Iy
6.888

Lecture 8:
Networking for Data Analytics

Mohammad Alizadeh

<> Many thanks to Mosharaf Chowdhury (Michigan) and Kay Ousterhout (Berkeley)

Spring 2016

“Big Data”

Huge amounts of data being collected daily

Harvard ;-
Busmess S

Wide variety of sources | =k Q
— Web, mobile, wearables, 10T, scientific ‘ = ,, ,G

,v,{
'w\

— Machines: monitoring, logs, etc

SCIENCEIN

PETABYTE
Many applications
_ Banalytics | . e
Business intelligence, scientific Qo

research, health care i

INSIDE:

Big Data Systems

[BlinkDB |
[Storm][Spark-Streaming]
[Pregel | GraphLab | [GraphX |

[DryadLINQ | Spark | Dremel |

[MapReduce

Hadoop

[Dryad] [Hive]

2005

2010 2015

Data Parallel Applications

Multi-stage dataflow
 Computation interleaved with communication

Computation Stage (e.g., Map, Reduce)
e Distributed across many machines
e Tasks run in parallel Reduce Stage

A communication stage cannot complete
Communication Stage (e.g., Shuffle) until all the data have been transferred

* Between successive computation stages é é é é § Map Stage

Questions

How to designh the network for data parallel applications?
» What are good communication abstractions?

Does the network matter for data parallel applications?
» What are the bottlenecks for these applications?

Efficient Coflow Scheduling with Varys

<> Slides by Mosharaf Chowdhury (Michigan), with minor modifications

Existing Solutions

Flow: Transfer of data from a source to a destination

I

[
(WFQ| | CSFQ| : | D3 || DeTail|PDQ || pFabric |
GPS | [RED|ECN| [XxcP (RcP|[DCTCP D2TCP | FCP

[

1 980s 1990s 2000s 2005 2010 2015

Per-Flow Fairness

[
[
[
: Flow Completion Time
[

Independent flows cannot capture the collective communication
behavior common in data-parallel applications

Communication abstraction for
data-parallel applications to

express their

|. Minimize completion times,
2. Meet deadlines

Broagcast
C/Q}) Single Flow

Aggregation
All-to-All

% Parallel Flows

Shuffle

Datacenter

... for faster
complztion
of coflows?

... o meet
more
deadlines?

Benefits of Inter~Coflow Scheduling

Coflow | Coflow 2
(T T
Link 2 | |
—— Ui —— 2 s SN
E—— Unis GO U
Fair Sharing Smallest-Flow First!'-2 The Optimal
L2 L2 L2 —
L] — L/ T L/ (T
— | | | | | > - | | | | | > | I | | | >
time ¢ > time ¢ ° time * ¢
Coflow | comp. time =5 Coflow | comp. time = 5 Coflow | comp. time = 3
CoflowZ2 comp. time = 6 Coflow?2 comp. time = 6 Coflow?2 comp. time = 6

I. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’201 2.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’201 3.

Benefits of Inter-Coflow SdReduting

Coflow | Coflow 2

{ \
Link 2 | I

—— s
/

N\

Concurrent Open Shop Scheduling'

* Examples include job scheduling and
caching blocks
* Solutions use a ordering heuristic

|. Finishing Flows Quickly with Preemptive Scheduling, SSIGCOMM’201 2.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’201 3.

Inter-Coflow Scheduling

Coflow |

e o . . S S T S T S o oy,

Link 2 |

N o o oo o o o e e e e o -

Concurrent Open Shop Scheduling
with Coupled Resources

Examples include job scheduling and

caching blocks
Solutions use a ordering heuristic
Consider matching constraints

—— U —— 2 uns A
_—

Coflow 2

Datacenter

Employs a two-step
algorithm to minimize
coflow completion times

: .. Keep an ordered list of coflows to be scheduled,
|. Ordering heuristic preempting if needed

2 All ti | ith Allocates minimum required resources to each coflow
. ocation algorithm to finish in minimum time

Allocation Algorithm

Finishing flows Allocate minimum
A coflow
. faster than the flow rates such
cannot finish
. bottleneck cannot that all flows of a
before its , :
decrease a coflow’s coflow finish
very last flow o :
completion time together on time

Architecture

Sender g Receiver g 8 Driver g
. . Put o = Get = Reg = =
Centralized master-slave architecture e e e
. : . . [| Daemon (Daemon [| Daemon
* Applications use a client library to F 0
communicate with the master J L
.. : . 0 Sla Network Interf;
Actual timing and rates are determined Topology || -sage EH&| ot Tnieriace

Coflow Scheduler Taskije Comp.Tasks calling

Varys Client Library

|

l :

| |

|

by the coflow scheduler v v O3 st Fie ystem
I

! |

I |

Varys Master

|. Download from http://varys.net

Discussion

17

Making Sense of Performance in Data
Analytics Frameworks

<>Slides by Kay Ousterhout (Berkeley), with minor modifications

18

Network

Load balancing: VL2 [SIGCOMM °09], Hedera [NSDI "10], Sinbad [SIGCOMM ’13]
Application semantics: Orchestra [SIGCOMM °11], Baraat [SIGCOMM ‘14], Varys
[SIGCOMM ’14]

Reduce data sent: PeriSCOPE [OSDI “12], SUDO [NSDI "12]

In-network aggregation: Camdoop [NSDI "12]

Better isolation and fairness: Oktopus [SIGCOMM ’11], EyeQ [NSDI “12], FairCloud
[SIGCOMM ’12]

Disk

Themis [SoCC ‘12], PACMan [NSDI "12], Spark [NSDI "12], Tachyon [SoCC '14]

Stragglers

Scarlett [EuroSys ‘11], SkewTune [SIGMOD ‘12], LATE [OSDI ‘08], Mantri [OSDI ‘10],
Dolly [NSDI ‘13], GRASS [NSDI ‘14], Wrangler [SoCC *14]

Missing: what's most important to
end-to-end performance?

Widely-accepted mantras:
Network and disk I/O are bottlenecks

Stragglers are a major issue with
unknown causes

This work

(1) How can we quantify performance bottlenecks?
Blocked time analysis

(2) Do the mantras hold?

Takeaways based on three workloads run with
Spark

Blocked time analysis

—

— (1) Measure time
when tasks are
blocked on the

network

tasks <

[

(2) Simulate how job completion time
would change

(1) Measure the time when tasks are blocked
on the network

networkread [[[T [

compute 7
disk write
< >
Original task runtime
: time to handle one record | :time blocked on network
% : time blocked on disk

%

compute

"
L

<
~

Best case task runtime if network were infinitely fast

(2) Simulate how job completion time would

| : time blocked
on network

t.: Original job completion time

Task O Task 2

<

t: Jbto:mem:!lptcrmmtpnmwmmmﬂddegnfast network
account for task scheduling

Takeaways based on three Spark workloads:

Network optimizations
can reduce job completion time by at most 2%

CPU (not I/O) often the bottleneck
<19% reduction in completion time from optimizing disk

Many straggler causes can be identified and fixed

When does the network matter?

.................... — 1
Network important when: . -~ 0.8
(1) Computation optimized L4 06
(2) Serialization timelow |
(3) Large amount of data sent | 0

ML (matrix)
200 machines

over network

Discussion

28

What You Said

“I very much appreciated the thorough nature of the "Making
Sense of Performance in Data Analytics Frameworks" paper.”

“| see their paper as more of a survey on the performance of
current data analytics platforms as opposed to a paper that
discusses fundamental tradeoffs between compute and
networking resources. | think the question of whether current
“data-analytics platforms” are network bound or CPU bound
depends heavily on the implementation, and design assumptions.
As a result, | see their work as somewhat of a self-fulfilling
prophecy.”

What You Said

“The paper admits its bias in primarily studying instrumented
Spark servers. It uses traces from real-world services to back
up its conclusions across other types and scales of services,
and is reasonably convincing in this analysis. It is easy to
agree with the conclusion that services should be more
heavily instrumented.”

Next Time:
Wireless/Optical Data Centers

FireFly: A Reconfigurable Wireless Data Center Fabric
Using Free-Space Optics

Navid Hamedazimi," Zafar Qazi,' Himanshu Gupta,' Vyas Sekar,* Samir R. Das," Jon P. Longtin,

Himanshu Shah,' and Ashish Tanwert

tStony Brook University

ABSTRACT

Conventional static datacenter (DC) network designs offer extreme
cost vs. performance tradeoffs—simple leaf-spine networks are cost-
effective but oversubscribed, while “fat tree”-like solutions offer
good worst-case performance but are expensive. Recent results
make a promising case for augmenting an oversubscribed network
with reconfigurable inter-rack wireless or optical links. Inspired
by the promise of reconfigurability, this paper presents FireFly, an
inter-rack network solution that pushes DC network design to the
extreme on three key fronts: (1) all links are reconfigurable; (2) all
links are wireless; and (3) non top-of-rack switches are eliminated
altogether. This vision, if realized, can offer significant benefits in
terms of increased flexibility, reduced equipment cost, and minimal
cabling complexity. In order to achieve this vision, we need to look
beyond traditional RF wireless solutions due to their interference
footprint which limits range and data rates. Thus, we make the case
for using free-space optics (FSO). We demonstrate the viability of
this architecture by (a) building a proof-of-concept prototype of

JURRSSISS IS DRI | R SIS SV »7 Ve N BRSCEN S,

R LV

*Carnegie Mellon University

Ceiling mirror

Patterns

FireFly
Controller

FSO reconf

Rule
change

Figure 1: High-level view of the FireFly architecture. The only
switches are the Top-of-Rack (ToR) switches.

Recent work suggests a promising middleground that augments
an oversubscribed network with a few reconfigurable links, using
either 60 Ghz RF wireless [26, 52] or optical switches [48]. In-
spired by the promise of these flexible DC designs,' we envision a
radically different DC architecture that pushes the network design
to the logical extreme on three dimensions: (1) All inter-rack links

Integrating Microsecond Circuit Switching
into the Data Center

George Porter
Tajana Rosing Yeshaiahu Fainman

UC San Diego

ABSTRACT

Recent proposals have employed optical circuit switching (OCS)
to reduce the cost of data center networks. However, the relatively
slow switching times (10-100 ms) assumed by these approaches,
and the accompanying latencies of their control planes, has limited
its use to only the largest data center networks with highly aggre-
gated and constrained workloads. As faster switch technologies
become available, designing a control plane capable of supporting
them becomes a key challenge.

In this paper, we design and implement an OCS prototype capa-
ble of switching in 11.5 us, and we use this prototype to expose a
set of challenges that arise when supporting switching at microsec-
ond time scales. In response, we propose a microsecond-latency
control plane based on a circuit scheduling approach we call Traf-
fic Matrix Scheduling (TMS) that proactively communicates circuit
assignments to communicating entities so that circuit bandwidth
can be used efficiently.

Richard Strong Nathan Farrington

UC San Diego and Google, Inc.

Alex Forencich Pang Chen-Sun
Amin Vahdat'
.1.

George Papen

supporting high bisection bandwidth is important, since ultimately
application performance, and hence overall server utilization, may
suffer if insufficient bandwidth is available. The result is that net-
work complexity and expense are increasing.

To meet the required bandwidth demands, data center opera-
tors have adopted multi-layer network topologies [14] (e.g., folded
Clos, or “FatTrees” [1, 16]), shown in Figure 1(a). While these
topologies scale to very high port counts, they are also a significant
source of cost, due in part to the large amount of switches, optical
transceivers, fibers, and power each of their layers requires. Re-
cent efforts have proposed [6, 8, 25] using optical circuit switches
(OCS) to deliver reconfigurable bandwidth throughout the network,
reducing some of the expense of multi-layer scale-out networks,
shown in Figure 1(b). A key challenge to adopting these proposals
has been their slow reconfiguration time, driven largely by exist-
ing 3D-MEMS technology limitations. Two components dominate
this reconfiguration time: (1) the hardware switching time of the

31

32

