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Data Center Costs

Amortized Component Sub-Components
Cost*
~45% Servers CPU, memory, disk
~25% Power UPS, cooling, power
infrastructure distribution
~15% Power draw Electrical utility costs
~15% Network Switches, links, transit

The Cost of a Cloud: Research Problems in Data Center Networks. Sigcomm
CCR 2009. Greenberg, Hamilton, Maltz, Patel.

*3 yr amortization for servers, 15 yr for infrastructure; 5% cost of money



Server Costs

Ugly secret: 30% utilization considered “good” in data centers

Uneven application fit

— Each server has CPU, memory, disk: most applications exhaust
one resource, stranding the others

Long provisioning timescales

— New servers purchased quarterly at best
Uncertainty in demand

— Demand for a new service can spike quickly
Risk management

— Not having spare servers to meet demand brings failure just
when success is at hand

Session state and storage constraints
— If the world were stateless servers, life would be good



Goal: Agility — Any service, Any Server

Turn the servers into a single large fungible pool

— Dynamically expand and contract service footprint as
needed

Benefits

— Increase service developer productivity
— Lower cost

— Achieve high performance and reliability

The 3 motivators of most infrastructure projects



Achieving Agility

Workload management
— Means for rapidly installing a service’s code on a server
— Virtual machines, disk images, containers

Storage Management
— Means for a server to access persistent data
— Distributed filesystems (e.qg., HDFS, blob stores)

Network

— Means for communicating with other servers, regardless
of where they are in the data center



Conventional DC Network

Internet

DC-Layer 3

DC-Layer 2

CR = Core Router (L3)

AR = Access Router (L3)
S = Ethernet Switch (L2)
A = Rack of app. servers

~ 1,000 servers/pod == IP subnet

Reference — “Data Center: Load balancing Data Center Services”, Cisco
2004



Layer 2 vs. Layer 3

Ethernet switching (layer 2)
v’ Fixed IP addresses and auto-configuration (plug & play)
v' Seamless mobility, migration, and failover
X Broadcast limits scale (ARP)
X Spanning Tree Protocol

IP routing (layer 3)
v' Scalability through hierarchical addressing
v Multipath routing through equal-cost multipath
X More complex configuration
X Can’t migrate w/o changing IP address



Conventional DC Network Problems
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Dependence on high-cost proprietary routers
Extremely limited server-to-server capacity



And More Problems ...
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* Resource fragmentation, significantly lowering
cloud utilization (and cost-efficiency)
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\/ \/

w

[~ Complicated manual | 1\

L2/L3 re-configuration o

B N N

- | = I
AR DNk
AlAME A ‘
IP subnet (VLAN) #1 IP subnet (VLAN) #2

* Resource fragmentation, significantly lowering
cloud utilization (and cost-efficiency)
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Measurements
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DC Traffic Characteristics

Instrumented a large cluster used for data mining and
identified distinctive traffic patterns

Traffic patterns are highly volatile
— A large number of distinctive patterns even in a day

Traffic patterns are unpredictable

— Correlation between patterns very weak

Traffic-aware optimization needs
to be done frequently and rapidly
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DC Opportunities

DC controller knows everything about hosts

Host OS’s are easily customizable

Probabilistic flow distribution would work well enough, p

— Flows are numerous and not huge — no elephants g

b

— Commodity switch-to-switch links are substantially thicker
10x) than the maximum thickness of a flow

DC network can be made simple
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Intuition

Higher speed links improve flow-level load balancing (ECMP)

20x10Gbps 2x100Gbps Prob of 100% throughput = 3.27%
Uplinks Uplinks
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What You Said

“In 3.2, the paper states that randomizing large flows
won't cause much perpetual congestion if misplaced
since large flows are only 100 MB and thus take 1
second to transmit on a 1 Gbps link. Isn't 1 second
sufficiently high to harm the isolation that VL2 tries to
provide?”



Virtual Layer 2 Switch



VL2 Goals

/ The lllusion of a Huge L2 Switch

1. L2 semantics
3. Performance
\ isolation
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VL2 Design Principles

Randomizing to Cope with Volatility
— Tremendous variability in traffic matrices

Separating Names from Locations
— Any server, any service

Embracing End Systems
— Leverage the programmability & resources of servers
— Avoid changes to switches

Building on Proven Networking Technology
— Build with parts shipping today

— Leverage low cost, powerful merchant silicon ASICs,
though do not rely on any one vendor



Single-Chip “Merchant Silicon” Switches

Switch ASIC
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Specific Objectives and Solutions

Objective

1. Layer-2
semantics

between servers

3. Performance
Isolation

Approach

Employ flat
addressing

Guarantee
bandwidth for
hose-model traffic

Enforce hose model
using existing
mechanisms only

Solution

Name-location
separation &

resolution service

(Valiant LB)
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Discussion
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What You Said

“It is interesting that this paper is from 2009. It seems
that a large number of the suggestions in this paper are
used in practice today.”
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What You Said

“For address resolution, why not have applications use
hostnames and use DNS to resolve hosthnames to IP
addresses (the mapping from hostname to IP could be
updated when a service moved)? Is the directory
system basically just DNS but with IPs instead of

hostnames?”

“it was unclear why the hash of the 5 tuple is
required.”



Addressing and Routing:
Name-Location Separation

Cope with host churns with very little overhead

VL2 switches run link-state routing and
maintain only switch-level topology

Directory
Service

y |payload

Zz |payload
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Servers use flat names 24



Addressing and Routing:
Name-Location Separation

Cope with host churns with very little overhead |

|
VL2 switches run link-state routing and Directory
. . . Carvjce

* Allows to use low-cost switches
* Protects network and hosts from host-state churn

* Obviates host and switch reconfiguration
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Example Topology: Clos Network

Offer huge aggr capacity and multi paths at modest cost
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Example Topology: Clos Network

Offer huge aggr capacity and multi paths at modest cost

/VL2
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Traffic Forwarding: Random Indirection

Cope with arbitrary TMs with very little overhead

Links used
for up paths

Links used  =——
for down paths

Iyvyl Ts | z |payload
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Traffic Forwarding: Random Indirection

NS\
[ ECMP + IP Anycast ]

* Harness huge bisection bandwidth

* Obviate esoteric traffic engineering or optimization
* Ensure robustness to failures

* Work with switch mechanisms available today

29



o

C
t

What you said

... the heterogeneity of racks and the incremental
eployment of new racks may introduce asymmetry to
ne topology. In this case, more delicate topology

C

esign and routing algorithms are needed. ”



Some other DC network designs...

Fat-tree [SIGCOMM’08]
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