IIITIT

6.888

 Lecture 9:
Wireless/Optical Datacenters

Mohammad Alizadeh and Dinesh Bharadia
» Many thanks to George Porter (UCSD) and Vyas Sekar (Berkeley)
Spring 2016

Datacenter Fabrics

Scale out designs (VL2, Fat-tree)
> Little to no oversubscription
$>$ Cost, power, complexity

Multiple switching layers (Why?)

\diamond https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/

Building Block:

 Merchant Silicon Switching Chips

 Merchant Silicon Switching Chips}

Facebook Wedge
Limited radix: 16x40Gbps
High power: 17 W/port

Scale-out packet-switch fabrics

Large number of switches, fibers, optical transceivers Power hungry Hard to expand

Beyond Packet-Switched DC Fabrics

Optical circuit switching
[Helios, cThrough, Mordio, ReacTor, ...]

Free-space Optics

 [FireFly]

60 GHz RF
[Flyways, MirrorMirror]

Integrating Microsecond Circuit Switching into the Data Center

\diamond Slides based on presentation by George Porter (UCSD)

Key idea:

Hybrid Circuit/Packet Networks

Why build hybrid switch?

Circuit vs. Packet Switching

Observation: Correlated traffic \rightarrow Circuits

Electrical Packet
\$500/port
$10 \mathrm{~Gb} / \mathrm{s}$ fixed rate
$12 \mathrm{~W} /$ port
Transceivers (OEO)

Buffering

Per-packet switching
In-band control

Optical Circuit
\$500/port
Rate free (10/40/100/400/+)
$240 \mathrm{~mW} /$ port
No transceivers
No buffering
Duty cycle overhead
Out-of-band control

Disadvantages of Circuits

Despite advantages, circuits present different service model:

- Point-to-point connectivity
$\left.\begin{array}{l}\text { - Must wait for circuit to } \\ \text { be assigned }\end{array}\right\}$ affects throughput, latency
- Circuit "down" while being reconfigured

)affects network duty cycle; overall efficiency

Stability Increases with Aggregation

Inter-Data Center

Inter-Pod

Inter-Rack
Inter-Server
Inter-Process
Inter-Thread

Where is the Sweet Spot?

1. Enough Stability
2. Enough Traffic

Mordia OCS model

- Directly connects inputs to outputs

Bi-partite graph

- Reconfiguration time: 10us
- "Night" time (Tn): no traffic during reconfiguration
- "Day" time (Td): circuits/mapping established
- Duty cycle: Td / (Td+Tn)

Previous approaches: Hotspot Scheduling

Step 1. Observe network traffic
Step 2. Compute schedule

Step 3. Reconfigure

Limitations of Hotspot Scheduling

Traffic Matrix Scheduling

BvN Decomposition

$\exists\left(\alpha_{1}, P_{1}\right),\left(\alpha_{2}, P_{2}\right), \ldots,\left(\alpha_{k^{\prime}}, P_{k^{\prime}}\right)$ s.t.

$$
T=\alpha_{1} P_{1}+\alpha_{2} P_{2}+\ldots+\alpha_{k^{\prime}} P_{k^{\prime}}
$$

Thas to be
k^{\prime} could be large doubly-stochastic
($\Omega\left(n^{2}\right)$ in worst case)
\& Suppose: T is a scaled doubly-stochastic matrix

Scheduling

circuit switch configuration: bipartite graph matching

Traffic Matrix: T

$\mathrm{n}=5$ nodes
time

Scheduling

configuration of circuit switch modeled as bipartite graph matching

Scheduling

configuration of circuit switch modeled as bipartite graph matching

Scheduling

configuration of circuit switch modeled as bipartite graph matching

Scheduling

configuration of circuit switch modeled as bipartite graph matching

Scheduling

maximize throughput in time-window W

Traffic Matrix: T

$\mathrm{n}=5$ nodes

Problem Statement

$$
\text { maximize }\left\|\min \left(\sum_{i=1}^{k} \alpha_{i} P_{i}, T\right)\right\|_{1}
$$

$$
\text { s.t. } \alpha_{1}+\alpha_{2}+\ldots+\alpha_{k}+k \delta \leq W
$$

number of matchings $k \in \mathbb{N}$
permutation matrices
$P_{1}, \ldots, P_{k} \in \mathcal{P}$
duration $\longrightarrow \alpha_{1}, \ldots, \alpha_{k} \geq 0$

Eclipse: Greedy Algorithm (with provable guarantees)

४ Venkatakrishnan et al., "Costly Circuits, Submodular Schedules, Hybrid Switch Scheduling for Data Centers", To appear in SIGMETRICS 2016.

Discussion

Firefly

\diamond Slides based on presentation by Vyas Sekar (CMU)

Why FSO instead of RF?

RF (e.g. 60GHZ)

Wide beam \rightarrow
Faster steering of beams High interference Limited active links Limited Throughput

FSO (Free Space optical)

Narrow beam \rightarrow
Slow steering of beams
Zero interference
No limit on active links
High Throughput

Today's FSO

Cost: \$15K per FSO
Size: $3 \mathrm{ft}^{3}$
Power: 30w
Non steerable

- Current: bulky, power-hungry, and expensive
- Required: small, low power and low expense

Why Size, Cost, Power Can be Reduced?

- Traditional use : outdoor, long haul
- High power
- Weatherproof
- Data centers: indoor, short haul
- Feasible roadmap via commodity fiber optics
- E.g. Small form transceivers (Optical SFP)

FSO Design Overview

- large cores (> 125 microns) are more robust

FSO Link Performance

Effect of vibrations, etc.
6 mm movement tolerance Range up to 24 m tested

FSO link is as robust as a wired link

Steerability

Shortcomings of current FSOs
\checkmark Cost
\checkmark Size
\checkmark Power

- Not Steerable

FSO design using SFP

Via Switchable mirrors or Galvo mirrors

Shortcomings of current FSOs

Steerability via Switchable Mirror

- Switchable Mirror: glass \longleftrightarrow mirror
- Electronic control, low latency

Steerability via Galvo Mirror

- Galvo Mirror: small rotating mirror
- Very low latency

How to design FireFly network?

Goals: Robustness to current and future traffic
Budget \& Physical Constraints
Design parameters

- Number of FSOs?
- Number of steering mirrors?
- Initial mirrors' configuration

Performance metric

- Dynamic bisection bandwidth

Discussion

Next Time: Rack-Scale Computing

R2C2: A Network Stack for Rack-scale Computers

Paolo Costa Hitesh Ballani Kaveh Razavi* lan Kash

Microsoft Research

Abstract

Pack-scale computers, comprising a large number of micro-Rack-scale computers, compriongect topology, are expected servers connected by a direct-connect topock in data centers to replace servers as the br routing and congestion control We focus on the problem of roung that high path diversity across the rack's network, and find with workload diversity in rack topologies, in combination with wore inadequate. across it, means that traditional solutions are iack-scale comWe introduce R2C2, a network stack for rack-scale and conputers that provides flexible and efficient roct that the scale of gestion control. R2C2 leverages erhead broadcasting to enrack topologies allows for low-oware of all network flows. sure that all nodes in the rack are aware control without any We thus achieve rate-based congestion control we sending probing; each node independecting the provider's allocation rate for its flows while nodes dynamically choose the rout policies. For routing, nodes dyam to maximize overall utiling protocol for each flow in order across a rack emulation ity. Through a prototype deployed across a show that R2C2 platform and a packet-level simulator, we show for diverse achieves very low queuing and routing flexibility can pro and bursty workloads, and hains.

CCS Concepts

-Networks \rightarrow Data center networks; Transport protocols;
Cloud computing;

1. INTRODUCTION

ITin's large-scale data centers such as those run by Whe today large-scale data cent are built using commodity Amazon, Google, and reently there has been an increasing off-the-shelf servers, trend towards server customiz 55 , One such trend is the prove performance $[50,54,55,58]$. One such is prove performan-ce crale computing". We use this term to readvent of "rack-scalchitectures that propose servers or rackscale computers comprising a large number network fabric. grated systems-on-chip, interconnected by arer rack and proThis design enables thousands of a the convides high bandwidth for rack-scale applicateits means that equent power, density and performance beneniss means the basic racks are expected to replace individual sentles of rack-scale building block of datacenters. Eal (HP Moonshot [56], AMD computers include commercial (1) and Intel RSA $[26,59]$) SeaMicro [62], Boston Viridis [71, $19,34,38$].
as well as research platforms $[7,9,19,3$, , 2$]$ computers to
A design choice that allows rack-scale computy is to achieve high internal bandwietwork fabric to a "distributed move away from a switched each node functions as a small switch" architecture where each other nodes. This underlies switch and forwards traffic from other noss. 59,621 , and remany existing designs $\{19,34,38,47,51,56,59,62$, , sults in a multi-hop direct-connect topolog, oday data centers, path diversity. This is a departure fogies. While direct-connect which mostly use tree-like topololes. Wermance computing topologies

