
6.888:	
	Lecture	3	

Data	Center	Conges4on	Control		

	
Mohammad	Alizadeh	

	
Spring	2016	

1	

						INTERNET	

	
	
	
	

Servers	

Fabric	
	
	
	
	
	
	
	
	
	
	
	
	
	

100Kbps–100Mbps	links	
	

~100ms	latency	

10–40Gbps	links	
	

~10–100μs	latency	

Transport		
inside	the	DC	

	
	

						INTERNET	

	
	
	
	

Servers	

Fabric	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	
	

web	 app	 data-
base	

map-
reduce	 HPC	 monitoring	cache	

Interconnect	for	distributed	compute	workloads	

Transport		
inside	the	DC	

	
	

What’s	Different	About	DC	Transport?	
Network	characteris4cs	

–  Very	high	link	speeds	(Gb/s);	very	low	latency	(microseconds)		
	
	

Applica4on	characteris4cs	
–  Large-scale	distributed	computa4on	

	
Challenging	traffic	pa^erns	

–  Diverse	mix	of	mice	&	elephants	
–  Incast	

Cheap	switches	
–  Single-chip	shared-memory	devices;	shallow	buffers	

4	

Short	messages	
					(e.g.,	query,	coordina@on)	

	

Large	flows	
					(e.g.,	data	update,	backup)		

	

	

Low	Latency	

High	Throughput	

Data	Center	Workloads	

Mice	&	Elephants	

TCP	@meout	

Worker	1	

Worker	2	

Worker	3	

Worker	4	

Aggregator	

RTOmin	=	300	ms	
	
	

• 	Synchronized	fan-in	conges4on		
	

Incast	

²  Vasudevan	et	al.	(SIGCOMM’09)		

Requests	are	ji^ered	over	10ms	window.	
Ji^ering	switched	off	around	8:30	am.	

	

7	

M
LA

	Q
ue

ry
	C
om

pl
e@

on
	T
im

e	
(m

s)
	

Incast	in	Bing	

Ji^ering	trades	of	median	for	high	percen4les	

DC	Transport	Requirements	

8	

1.  	Low	Latency	
–  Short	messages,	queries		
	

2.  	High	Throughput	
–  Con4nuous	data	updates,	backups	
	

3.  	High	Burst	Tolerance	
–  Incast	
	
	

	 The	challenge	is	to	achieve	these	together	

High	Throughput	 Low	Latency	

Baseline	fabric	latency	(propaga4on	+	switching):	10	microseconds		

High	Throughput	 Low	Latency	

	
	
	
	
	
	
	
	
	
	
	
	
	

High	throughput	requires	buffering	for	rate	mismatches	
…	but	this	adds	significant	queuing	latency	

Baseline	fabric	latency	(propaga4on	+	switching):	10	microseconds		

Data	Center	TCP	

TCP	in	the	Data	Center	

TCP	[Jacobsen	et	al.’88]	is	widely	used	in	the	data	center	
– More	than	99%	of	the	traffic		

	
Operators	work	around	TCP	problems	

‒  Ad-hoc,	inefficient,	oren	expensive	solu4ons	
‒  TCP	is	deeply	ingrained	in	applica4ons	

Prac4cal	deployment	is	hard		
à	keep	it	simple!	

Review:	The	TCP	Algorithm	

Sender	1	

Sender	2	

Receiver	

ECN	=	Explicit	Conges@on	No@fica@on	

Time	

W
in
do

w
	S
iz
e	
(R
at
e)
	

Addi@ve	Increase: 		
					W	à	W+1	per	round-trip	4me	
Mul@plica@ve	Decrease: 		
					W	à	W/2	per	drop	or	ECN	mark	

ECN	Mark	(1	bit)	

TCP	Buffer	Requirement	

Bandwidth-delay	product	rule	of	thumb:	
–  A	single	flow	needs	C×RTT	buffers	for	100%	Throughput.	

Th
ro
ug
hp

ut
	

Bu
ffe

r	S
iz
e	

100%	

B	

B	≥	C×RTT	

B	

100%	

B	<	C×RTT	

Window	Size	
(Rate)	

Buffer	Size	

Throughput	
100%	

	

Appenzeller	et	al.	(SIGCOMM	‘04):	
–  Large	#	of	flows:																														is	enough.	

15	

Reducing	Buffer	Requirements	

	

Appenzeller	et	al.	(SIGCOMM	‘04):	
–  Large	#	of	flows:																														is	enough	
	

Can’t	rely	on	stat-mux	benefit	in	the	DC.	
–  Measurements	show	typically	only	1-2	large	flows	at	each	server	
	

	

16	

Key	Observa4on:	
Low	variance	in	sending	rate	à	Small	buffers	suffice	

Reducing	Buffer	Requirements	

	

Ø Extract	mul4-bit	feedback	from	single-bit	stream	of	ECN	marks	
–  Reduce	window	size	based	on	frac@on	of	marked	packets.	
	

	
	
	
	
	

ECN	Marks	 TCP		 DCTCP	

1	0	1	1	1	1	0	1	1	1	 Cut	window	by	50%	 Cut	window	by	40%	

0	0	0	0	0	0	0	0	0	1	 Cut	window	by	50%	 Cut	window	by		5%	

DCTCP:	Main	Idea	
W
in
do

w
	S
ize

	(B
yt
es
)		

W
in
do

w
	S
ize

	(B
yt
es
)		

Time	(sec)	 Time	(sec)	

TCP	 DCTCP	

DCTCP:	Algorithm	

Switch	side:	
–  	Mark	packets	when	Queue	Length	>	K.	

Sender	side:	
– Maintain	running	average	of	frac%on	of	packets	marked	(α).	
	
																																																											
	

																																																																																										

Ø  Adap@ve	window	decreases:	

–  Note:	decrease	factor	between	1	and	2.	
	
	

	

B	 K	Mark	 Don’t		
Mark	

€

each RTT : F =
of marked ACKs
Total # of ACKs

 ⇒ α← (1− g)α + gF

€

W ← (1− α
2
)W

 0

 100

 200

 300

 400

 500

 600

 700

 0

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (seconds)

DCTCP, 2 flows
TCP, 2 flows

 0

 100

 200

 300

 400

 500

 600

 700

 0

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (seconds)

DCTCP, 2 flows
TCP, 2 flows

 0

 100

 200

 300

 400

 500

 600

 700

 0

Q
ue

ue
 L

en
gt

h
(P

ac
ke

ts
)

Time (seconds)

DCTCP
TCP

(K
By
te
s)
	

Experiment:	2	flows	(Win	7	stack),	Broadcom	1Gbps	Switch	

ECN	Marking	Thresh	=	30KB	

DCTCP	vs	TCP	

Buffer	is	mostly	empty	

DCTCP	mi4gates	Incast	by	crea4ng	a		
large	buffer	headroom		

1.  	Low	Latency	
ü  Small	buffer	occupancies	→	low	queuing	delay	

	

2.	High	Throughput		
ü  ECN	averaging	→	smooth	rate	adjustments,	low	variance	
	

3.	High	Burst	Tolerance	
ü  Large	buffer	headroom	→	bursts	fit	
ü  Aggressive	marking	→	sources	react	before	packets	are	

dropped	
	

21	

Why	it	Works	

DCTCP	Deployments	

21	

Discussion	

22	

What	You	Said?	

Aus@n:	“The	paper's	performance	comparison	to	RED	
seems	arbitrary,	perhaps	RED	had	trac:on	at	the	:me?	
Or	just	convenient	as	the	switches	were	capable	of	
implemen:ng	it?”	

23	

Implemented	in	Windows	stack.		
Real	hardware,	1Gbps	and	10Gbps	experiments	

–  90	server	testbed	
–  Broadcom	Triumph						48				1G	ports		–			4MB	shared	memory	
–  Cisco	Cat4948																48				1G	ports		–	16MB	shared	memory	
–  Broadcom	Scorpion					24		10G	ports		–			4MB	shared	memory	

	

Numerous	micro-benchmarks	
–	Throughput	and	Queue	Length	
–	Mul@-hop	
–	Queue	Buildup	
–	Buffer	Pressure																																			

Bing	cluster	benchmark	

–	Fairness	and	Convergence	
–	Incast	
–	Sta@c	vs	Dynamic	Buffer	Mgmt	

Evalua4on	

25	

Background	Flows	 Query	Flows	

Bing	Benchmark	(baseline)	

Bing	Benchmark	(scaled	10x)	

Query	Traffic	
(Incast	bursts)		

Short	messages	
(Delay-sensi4ve)	

Co
m
pl
e4

on
	T
im

e	
(m

s)
	

Incast	

Deep	buffers	fix	
incast,	but	increase	

latency	

DCTCP	good	for	both	
incast	&	latency	

What	You	Said	

Amy:	“I	find	it	unsa:sfying	that	the	details	of	many	
conges:on	control	protocols	(such	at	these)	are	so	
complicated!	...	can	we	create	a	parameter-less	
conges:on	control	protocol	that	is	similar	in	behavior	
to	DCTCP	or	TIMELY?”	
	
Hongzi:	“Is	there	a	general	guideline	to	tune	the	
parameters,	like	alpha,	beta,	delta,	N,	T_low,	T_high,	in	
the	system?”	

27	

Packets	sent	in	this		
RTT	are	marked.	

How	much	buffering	does	DCTCP	need	for	
100%	throughput?		
	

22	

Ø 	Need	to	quan4fy	queue	size	oscilla4ons	(Stability).		

Time	

(W*+1)(1-α/2)	

W*	

Window	Size	

W*+1	

A	bit	of	Analysis	
B	 K	

α =
of pkts in last RTT of Period

of pkts in Period

How	small	can	queues	be	without	loss	of	
throughput?		
	

22	

Ø 	Need	to	quan4fy	queue	size	oscilla4ons	(Stability).		

A	bit	of	Analysis	
B	 K	

K	>	(1/7)	C	x	RTT	 for	TCP:	
K	>	C	x	RTT	

What	assump4ons	does	the	
model	make?	

What	You	Said	

Anurag:	“In	both	the	papers,	one	of	the	difference	I	saw	
from	TCP	was	that	these	protocols	don’t	have	the	“slow	
start”	phase,	where	the	rate	grows	exponen:ally	
star:ng	from	1	packet/RTT.”	

30	

	
	

DCTCP	takes	at	most	~40%	more	RTTs	than	TCP	
–  “Analysis	of	DCTCP:	Stability,	Convergence,	and	Fairness,”	SIGMETRICS	2011		
	
	
	
	

			Intui@on:	DCTCP	makes	smaller	adjustments	than	TCP,	but	makes					
																					them	much	more	frequently	

31	

Convergence	Time	

TCP	 DCTCP	

TIMELY	

² Slides	by	Radhika	Mi^al	(Berkeley)		

 Qualities of RTT

•  Fine-grained and informative

•  Quick response time

•  No switch support needed

•  End-to-end metric

•  Works seamlessly with QoS

 RTT correlates with queuing delay

What	You	Said	
Ravi:	“The	first	thing	that	struck	me	while	reading	these	
papers	was	how	different	their	approaches	were.	DCTCP	
even	states	that	delay-based	protocols	are	"suscep:ble	to	
noise	in	the	very	low	latency	environment	of	data	centers"	
and	that	"the	accurate	measurement	of	such	small	
increases	in	queuing	delay	is	a	daun:ng	task".	Then,	I	
no:ced	that	there	is	a	5	year	gap	between	these	two	
papers…	“	
	
Arman:	“They	had	to	resort	to	extraordinary	measures	to	
ensure	that	the	4mestamps	accurately	reflect	the	4me	at	
which	a	packet	was	put	on	wire…”	

35	

Accurate RTT Measurement

Hardware Timestamps
–  mitigate noise in measurements

Hardware Acknowledgements
–  avoid processing overhead

 Hardware Assisted RTT Measurement

 Hardware vs Software Timestamps

Kernel Timestamps introduce significant noise in RTT
measurements compared to HW Timestamps.

 Impact of RTT Noise

Throughput degrades with increasing noise in RTT.
Precise RTT measurement is crucial.

TIMELY Framework

 Overview

RTT
Measurement

Engine

Timestamps

RTT Rate
Computation

Engine
Pacing Engine

Rate

Data

Paced
Data

Serialization Delay

RECEIVER

SENDER

Propagation &
Queuing Delay

RTT = tcompletion – tsend – Serialization Delay

HW ack

RTT
tcompletion

tsend

 RTT Measurement Engine

 Algorithm Overview

Gradient-based
Increase / Decrease

 Algorithm Overview

Gradient-based
Increase / Decrease

Time

RT
T

gradient = 0

 Algorithm Overview

Gradient-based
Increase / Decrease

Time

RT
T

gradient > 0

 Algorithm Overview

Gradient-based
Increase / Decrease

Time

RT
T

gradient < 0

 Algorithm Overview

Gradient-based
Increase / Decrease

Time

RT
T

 Algorithm Overview

To navigate the
throughput-latency

tradeoff and
ensure stability.

Gradient-based
Increase / Decrease

Why	Does	Gradient	Help	Stability?		

49	

Source		

e(t) = RTT (t)− RTT0

e(t)+ ke '(t)

Source		

Feedback	higher	order	deriva4ves	
Observe	not	only	error,	but	change	in	error	–	“an4cipate”	future	state	

What	You	Said	

Arman:	“I	also	think	that	deducing	the	queue	length	
from	the	gradient	model	could	lead	to	miscalcula:ons.	
For	example,	consider	an	Incast	scenario,	where	many	
senders	transmit	simultaneously	through	the	same	
path.	No:ng	that	every	packet	will	see	a	long,	yet	
steady,	RTT,	they	will	compute	a	near-zero	gradient	and	
hence	the	conges:on	will	con:nue.”	

50	

 Algorithm Overview

Additive
Increase

Multiplicative
Decrease

ThighTlow

To keep tail
latency within

acceptable limits.
Better Burst
Tolerance

To navigate the
throughput-latency

tradeoff and
ensure stability.

Gradient-based
Increase / Decrease

Discussion	

52	

 TIMELY is implemented in the context of RDMA.
–  RDMA write and read primitives used to invoke NIC services.

 Priority Flow Control is enabled in the network fabric.
–  RDMA transport in the NIC is sensitive to packet drops.
–  PFC sends out pause frames to ensure lossless network.

 Implementation Set-up

“Conges4on	Spreading”	in	Lossless	
Networks	

54	

PAU
SE	

PA
US

E	

PA
U
SE
	

PA
US

E	

TIMELY	vs	PFC		

55	

TIMELY	vs	PFC	

56	

What	You	Said	

Amy:	“I	was	surprised	to	see	that	TIMELY	performed	so	
much	be\er	than	DCTCP.	Did	the	lack	of	an	OS-bypass	
for	DCTCP	impact	performance?	I	wish	that	the	authors	
had	offered	an	explana:on	for	this	result.”	

57	

Next	4me:	Load	Balancing	

58	

59	

