,3

S3,1

S3,2

S3,3

Cfin
0

0

0

Dc

Dc

Dc

Garbage collection phase

DcC1,1

C1,2

C1,3

S1,1

S1,2

S1,3

C2,4

C2,5

C2,6

S2,4

S2,5

S2,6

Dc

Dc

Dn

Dn

Dn

Dc

Dc

Dc

Phase 1 Phase 2

0
Cstart

max(,Dc+Dn)max(,Dc)

0

0

0

Figure 8: PERT graph of a two-phase update with garbage collection.

Lemma 1. If U is a multi-phase update procedure, then
the worst-case duration of phase j of U is:

(Nj − 1) ·∆ +Dc (1)

The following lemma specifies the worst-case update dura-
tion of a k-phase update. The intuition is straightforward
from Fig. 7.

Lemma 2. The worst-case update duration of a k-phase
update procedure is:

k∑
j=1

(Nj − 1) ·∆ + (k − 1) ·max(∆, Dc) +Dc (2)

Specifically, in two-phase updates k = 2, yielding:

Corollary 1. If U is a two-phase update procedure, then
its worst-case update duration is:

(N1 +N2 − 2) ·∆ + max(∆, Dc) +Dc (3)

5.2.2 Untimed Updates with Garbage Collection
In some cases, garbage collection is required for some of
the phases in the update procedure. For example, in the
two-phase approach, after phase 2 is completed and all en-
route packets have been drained from the network, garbage
collection is required for the N1 switches of the first phase.

More generally, assume that at the end of every phase j
the controller performs garbage collection for a set of NGj

switches. Thus, after phase j is completed the controller
waits Dn time units for the en-route packets to drain, and
then invokes the garbage collection procedure for the NGj

switches.

After invoking the last message of phase j, the controller
waits for max(∆, Dc +Dn) time units. Thus, the worst-case
duration from the transmission of the last message of phase j
until the garbage collection of phase j is completed is given
by Eq. 4.

max(∆, Dc +Dn) + (NGj − 1) ·∆ +Dc (4)

Fig. 8 depicts a PERT graph of a two-phase update pro-
cedure that includes a garbage collection phase. At the
end of the second phase, garbage collection is performed
for the phase 1 policy rules of S1, S2, and S3. This is in
fact a special case of a 3-phase update procedure, where
the third phase takes place only after all the en-route pack-
ets are guaranteed to have been drained from the network.
The main difference between this example and the general
k-phase graph of Fig. 7 is that in Fig. 8 the controller waits
at least max(∆, Dc +Dn) time units from the transmission
of the last message of phase 2 until starting to invoke the
garbage collection phase.

Lemma 3. If U is a two-phase update procedure with a
garbage collection phase, then its worst-case update duration
is:

(N1 +N2 +NG1 − 3) ·∆ + max(∆, Dc)+

+ max(∆, Dc +Dn) +Dc

(5)

5.3 Worst-case Analysis of Timed Updates
5.3.1 Worst-case-based Scheduling

Based on a worst-case analysis, an SDN program can de-
termine an update schedule, T = (T1, . . . , Tk, Tg1, . . . , Tgk).
Every timed update ut is performed no later than at t + δ.
Consequently, we can derive the worst-case scheduling con-
straints below.

Definition 1 (Worst-case scheduling). If U is a
timed k-phase update procedure, a schedule T =
(T1, . . . , Tk, Tg1, . . . , Tgk) is said to be a worst-case schedule
if it satisfies the following two equations:

Tj = Tj−1 + δ for every phase 2 ≤ j ≤ k (6)

Tgj = Tj + δ +Dn (7)

for every phase j that requires garbage collection

Note that a greedy timed update procedure uses worst-case
scheduling.

Every schedule T that satisfies Eq. 6 and 7 guarantees consis-
tency. For example, the timed two-phase update procedure
of Fig. 9 satisfies the two scheduling constraints above.

CfinTg1

S3,1

S3,2

S3,3

δ

δ

δ

Garbage collection phase

Cstart
Tsu

δ
S1,1

S1,2

S1,3

T2

S2,4

S2,5

S2,6

T1
δ

δ

δ

δ

δ

Phase 1 Phase 2

Dn

Dn

Dn0

0

0

Figure 9: PERT graph of a timed two-phase update with garbage collection.

5.3.2 Timed Updates
A timed update starts with the controller sending scheduled
update messages to all the switches, requiring a setup time
Tsu. Every phase is guaranteed to take no longer than δ. An
example of a timed two-phase update is illustrated in Fig. 9.

Lemma 4. The worst-case update duration of a k-phase
timed update procedure with a worst-case schedule is k · δ.

Based on the latter, we derive the following lemma.

Lemma 5. If U is a two-phase timed update procedure
with a garbage collection phase using a worst-case schedule,
then its worst-case update duration is Dn + 3 · δ.

5.4 Timed vs. Untimed Updates
We now study the conditions under which the timed ap-
proach outperforms the untimed approach.

Based on Lemmas 2 and 4, we observe that a timed k-phase
update procedure has a shorter update duration than a sim-
ilar untimed k-phase update procedure if:

k · δ <
k∑

j=1

(Nj − 1) ·∆ + (k − 1) ·max(∆, Dc) +Dc (8)

Lemma 6. Let UT be a greedy timed k-phase update pro-
cedure, with a worst-case update duration D1. Let U be a
greedy untimed k-phase update procedure with a worst-case
update duration D2. If δ < Dc and UT ∼ U, then D1 < D2.

Now, based on Lemma 3 and Lemma 5, we observe that a
timed two-phase update procedure with garbage collection
has a shorter update duration than a similar untimed two-
phase update procedure if:

Dn + 3 · δ < (N1 +N2 +NG1 − 3) ·∆+

+ max(∆, Dc) + max(∆, Dc +Dn) +Dc

(9)

Lemma 7. Let UT be a greedy timed two-phase update
procedure with a garbage collection phase, with a worst-case

update duration D1. Let U be a greedy untimed two-phase
update procedure with a worst-case update duration D2. If
δ < Dc and UT ∼ U, then D1 < D2.

We have shown that if δ < Dc the timed approach yields a
shorter update duration than the untimed approach, and is
thus more scalable. Based on Observation 1, even if switches
are not designed for real-time performance we have δ < Dc.
We conclude that the timed approach is the superior
one in typical settings.

6. TIME AS A CONSISTENCY KNOB
6.1 An Inconsistency Metric
As discussed in Section 4, the upper bounds Dc and Dn do
not necessarily exist, or may be very high. Thus, in prac-
tice consistent network updates only guarantee consistent
forwarding with a high probability, raising the need for a
way to measure and quantify to what extent an update is
consistent.

Definition 2 (Test flow). A set of packet instances
PI is said to be a test flow if for every two packet instances
(pk1, S1, p1, t1) ∈ PI and (pk2, S2, p2, t2) ∈ PI, all the follow-
ing conditions are satisfied:

• S1 = S2.

• p1 = p2.

• pk1 = pk2.6

• Packet instances are received at a constant packet ar-
rival rate R, i.e., if both t2 > t1 and there is no packet
instance (pk3, S3, p3, t3) ∈ PI such that t2 > t3 > t1,
then t2 = t1 + 1/R.

We assume a method that, for a given test flow f and an
update u, allows to measure the number of packets n(f, u)
that are forwarded inconsistently.7

6For simplicity, we define that all packets of a test flow are
identical. It is in fact sufficient to require that all packets
of the flow are indistinguishable by the switch forwarding
functions, for example, that all packets of a flow have the
same source and destination addresses.
7This measurement can be performed, for example, by per-
flow match counters in the switches.

Definition 3 (Inconsistency metric). Let f be a test
flow with a packet arrival rate R(f). Let U be an update,
and let n(f, U) be the number of packet instances of f that
are forwarded inconsistently due to update U . The incon-
sistency I(f, U) of a flow f with respect to U is defined to
be:

I(f, U) =
n(f, U)

R(f)
(10)

The inconsistency I(f, U) is measured in time units. Intu-
itively, I(f, U) quantifies the amount of time that flow f is
disrupted by the update.

6.2 Fine Tuning Consistency
Timed updates provide a powerful mechanism that allows
SDN programmers to tune the degree of consistency. By
setting the update times T1, T2, . . . , Tk, Tg1, . . . , Tgk, the
controller can play with the consistency-scalability trade-
off; the update overhead can be reduced at the expense of
some inconsistency, or vice versa.8

Example 1. We consider a two-phase update with a garbage
collection phase. We assume that δ = 0 and that all packet
instances are subject to a constant network delay, Dn. By
assigning T = T1 = T2 = Tg1, the controller schedules a
simultaneous update. This approach is referred to as Time-
Conf in [29]. All switches are scheduled to perform the
update at the same time T . Packets entering the network
during the period [T − Dn, T] are forwarded inconsistently.
The inconsistency metric in this example is I = Dn. The
advantage of this approach is that it completely relieves the
switches from the overhead of maintaining duplicate entries
between the phases of the update procedure.

Example 2. Again, we consider a two-phase update
(Fig. 10), with δ = 0 and a constant network delay, Dn.
We assign T2 = T1 + δ according to Eq. 6, and Tg1 is as-
signed to be T2 + δ + d, where d < Dn. The update is il-
lustrated in the PERT graph of Fig. 10. Hence, packets en-
tering the network during the period [T2 − Dn + d, T2] are
forwarded inconsistently. The inconsistency metric is equal
to I = min(Dn − d,0). In a precise sense, the delay d is a
knob for tuning the update inconsistency.

7. EVALUATION
Our evaluation was performed on a 50-node testbed in the
DeterLab [44, 28] environment. The nodes (servers) in the
DeterLab testbed are interconnected by a user-configurable
topology.

Each testbed node in our experiments ran a software-based
OpenFlow switch that supports time-based updates, also
known as Scheduled Bundles [41]. A separate machine was

8In some scenarios, such as security policy updates, even a
small level of inconsistency cannot be tolerated. In other
cases, such as path updates, a brief period of inconsistency
comes at the cost of some packets being dropped, which can
be a small price to pay for reducing the update duration.

CfinTg1

S3,1

S3,2

S3,3

Garbage collection phase

Cstart
Tsu

δ=0
S1,1

S1,2

S1,3

T2

S2,4

S2,5

S2,6

T1 δ=0

Phase 1 Phase 2

d

d

d0

0

0
δ=0

δ=0

δ=0

δ=0

δ=0

δ=0

δ=0

Figure 10: Example 2: PERT graph of a timed two-phase
update. The delay d (red in the figure) is a knob for
consistency.

used as a controller, which was connected to the switches
using an out-of-band control network.

The OpenFlow switches and controller we used are a version
of OFSoftSwitch and Dpctl [3], respectively, that supports
Scheduled Bundles [33]. We used ReversePTP [31, 32] to
guarantee synchronized timing.

7.1 Experiment 1: Timed vs. Untimed
Updates

We emulated a typical leaf-spine topology (e.g., [9]) of N
switches, with 2N

3
leaf switches, and N

3
spine switches. The

experiments were run using various values of N , between 6
and 48 switches.

2N/3 leaf

switches

N/3 spine

switches

Figure 13: Leaf-spine topology.

We measured the delay upper bounds, Dn, Dc, δ, and ∆.
Table 3 presents the 99.9th percentile delay values of each of
these parameters. These are the parameters that were used
in the controller’s greedy updates.

Dn Dc δ ∆

0.262 4.865 1.297 5.24

Table 3: The measured 99.9th percentile of each of the delay
attributes in milliseconds.

We observed a low network delay Dn, as it was measured
over two hops of a local area network. In Experiment 2
we analyze networks with a high network delay. Note that
the values of δ and Dc were measured over software-based
switches. Since hardware switches may yield different val-
ues, some of our experiments were performed with various
synthesized values of δ and Dc, as discussed below. The
measured value of ∆ was high, on the order of 5 millisec-
onds, as Dpctl is not optimized for performance.

The experiments consisted of 3-phase updates of a pol-
icy rule: (i) a phase 1 update, involving all the switches,

(a) Sprint topology. (b) NetRail topology. (c) Compuserve topology.

Figure 11: Publicly available network topologies [7] used in our experiments. Each node in the graph represents an OpenFlow
switch.

source

destination

(a) Sprint topology.

source

destination

(b) NetRail topology.

sourcedestination

(c) Compuserve topology.

Figure 12: Test flows: each path of the test flows in our experiment is depicted by a different color. Black nodes are OpenFlow
switches. White nodes represent the external source and destination of the test flows in the experiment.

(ii) a phase 2 update, involving only the leaf (ingress)
switches, and (iii) a garbage collection phase, involving all
the switches.

Results. Fig. 14a compares the update duration of the
timed and untimed approaches as a function of N . Untimed
updates yield a significantly higher update duration, since
they are affected by (N1 +N2 +NG1−3) ·∆, per Lemma 3.9

Hence, the advantage of the timed approach increases
with the number of switches in the network, illustrating
its scalability.

9The slope of the untimed curve in Fig. 14a is ∆, by
Lemma 3. The theoretical curve was computed based on
the 99.9th percentile value, whereas the mean value in our
experiment was about 20% lower, explaining the different
slopes of the theoretical and experimental curves.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 10 20 30 40 50

U
p

d
a

te
 D

u
ra

ti
o
n

 [
se

co
n

d
s]

Number of Switches

Timed - experimental
Untimed - experimental
Timed - theoretical
Untimed - theoretical

(a) The update duration as a
function of the number of

switches.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

-0.2 0 0.2 0.4 0.6 0.8 1

U
p

d
a

te
 D

u
ra

ti
o

n
 [

se
co

n
d

s]

Dc-δ [seconds]

Timed - experimental
Untimed - experimental
Timed - theoretical
Untimed - theoretical

(b) The update duration as a
function of Dc − δ, for N = 12,
δ = 100 ms, various values of Dc.

Figure 14: Timed updates vs. untimed updates. Each figure
shows the experimental values, and the theoretical worst-
case values, based on Lemmas 3 and 5.

Fig. 14b shows the update duration of the two approaches as
a function of Dc− δ, as we ran the experiment with synthe-
sized values of δ and Dc. We fixed δ at 100 milliseconds, and
tested various values of Dc. As expected (by Section 5.4),
the results show that for Dc − δ > 0 the timed approach
yields a lower update duration. Furthermore, only when
the scheduling error, δ, is significantly higher than Dc does
the untimed approach yield a shorter update duration. As
discussed in Section 4.3, we typically expect Dc − δ to be
positive, as δ is unaffected by high network delays, and thus
we expect the timed approach to prevail. Interestingly, the
results show that even when the scheduling is not ac-
curate, e.g., if δ is 100 milliseconds worse than Dc, the
timed approach has a lower update duration.

7.2 Experiment 2: Fine Tuning Consistency
The goal of this experiment was to study how time can be
used to tune the level of inconsistency during updates. In or-
der to experiment with real-life wide area network delay val-
ues, Dn, we performed the experiment using publicly avail-
able topologies.

Network topology. Our experiments ran over three pub-
licly available service provider network topologies [7], as il-
lustrated in Fig. 11. We defined each node in the figure to be
an OpenFlow switch. OpenFlow messages were sent to the
switches by a controller over an out-of-band network (not
shown in the figures).

Network delays. The public information provided in [7]
does not include the explicit delay of each path, but in-
cludes the coordinates of each node. Hence we derived the
network delays from the beeline distance between each pair
of nodes, assuming 5 microseconds per kilometer, as recom-

0

5

10

15

20

25

30

0 10 20 30

In
co

n
si

st
en

c
y

 [
m

il
li

se
co

n
d

s]

Update Duration [milliseconds]

flow 1a

flow 2a

flow 3a

flow 4a

flow 5a

(a) Sprint - constant network delay.

0

5

10

15

20

25

30

0 10 20 30

In
co

n
si

st
en

cy
 [

m
il

li
se

co
n

d
s]

Update Duration [milliseconds]

flow 1b

flow 2b

flow 3b

flow 4b

flow 5b

(b) NetRail - constant network delay.

0

5

10

15

20

25

30

0 10 20 30

In
co

n
si

st
en

cy
 [

m
il

li
se

co
n

d
s]

Update Duration [milliseconds]

flow 1c

flow 2c

flow 3c

flow 4c

flow 5c

(c) Compuserve - constant network delay.

0

5

10

15

20

25

30

0 50 100

In
co

n
si

st
en

cy
 [

m
il

li
se

co
n

d
s]

Update Duration [milliseconds]

flow 1a

flow 2a

flow 3a

flow 4a

flow 5a

(d) Sprint - exponential network delay.

0

5

10

15

20

25

30

0 50 100
In

co
n

si
st

e
n

cy
 [

m
il

li
se

co
n

d
s]

Update Duration [milliseconds]

flow 1b

flow 2b

flow 3b

flow 4b

flow 5b

(e) NetRail - exponential network delay.

0

5

10

15

20

25

30

0 20 40 60 80 100

In
co

n
si

st
en

cy
 [

m
il

li
se

co
n

d
s]

Update Duration [milliseconds]

flow 1c

flow 2c

flow 3c

flow 4c

flow 5c

(f) Compuserve - exponential network delay.

Figure 15: Inconsistency as a function of the update duration. Modifying the update duration controls the degree of incon-
sistency. Two graphs are shown for each of the three topologies: exponential delay, constant delay.

mended in [17]. The DeterLab testbed allows a configurable
delay value to be assigned to each link. We ran our experi-
ments in two modes:

(i) Constant delay — each link had a constant delay that
was configured to the value we computed as described above.

(ii) Exponential delay — each link had an exponentially
distributed delay. The mean delay of each link in experiment
(ii) was equal to the link delay of this link in experiment (i),
allowing an ‘apples to apples’ comparison.

Test flows. In each topology we ran five test flows, and
measured the inconsistency during a timed network update.
Each test flow was injected by an external source (see 12) to
one of the ingress switches, forwarded through the network,
and transmitted from an egress switch to an external desti-
nation. Test flows were injected at a fixed rate of 40 Mbps
using Iperf [5].

Network updates. We performed two-phase updates of
a Multiprotocol Label Switching (MPLS) label; a flow is
forwarded over an MPLS Label-Switched Path (LSP) with
label A, and then reconfigured to use label B. A garbage
collection phase was used to remove the entries of label A.
Conveniently, the MPLS label was also used as the version
tag in the two-phase updates.

Inconsistency measurement. For every test flow f , and
update U , we measure the number of inconsistent packets
during the update n(f, U). Inconsistent packets in our con-
text are either packets with a ‘new’ label arriving to a switch
without the ‘new’ rule, or packets with an ‘old’ label arriv-
ing to a switch without the ‘old’ configuration. We used the
switches’ OpenFlow counters to count the number of incon-
sistent packets, n(f, U). We compute the inconsistency of
each update using Eq. 10.

Results. We measured the inconsistency I during each up-
date as a function of the update duration, Tg1 − T1. We
repeated the experiment for each of the topologies and each
of the test flows of Fig. 12.

The results are illustrated in Fig. 15. The figure depicts the
tradeoff between the update duration, and the inconsistency
during the update. A long update duration bares a cost on
the switches’ expensive memory resources, whereas a high
degree of inconsistency implies a large number of dropped
or misrouted packets.

Using a timed update, it is possible to tune the difference
Tg1 − T1, directly affecting the degree of inconsistency. An
SDN programmer can tune Tg1−T1 to the desired sweet spot
based on the system constraints; if switch memory resources
are scarce, one may reduce the update duration and allow
some inconsistency.

As illustrated in Fig. 15d, 15e, and 15f, this fine tuning
is especially useful when the network latency has a long-
tailed distribution. A truly consistent update, where I = 0,
requires a very long and costly update duration. As shown in
the figures, by slightly compromising I, the switch memory
overhead during the update can be cut in half.

8. DISCUSSION
Failures. Switch failures during an update procedure may
compromise the consistency during an update. For exam-
ple, a switch may silently fail to perform an update, thereby
causing inconsistency. Both the timed and untimed update
approaches may be affected by failure scenarios. The Open-
Flow Scheduled Bundle [41] mechanism provides an elegant
mechanism for mitigating failures in timed updates; if the
controller detects a switch failure before an update is sched-
uled to take place, it can send a cancellation message to all
the switches that take part in the scheduled update, thus

guaranteeing an all-or-none behavior.

Explicit acknowledgment. As discussed in Section 4.1,
OpenFlow currently does not support an explicit acknowl-
edgment (ACK) mechanism. In the absence of ACKs, up-
date procedures are planned according to a worst-case anal-
ysis (Section 5), both in the timed and in the untimed ap-
proaches. However, if switches are able to notify the con-
troller upon completion of an update (as assumed in [18]),
then update procedures can sometimes be completed ear-
lier than without using ACKs. Furthermore, ACKs enable
updates to be performed dynamically [18], whereby at the
end of each phase the controller dynamically plans the next
phase. Fortunately, the timed and untimed approaches can
be combined. For example, in the presence of an acknowl-
edgment mechanism, update procedures can be performed
in a dynamic, untimed, ACK-based manner, with a timed
garbage collection phase at the end. This flexible mix-and-
match approach allows the SDN programmer to enjoy the
best of both worlds.

9. RELATED WORK
The use of time in distributed applications has been widely
analyzed, both in theory and in practice. Analysis of the us-
age of time and synchronized clocks, e.g., Lamport [21, 22]
dates back to the late 1970s and early 1980s. Accurate time
has been used in various different applications, such as dis-
tributed database [10], industrial automation systems [14],
automotive networks [15], and accurate instrumentation and
measurements [36]. While the usage of accurate time in dis-
tributed systems has been widely discussed in the literature,
we are not aware of similar analyses of the usage of accu-
rate time as a means for performing consistent updates in
computer networks.

Time-of-day routing [8] routes traffic to different destina-
tions based on the time-of-day. Path calendaring [19] can
be used to configure network paths based on scheduled or
foreseen traffic changes. The two latter examples are typi-
cally performed at a low rate and do not place demanding
requirements on accuracy.

In [12] the authors briefly mentioned that it would be in-
teresting to explore using time synchronization to instruct
routers or switches to change from one configuration to an-
other at a specific time, but did not pursue the idea beyond
this observation. Our previous work [29, 30] introduced the
concept of using time to coordinate updates in SDN. Based
on our work [33], the OpenFlow protocol [41, 40] currently
supports time-based network updates. In [34] we presented
a practical method to implement accurately scheduled net-
work updates. In this paper we analyze the use of time
in consistent updates, and show that time can improve the
scalability of consistent updates.

Various consistent network update approaches have been an-
alyzed in the literature. Two of the most well-known update
methods are the ordered approach [11, 45, 24, 18], and the
two-phase approach [42, 20]. None of these works proposed
to use accurate time and synchronized clocks as a means to
coordinate the updates. In this paper we show that time can
be used to improve these two methods, allowing to reduce
the overhead during update procedures.

The analysis of [20] proposed an incremental method that
improves the scalability of consistent updates by breaking
each update into multiple independent rounds, thereby re-
ducing the total overhead consumed in each separate round.
The timed approach we present in this paper can improve
the incremental method even further, by reducing the over-
head consumed in each round.

10. CONCLUSION
Accurate time synchronization has become a common fea-
ture in commodity switches and routers. We have shown
that it can be used to implement consistent updates in a way
that reduces the update duration and the expensive over-
head of maintaining duplicate configurations. Moreover, we
have shown that accurate time can be used to tune the fine
tradeoff between consistency and scalability during network
updates. Our experimental evaluation demonstrates that
timed updates allow scalability that would not be possible
with conventional update methods.

Acknowledgments
This work was supported in part by the ISF grant 1520/11.
We gratefully acknowledge the DeterLab project [44] for the
opportunity to perform our experiments on the DeterLab
testbed.

A. APPENDIX: DATASET DETAILS
The measurement results presented in Section 4.1 are based
on publicly available datasets from [6, 2]. The data we an-
alyzed consists of RTT measurements between 20 source-
destination pairs, listed in Table 4. The data is based on
measurements taken from November 2013 to November 2014.

Source site Destination site Trace
source

ping.desy.de ba.sanet.sk [6]
pinger.stanford.edu ihep.ac.cn [6]
pinger.stanford.edu institutokilpatrick

.edu
[6]

pinger.uet.edu.pk ping.cern.ch [6]
pinger2.if.ufrj.br ping.cern.ch [6]

pinger.arn.dz dns.sinica.edu.tw [6]
pinger.stanford.edu ping.cern.ch [6]
pinger.stanford.edu mail.gnet.tn [6]
pinger.stanford.edu tg.refer.org [6]
pinger.stanford.edu www.unitec.edu [6]

ampz-catalyst ampz-citylink [2]
ampz-inspire ampz-massey-pn [2]

ampz-netspace ampz-inspire [2]
ampz-ns3a ampz-citylink [2]
ampz-ns3a www.stuff.co.nz [2]

ampz-rurallink www.facebook.com [2]
ampz-rurallink www.google.co.nz [2]
ampz-waikato www.facebook.com [2]
ampz-waikato www.google.co.nz [2]
ampz-wxc-akl ampz-csotago [2]

Table 4: List of delay measurement traces.

11. REFERENCES
[1] Connectivity Fault Management. IEEE Std 802.1ag,

2007.

[2] AMP Measurements. http://erg.wand.net.nz, 2014.

[3] CPqD OFSoftswitch.
https://github.com/CPqD/ofsoftswitch13, 2014.

[4] IEEE 1588 time synchronization deployment for
mobile backhaul in China Mobile. keynote
presentation, International IEEE Symposium on
Precision Clock Synchronization for Measurement
Control and Communication (ISPCS), 2014.

[5] Iperf - The TCP/UDP Bandwidth Measurement Tool.
https://iperf.fr/, 2014.

[6] PingER. http://pinger.fnal.gov/, 2014.

[7] Topology Zoo. http://topology-zoo.org/, 2015.

[8] G. R. Ash. Use of a trunk status map for real-time
DNHR. In International TeleTraffic Congress
(ITC-11), 1985.

[9] Cisco. Cisco’s Massively Scalable Data Center. http:
//www.cisco.com/c/dam/en/us/td/docs/solutions/

Enterprise/Data_Center/MSDC/1-0/MSDC_AAG_1.pdf,
2010.

[10] J. C. Corbett et al. Spanner: Google’s
globally-distributed database. In OSDI, volume 1,
2012.

[11] P. Francois and O. Bonaventure. Avoiding transient
loops during the convergence of link-state routing
protocols. IEEE/ACM Transactions on Networking,
15(6):1280–1292, 2007.

[12] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A
clean slate 4D approach to network control and
management. ACM SIGCOMM Computer
Communication Review, 35(5):41–54, 2005.

[13] O. Gurewitz, I. Cidon, and M. Sidi. One-way delay
estimation using network-wide measurements.
IEEE/ACM Transactions on Networking (TON),
14(SI):2710–2724, 2006.

[14] K. Harris. An application of IEEE 1588 to industrial
automation. In International IEEE Symposium on
Precision Clock Synchronization for Measurement
Control and Communication (ISPCS), 2008.

[15] IEEE. Time-Sensitive Networking Task Group.
http://www.ieee802.org/1/pages/tsn.html, 2012.

[16] IEEE TC 9. 1588 IEEE Standard for a Precision Clock
Synchronization Protocol for Networked Measurement
and Control Systems Version 2. IEEE, 2008.

[17] ITU-T G.144. One-way transmission time. ITU-T,
2003.

[18] X. Jin, H. H. Liu, R. Gandhi, S. Kandula,
R. Mahajan, J. Rexford, R. Wattenhofer, and
M. Zhang. Dionysus: Dynamic scheduling of network
updates. In ACM SIGCOMM, 2014.

[19] S. Kandula, I. Menache, R. Schwartz, and S. R.
Babbula. Calendaring for wide area networks. In ACM
SIGCOMM, 2014.

[20] N. P. Katta, J. Rexford, and D. Walker. Incremental
consistent updates. In ACM SIGCOMM workshop on
Hot topics in Software Defined Networks (HotSDN),
2013.

[21] L. Lamport. Time, clocks, and the ordering of events

in a distributed system. Communications of the ACM,
21(7):558–565, 1978.

[22] L. Lamport. Using time instead of timeout for
fault-tolerant distributed systems. ACM Trans.
Program. Lang. Syst., 6(2):254–280, Apr. 1984.

[23] L. Lamport and P. M. Melliar-Smith. Synchronizing
clocks in the presence of faults. Journal of the ACM
(JACM), 32(1):52–78, 1985.

[24] H. H. Liu, X. Wu, M. Zhang, L. Yuan,
R. Wattenhofer, and D. Maltz. zUpdate: updating
data center networks with zero loss. In ACM
SIGCOMM. ACM, 2013.

[25] D. G. Malcolm, J. H. Roseboom, C. E. Clark, and
W. Fazar. Application of a technique for research and
development program evaluation. Operations research,
7(5):646–669, 1959.

[26] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner. Openflow: enabling innovation in campus
networks. ACM SIGCOMM Computer
Communication Review, 38(2):69–74, Mar. 2008.

[27] Metro Ethernet Forum. Ethernet services attributes -
phase 3. MEF 10.3, 2013.

[28] J. Mirkovic and T. Benzel. Teaching cybersecurity
with DeterLab. Security & Privacy, IEEE,
10(1):73–76, 2012.

[29] T. Mizrahi and Y. Moses. Time-based updates in
software defined networks. In ACM SIGCOMM
workshop on Hot topics in Software Defined Networks
(HotSDN), 2013.

[30] T. Mizrahi and Y. Moses. On the necessity of
time-based updates in SDN. In Open Networking
Summit (ONS), 2014.

[31] T. Mizrahi and Y. Moses. ReversePTP: A software
defined networking approach to clock synchronization.
In ACM SIGCOMM workshop on Hot topics in
Software Defined Networks (HotSDN), 2014.

[32] T. Mizrahi and Y. Moses. Using ReversePTP to
distribute time in software defined networks. In
International IEEE Symposium on Precision Clock
Synchronization for Measurement Control and
Communication (ISPCS), 2014.

[33] T. Mizrahi and Y. Moses. Time4: Time for SDN.
technical report, arXiv preprint arXiv:1505.03421,
2015.

[34] T. Mizrahi, O. Rottenstreich, and Y. Moses. TimeFlip:
Scheduling network updates with timestamp-based
TCAM ranges. In IEEE INFOCOM, 2015.

[35] T. Mizrahi, E. Saat, and Y. Moses. Timed consistent
network updates. technical report, arXiv preprint
arXiv:1505.03653, 2015.

[36] P. Moreira et al. White rabbit: Sub-nanosecond
timing distribution over ethernet. In International
IEEE Symposium on Precision Clock Synchronization
for Measurement Control and Communication
(ISPCS), 2009.

[37] A. Mukherjee. On the dynamics and significance of
low frequency components of internet load. Technical
Reports (CIS), page 300, 1992.

[38] Network Test Inc. Virtual Chassis Performance:
Juniper Networks EX Series Ethernet Switches. white

http://erg.wand.net.nz
https://github.com/CPqD/ofsoftswitch13
https://iperf.fr/
http://pinger.fnal.gov/
http://topology-zoo.org/
http://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Data_Center/MSDC/1-0/MSDC_AAG_1.pdf
http://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Data_Center/MSDC/1-0/MSDC_AAG_1.pdf
http://www.cisco.com/c/dam/en/us/td/docs/solutions/Enterprise/Data_Center/MSDC/1-0/MSDC_AAG_1.pdf
http://www.ieee802.org/1/pages/tsn.html

paper, http://www.networktest.com/, 2010.

[39] Open Networking Foundation. Openflow switch
specification. Version 1.4.0, 2013.

[40] Open Networking Foundation. Openflow extensions
1.3.x package 2. 2015.

[41] Open Networking Foundation. Openflow switch
specification. Version 1.5.0, 2015.

[42] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger,
and D. Walker. Abstractions for network update. In
ACM SIGCOMM, 2012.

[43] C. Rotsos, N. Sarrar, S. Uhlig, R. Sherwood, and
A. W. Moore. Oflops: An open framework for
openflow switch evaluation. In Passive and Active
Measurement, pages 85–95. Springer, 2012.

[44] The DeterLab project.
http://deter-project.org/about_deterlab, 2015.

[45] L. Vanbever, S. Vissicchio, C. Pelsser, P. Francois, and
O. Bonaventure. Seamless network-wide igp
migrations. In ACM SIGCOMM Computer
Communication Review, volume 41, pages 314–325.
ACM, 2011.

http://www.networktest.com/
http://deter-project.org/about_deterlab

	Introduction
	Background
	Time for Consistent Updates
	Contributions

	Time-based Consistent Updates
	Ordered Updates
	Two-phase Updates
	k-Phase Consistent Updates
	The Overhead of Network Updates

	Terminology and Notations
	The Network Model
	Network Updates
	Delay-related Notations

	Upper and Lower Bounds
	Delay Upper Bounds
	Delay Lower Bounds
	Scheduling Accuracy Bound

	Worst-case Analysis
	Worst-case Update Duration
	Worst-case Analysis of Untimed Updates
	Untimed Updates
	Untimed Updates with Garbage Collection

	Worst-case Analysis of Timed Updates
	Worst-case-based Scheduling
	Timed Updates

	Timed vs. Untimed Updates

	Time as a Consistency Knob
	An Inconsistency Metric
	Fine Tuning Consistency

	Evaluation
	Experiment 1: Timed vs. Untimed Updates
	Experiment 2: Fine Tuning Consistency

	Discussion
	Related Work
	Conclusion
	Appendix Appendix: Dataset Details
	References

