
6.888:	
	Lecture	4	

Data	Center	Load	Balancing		

	
Mohammad	Alizadeh	

	
Spring	2016	

1	

Leaf	

1000s	of	server	ports	

Multi-rooted tree [Fat-tree, Leaf-Spine, …]
Ø  Full bisection bandwidth, achieved via multipathing

Spine	

Access	

Single-rooted tree
Ø  High oversubscription

1000s	of	server	ports	

Agg	

Core	

MoDvaDon	

2	

DC networks need large bisection bandwidth for
distributed apps (big data, HPC, web services, etc)

Leaf	

1000s	of	server	ports	

Multi-rooted tree [Fat-tree, Leaf-Spine, …]
Ø  Full bisection bandwidth, achieved via multipathing

Spine	

MoDvaDon	

3	

DC networks need large bisection bandwidth for
distributed apps (big data, HPC, web services, etc)

MulD-rooted	!=	Ideal	DC	Network	

4	

1000s	of	server	ports	

Ideal DC network:
Big output-queued switch

Ø  No internal bottlenecks è predictable
Ø  Simplifies BW management

[Bw guarantees, QoS, …]

Multi-rooted tree

1000s	of	server	ports	

Can’t build it L ≈	
Possible

bottlenecks Need efficient load balancing

Today:	ECMP	Load	Balancing	

Pick	among	equal-cost	paths	by	a	hash	of	5-tuple	
Ø Randomized	load	balancing	
Ø Preserves	packet	order		

5	

Problems:
-  Hash collisions
 (coarse granularity)

-  Local & stateless
 (bad with asymmetry;
 e.g., due to link failures)

H(f)	%	3	=	0	

SoluDon	Landscape	

6	

Cong. Oblivious
[ECMP, WCMP,
packet-spray, …]

Cong. Aware
 [Flare, TeXCP, CONGA,
 DeTail, HULA, …]

Centralized Distributed
[Hedera, Planck, Fastpass, …]

 In-Network Host-Based

Cong. Oblivious
[Presto]

Cong. Aware
 [MPTCP, FlowBender…]

MPTCP	

7	

² Slides	by	Damon	Wischik	(with	minor	modificaDons)	

	What	problem	is	MPTCP	trying	to	solve?	
	MulDpath	‘pools’	links.	
	

Two separate links A pool of links

=

TCP	controls	how	a	link	is	shared.	
How	should	a	pool	be	shared?		

ApplicaDon:	MulDhomed	web	server	
9	

100Mb/s	

100Mb/s	

2	TCPs		
@	50Mb/s	

4	TCPs	
@	25Mb/s	

ApplicaDon:	MulDhomed	web	server	
10	

100Mb/s	

100Mb/s	

2	TCPs		
@	33Mb/s	

1	MPTCP		
@	33Mb/s	

4	TCPs	
@	25Mb/s	

11	

100Mb/s	

100Mb/s	

2	TCPs		
@	25Mb/s	

2	MPTCPs		
@	25Mb/s	

4	TCPs	
@	25Mb/s	

The	total	capacity,	200Mb/s,	is	shared	out	
evenly	between	all	8	flows.	
	

ApplicaDon:	MulDhomed	web	server	

12	

100Mb/s	

100Mb/s	

2	TCPs		
@	22Mb/s	

3	MPTCPs		
@	22Mb/s	

4	TCPs	
@	22Mb/s	

The	total	capacity,	200Mb/s,	is	shared	out	
evenly	between	all	9	flows.	
	

It’s	as	if	they	were	all	sharing	a	single	
200Mb/s	link.	The	two	links	can	be	said	to	
form	a	200Mb/s	pool.	

ApplicaDon:	MulDhomed	web	server	

13	

100Mb/s	

100Mb/s	

2	TCPs		
@	20Mb/s	

4	MPTCPs		
@	20Mb/s	

4	TCPs	
@	20Mb/s	

The	total	capacity,	200Mb/s,	is	shared	out	
evenly	between	all	10	flows.	
	

It’s	as	if	they	were	all	sharing	a	single	
200Mb/s	link.	The	two	links	can	be	said	to	
form	a	200Mb/s	pool.	

ApplicaDon:	MulDhomed	web	server	

ApplicaDon:	WIFI	&	cellular	together	
	
	

How	should	your	phone	balance	its	traffic	
across	very	different	paths?	

14	

wifi	path:		
high	loss,	small	RTT	

3G	path:		
low	loss,	high	RTT	

ApplicaDon:	Datacenters	

Can	we	make	the	network	behave	like	a	large	pool	of	
capacity?		

15	

MPTCP	is	a	general-purpose	mulDpath	
replacement	for	TCP.	

	

16	

What	is	the	MPTCP	protocol?	
MPTCP	is	a	replacement	for	TCP	which	lets	you	use	
mulDple	paths	simultaneously.	

17	

TCP	

IP	

user	space	
socket	API	
MPTCP	 MPTCP	

addr1	 addr2	addr	

The	sender	
stripes	
packets	
across	paths	

The	receiver	
puts	the	
packets	in	
the	correct	
order	

What	is	the	MPTCP	protocol?	
MPTCP	is	a	replacement	for	TCP	which	lets	you	use	
mulDple	paths	simultaneously.	

18	

TCP	

IP	

user	space	
socket	API	
MPTCP	 MPTCP	

addr	addr	

The	sender	
stripes	
packets	
across	paths	

The	receiver	
puts	the	
packets	in	
the	correct	
order	

port	p1	

port	p2	
a	switch	with	
port-based	
rouDng	

Design	goal	1:	
MulDpath	TCP	should	be	fair	to	regular	TCP	at	
shared	bojlenecks	

To	be	fair,	Mul.path	TCP	should	take	as	much	capacity	as	
TCP	at	a	bo:leneck	link,	no	ma:er	how	many	paths	it	is	
using.	

Strawman	soluDon:	
Run	“½	TCP”	on	each	path	

A	mulDpath	
TCP	flow	with	
two	subflows	

Regular	TCP	

19	

Design	goal	2:	
MPTCP	should	use	efficient	paths	

Each	flow	has	a	choice	of	a	1-hop	and	a	2-hop	path.		
How	should	split	its	traffic?	

12Mb/s	

12Mb/s	

12Mb/s	

20	

Design	goal	2:	
MPTCP	should	use	efficient	paths	

If	each	flow	split	its	traffic	1:1	...	

8Mb/s	

8Mb/s	

8Mb/s	

12Mb/s	

12Mb/s	

12Mb/s	

21	

Design	goal	2:	
MPTCP	should	use	efficient	paths	

If	each	flow	split	its	traffic	2:1	...	

9Mb/s	

9Mb/s	

9Mb/s	

12Mb/s	

12Mb/s	

12Mb/s	

22	

Design	goal	2:	
MPTCP	should	use	efficient	paths	

If	each	flow	split	its	traffic	4:1	...	

10Mb/s	

10Mb/s	

10Mb/s	

12Mb/s	

12Mb/s	

12Mb/s	

23	

Design	goal	2:	
MPTCP	should	use	efficient	paths	

	
If	each	flow	split	its	traffic	∞:1	...	

12Mb/s	

12Mb/s	

12Mb/s	

12Mb/s	

12Mb/s	

12Mb/s	

24	

Design	goal	2:	
MPTCP	should	use	efficient	paths	

		

12Mb/s	

12Mb/s	

12Mb/s	

12Mb/s	

12Mb/s	

12Mb/s	

TheoreDcal	soluDon	(Kelly+Voice	2005;	Han,	Towsley	et	al.	2006)		
MPTCP	should	send	all	its	traffic	on	its	least-congested	paths.		
Theorem.	This	will	lead	to	the	most	efficient	allocaDon	possible,	given	a	
network	topology	and	a	set	of	available	paths.	

25	

Design	goal	3:	
MPTCP	should	be	fair	compared	to	TCP	

Design	Goal	2	says	to	send	all	your	traffic	on	the	least	
congested	path,	in	this	case	3G.	But	this	has	high	RTT,	hence	
it	will	give	low	throughput.	

c	
d	

wifi	path:		
high	loss,	small	RTT	

3G	path:		
low	loss,	high	RTT	

Goal	3a.	A	MulDpath	TCP	user	should	get	at	least	as	much	throughput	as	
a	single-path	TCP	would	on	the	best	of	the	available	paths.	

Goal	3b.	A	MulDpath	TCP	flow	should	take	no	more	capacity	on	any	link	
than	a	single-path	TCP	would.		

26	

Design	goals	

Goal	1.	Be	fair	to	TCP	at	bojleneck	links	
Goal	2.	Use	efficient	paths	...	
Goal	3.	as	much	as	we	can,	while	being	fair	to	TCP	
Goal	4.	Adapt	quickly	when	congesDon	changes	
Goal	5.	Don’t	oscillate	

How	does	MPTCP	achieve	all	this?	

27	

Read:	“Design,	implementaDon,	and	evaluaDon	of	congesDon	
control	for	mulDpath	TCP,	NSDI	2011”	

How	does	TCP	congesDon	control	work?	
Maintain	a	congesDon	window	w.	

	
	

•  Increase	w	for	each	ACK,	by	1/w	

•  Decrease	w	for	each	drop,	by	w/2	
	

28	

How	does	MPTCP	congesDon	control	
work?	

Maintain	a	congesDon	window	wr,	one	
window	for	each	path,	where	r ∊ R	
ranges	over	the	set	of	available	paths.	

•  Increase	wr	for	each	ACK	on	path	r,	by	

		

•  Decrease	wr	for	each	drop	on	path	r,	
by	wr /2	

	

29	

Discussion	

30	

What	You	Said	

Ravi:	“An	interes.ng	point	in	the	MPTCP	paper	is	that	
they	target	a	'sweet	spot'	where	there	is	a	fair	amount	
of	traffic	but	the	core	is	neither	overloaded	nor	
underloaded.”	

31	

What	You	Said	

Hongzi:	“The	paper	talked	a	bit	of	`probing’	to	see	if	a	
link	has	high	load	and	pick	some	other	links,	and	there	
are	some	specific	ways	of	assigning	randomized	
assignment	of	subflows	on	links.	I	was	wondering	does	
the	`power	of	2	choices’	have	some	roles	to	play	here?”	
	
	

32	

MPTCP	discovers	available	capacity,	and	it	
doesn’t	need	much	path	choice.	

If	each	node-pair	balances	its	traffic	over	8	paths,	chosen	at	random,	
then	uDlizaDon	is	around	90%	of	opDmal.	

33	

FatTree,	128	nodes	 FatTree,	8192	nodes	
Throughput	
(%	of	op.mal)	

Num.	paths	
SimulaDons	of	FatTree,	100Mb/s	links,	permutaDon	traffic	matrix,		
one	flow	per	host,	TCP+ECMP	versus	MPTCP.	

MPTCP	discovers	available	capacity,	and	it	
shares	it	out	more	fairly	than	TCP+ECMP.	

		

34	

FatTree,	128	nodes	 FatTree,	8192	nodes	
Throughput	
(%	of	op.mal)	

Flow	rank	
SimulaDons	of	FatTree,	100Mb/s	links,	permutaDon	traffic	matrix,		
one	flow	per	host,	TCP+ECMP	versus	MPTCP.	

MPTCP	can	make	good	path	choices,	as	good	as	
a	very	fast	centralized	scheduler.	

		

35	

SimulaDon	of	
FatTree	with	128	
hosts.		
•  PermutaDon	traffic	
matrix	

•  Closed-loop	flow	
arrivals	(one	flow	
finishes,	another	
starts)	

•  Flow	size	
distribuDons	from	
VL2	dataset	

Throughput	[%	of	op.mal]	

Hedera	first-fit	heuris.c	

MPTCP	

MPTCP	permits	flexible	topologies	

Because	an	MPTCP	flow	shius	its	traffic	onto	its	least	congested	paths,	
congesDon	hotspots	are	made	to	“diffuse”	throughout	the	network.	
Non-adapDve	congesDon	control,	on	the	other	hand,	does	not	cope	well	
with	non-homogenous	topologies.	

36	

Average	throughput	
[%	of	op.mal]	

Rank	of	flow	

SimulaDon	of	128-node	
FatTree,	when	one	of	the	1Gb/s	
core	links	is	cut	to	100Mb/s	

MPTCP	permits	flexible	topologies	

•  At	low	loads,	there	are	few	collisions,	and	NICs	are	saturated,	so	TCP	≈	MPTCP	
•  At	high	loads,	the	core	is	severely	congested,	and	TCP	can	fully	exploit	all	the	core	
links,	so	TCP	≈	MPTCP	
• When	the	core	is	“right-provisioned”,	i.e.	just	saturated,	MPTCP	>	TCP	

37	

Connec.ons	per	host	

Ra.o	of	throughputs,	
MPTCP/TCP	

SimulaDon	of	a	FatTree-like	
topology	with	512	nodes,	but	
with	4	hosts	for	every	up-link	
from	a	top-of-rack	switch,	i.e.	
the	core	is	oversubscribed	4:1.	
	
•  PermutaDon	TM:	each	host	
sends	to	one	other,	each	
host	receives	from	one	other	

•  Random	TM:	each	host	sends	
to	one	other,	each	host	may	
receive	from	any	number	

MPTCP	permits	flexible	topologies	

If	only	50%	of	hosts	are	acDve,	you’d	like	each	
host	to	be	able	to	send	at	2Gb/s,	faster	than	
one	NIC	can	support.	

38	

FatTree	
(5	ports	per	host	in	total,	
1Gb/s	bisecDon	bandwidth)	

Dual-homed	FatTree	
(5	ports	per	host	in	total,	
1Gb/s	bisecDon	bandwidth)	

1Gb/s	 1Gb/s	

Presto	

39	

² Adapted	from	slides	by	Keqiang	He	(Wisconsin)	

SoluDon	Landscape	

40	

Cong. Oblivious
[ECMP, WCMP,
packet-spray, …]

Cong. Aware
 [Flare, TeXCP, CONGA,
 HULA, DeTail…]

Centralized Distributed
[Hedera, Planck, Fastpass, …]

 In-Network Host-Based

Cong. Oblivious
[Presto]

Cong. Aware
 [MPTCP, FlowBender…]

Is	congesDon-aware	load	balancing	overkill	for	
datacenters?	

We’ve	already	seen	a	congesDon-
oblivious	load	balancing	scheme		

41	

ECMP	 Presto	is	fine-grained	
congesDon-oblivious		
load	balancing	

Key	challenge	is	making	
this	pracDcal	

Key	Design	Decisions	

Use	souware	edge	
•  No	changes	to	transport	(e.g.,	inside	VMs)	or	switches	

LB	granularity	flowcells	[e.g.	64KB	of	data]	
•  Works	with	TSO	hardware	offload	
•  No	reordering	for	mice	
•  Makes	dealing	with	reordering	simpler	(Why?)	
	

“Fix”	reordering	at	GRO	layer	
•  Avoid	high	per-packet	processing	(esp.	at	10Gb/s	and	

above)	
End-to-end	path	control	

	
	

	

42	

Presto	at	a	High	Level	

43	

vSwitch
NIC	 NIC	

vSwitch
TCP/IP	

Spine	

Leaf	

TCP/IP	

Near	uniform-sized	data	units	

Presto	at	a	High	Level	

44	

vSwitch
NIC	 NIC	

vSwitch
TCP/IP	

Spine	

Leaf	

TCP/IP	

Proac.vely	distributed	evenly	over	
symmetric	network	by	vSwitch	sender	

Near	uniform-sized	data	units	

Presto	at	a	High	Level	

45	

vSwitch
NIC	 NIC	

vSwitch
TCP/IP	

Spine	

Leaf	

TCP/IP	

Proac.vely	distributed	evenly	over	
symmetric	network	by	vSwitch	sender	

Near	uniform-sized	data	units	

Presto	at	a	High	Level	

46	

vSwitch
NIC	 NIC	

vSwitch
TCP/IP	

Spine	

Leaf	

TCP/IP	Receiver	masks	packet	reordering	due	
to	mul.pathing		below	transport	layer	

Proac.vely	distributed	evenly	over	
symmetric	network	by	vSwitch	sender	

Near	uniform-sized	data	units	

Discussion	

47	

What	You	Said	
Arman:	“From	an	(informa.on)	theore.c	perspec.ve,	order	
should	not	be	such	a	troubling	phenomenon,	yet	in	real	
networks	ordering	is	so	important.	How	prac.cal	are	
“rateless	codes”	(network	coding,	raptor	codes,	etc.)	in	
allevia.ng	this	problem?”	
	

Amy:	“The	main	complexi.es	in	the	paper	stem	from	the	
requirement	that	servers	use	TSO	and	GRO	to	achieve	high	
throughput.	It	is	surprising	to	me	that	people	s.ll	rely	so	
heavily	on	TSO	and	GRO.	Why	doesn't	someone	build	a	
mul.-core	TCP	stack	that	can	process	individual	packets	at	
line	rate	in	sokware?”	

48	

Presto	LB	Granularity	

Presto:	load-balance	on	flowcells	
What	is	flowcell?	
–  A	set	of	TCP	segments	with	bounded	byte	count	
–  Bound	is	maximal	TCP	SegmentaDon	Offload	(TSO)	size	

•  Maximize	the	benefit	of	TSO	for	high	speed	
•  64KB	in	implementaDon	

What’s	TSO?	

49	

TCP/IP	

NIC	
Segmenta.on	&	Checksum	Offload	

MTU-sized	Ethernet	Frames	

Large	Segment	

Presto	LB	Granularity	

Presto:	load-balance	on	flowcells	
What	is	flowcell?	
–  A	set	of	TCP	segments	with	bounded	byte	count	
–  Bound	is	maximal	TCP	SegmentaDon	Offload	(TSO)	size	

•  Maximize	the	benefit	of	TSO	for	high	speed	
•  64KB	in	implementaDon	

Examples	

50	

25KB	 30KB	 30KB	

Flowcell:	55KB	

TCP	segments	

Start	

Intro	to	GRO	

Generic	Receive	Offload	(GRO)	
–  The	reverse	process	of	TSO	

51	

Intro	to	GRO	

TCP/IP	

GRO	

NIC	

52	

OS	

Hardware	

Intro	to	GRO	

TCP/IP	

GRO	

NIC	MTU-sized		
Packets	

53	

P2	 P3	 P4	 P5	P1	

Queue	head	

Intro	to	GRO	

TCP/IP	

GRO	

NIC	MTU-sized		
Packets	

54	

P2	 P3	 P4	 P5	P1	

Merge	

Queue	head	

Intro	to	GRO	

TCP/IP	

GRO	

NIC	MTU-sized		
Packets	

55	

P2	 P3	 P4	 P5	

P1	 Merge	

Queue	head	

Intro	to	GRO	

TCP/IP	

GRO	

NIC	MTU-sized		
Packets	

56	

P3	 P4	 P5	

P1	–	P2	 Merge	

Queue	head	

Intro	to	GRO	

TCP/IP	

GRO	

NIC	MTU-sized		
Packets	

57	

P4	 P5	

P1	–	P3	 Merge	

Queue	head	

Intro	to	GRO	

TCP/IP	

GRO	

NIC	MTU-sized		
Packets	

58	

P5	

P1	–	P4	 Merge	

Queue	head	

Intro	to	GRO	

TCP/IP	

GRO	

NIC	MTU-sized		
Packets	

59	

P1	–	P5	 Push-up	

Large	TCP	segments	are	pushed-up	at	the	end	of	a	batched	IO	event	
(i.e.,	a	polling	event)	

Intro	to	GRO	

TCP/IP	

GRO	

NIC	MTU-sized		
Packets	

60	

P1	–	P5	 Push-up	

Merging	pkts	in	GRO	creates	less	segments	&	avoids	using	
substan.ally	more	cycles	at	TCP/IP	and	above	[Menon,	ATC’08]	
If	GRO	is	disabled,	~6Gbps	with	100%	CPU	usage	of	one	core	

Reordering	Challenges	

61	

P1	 P2	 P3	 P6	 P4	 P7	 P5	 P8	 P9	

TCP/IP	

GRO	

NIC	

Out	of	order	packets	

Reordering	Challenges	

62	

P1	

P2	 P3	 P6	 P4	 P7	 P5	 P8	 P9	

TCP/IP	

GRO	

NIC	

Reordering	Challenges	

63	

P1	–	P2	

P3	 P6	 P4	 P7	 P5	 P8	 P9	

TCP/IP	

GRO	

NIC	

Reordering	Challenges	

64	

P1	–	P3	

P6	 P4	 P7	 P5	 P8	 P9	

TCP/IP	

GRO	

NIC	

Reordering	Challenges	

65	

P1	–	P3	 P6	

P4	 P7	 P5	 P8	 P9	

TCP/IP	

GRO	

NIC	

GRO	is	designed	to	be	fast	and	simple;	it	pushes-up	the	
exisDng	segment	immediately	when	1)	there	is	a	gap	in	
sequence	number,	2)	MSS	reached	or	3)	Dmeout	fired	

Reordering	Challenges	

66	

P1	–	P3	

P6	

P4	 P7	 P5	 P8	 P9	

TCP/IP	

GRO	

NIC	

Reordering	Challenges	

67	

P1	–	P3	 P6	

P4	

P7	 P5	 P8	 P9	

TCP/IP	

GRO	

NIC	

Reordering	Challenges	

68	

P1	–	P3	 P6	 P4	

P7	

P5	 P8	 P9	

TCP/IP	

GRO	

NIC	

Reordering	Challenges	

69	

P1	–	P3	 P6	 P4	 P7	

P5	

P8	 P9	

TCP/IP	

GRO	

NIC	

Reordering	Challenges	

70	

P1	–	P3	 P6	 P4	 P7	 P5	

P8	

P9	

TCP/IP	

GRO	

NIC	

Reordering	Challenges	

71	

P1	–	P3	 P6	 P4	 P7	 P5	

P8	–	P9	

TCP/IP	

GRO	

NIC	

Reordering	Challenges	

72	

P1	–	P3	 P6	 P4	 P7	 P5	 P8	–	P9	 TCP/IP	

GRO	

NIC	

Reordering	Challenges	

	GRO	is	effec1vely	disabled	
	Lots	of	small	packets	are	pushed	up	to	TCP/IP	

73	

Huge	CPU	processing	overhead	

Poor	TCP	performance	due	to	massive	reordering		

Handling	Asymmetry	

74	

40G	

40G	

40G	

40G	

40G	

40G	

Handling	asymmetry	opDmally	needs	traffic	awareness	

40G	

40G	

40G	

40G	

40G	

75	

30G	
30G	
(UDP)	

40G	
(TCP)	

Handling	Asymmetry	

Handling	asymmetry	opDmally	needs	traffic	awareness	

35G	

5G	

76	

