
Rethinking Congestion Control
for Cellular Networks

Prateesh Goyal, Mohammad Alizadeh, Hari Balakrishnan
MIT Computer Science and Artificial Intelligence Laboratory

{prateesh,alizadeh,hari}@csail.mit.edu

ABSTRACT
We propose Accel-Brake Control (ABC), a protocol that
integrates a simple and deployable signaling scheme at cellular
base stations with an endpoint mechanism to respond to these
signals. The key idea is for the base station to enable each
sender to achieve a computed target rate by marking each
packet with an “accelerate” or “brake” notification, which
causes the sender to either slightly increase or slightly reduce
its congestion window. ABC is designed to rapidly acquire
any capacity that opens up, a common occurrence in cellular
networks, while responding promptly to congestion. It is also
incrementally deployable using existing ECN infrastructure
and can co-exist with legacy ECN routers. Preliminary
results obtained over cellular network traces show that ABC
outperforms prior approaches significantly.

1 INTRODUCTION
This paper introduces a new router-signaling and endpoint
protocol to determine transmission rates in cellular networks.
These networks exhibit significant variations in bottleneck link
rates even over short time durations [30]. One would therefore
expect that an active queue management (AQM) scheme
running at the cellular bottleneck router,1 sending explicit
congestion notification (ECN) [7] singals to senders using
direct knowledge of the time-varying link capacity, would
achieve higher throughput and lower delays than end-to-end
approaches. Yet, recent work has shown that schemes like
Cubic-over-sfqCoDel [21] do not significantly outperform
end-to-end methods like Sprout [30] and Verus [33].

We hypothesize, and substantiate in this paper, that a well-
designed signaling scheme running at the cellular bottleneck
link, working in concert with a suitable endpoint algorithm,
can out-perform prior end-to-end and network-assisted (AQM)

1We use the terms “base station” and “bottleneck router” interchangeably. We
expect the signaling method to be implemented in any network element within
the cellular network infrastructure that is a potential bottleneck. For transmis-
sions from mobile devices, the bottleneck router is the device’s network layer.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVI, November 30-December 1, 2017, Palo Alto, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5569-8/17/11. . . $15.00
https://doi.org/10.1145/3152434.3152437

methods. Our hypothesis is based on two key insights. First,
unlike end-to-end approaches, a router-based scheme can
directly estimate link capacity, without relying on end-to-end
bandwidth measurements which fundamentally require some
queue buildup; on cellular networks, this queue buildup
can add significant delays when link capacity decreases.
Second, existing ECN-based AQM schemes send indications
only when the sender should reduce its rate, but not when
an increase is possible. The problem in cellular networks
is that the rate can increase quickly, faster than endpoints
(particularly with linear or even Cubic-like increase) can
discover solely via end-to-end methods.

Most known mechanisms to signal the ability to increase
a rate, such as explicit flow control in ATM networks [15],
XCP [16], and RCP [27], are verbose; i.e., they require
multi-bit per-packet feedback signals from the routers. Such
schemes have proved hard to deploy because they are invasive,
requiring changes to a component of the Internet architecture
most difficult to change: the IP layer and the IP header fields.
(An exception to verbosity is VCP [31], which we describe
and compare against later.)

Is it possible to use just one bit of feedback per ACK to
achieve performance comparable to verbose feedback that
tells the senders transmission rates (or windows) explicitly in
each ACK? We show that the answer is “yes” by developing a
simple, one-bit signaling strategy that combines the richness of
a fully explicit protocol with the simplicity and deployability
of the ECN signaling mechanism.

Our proposal has three key ideas, two conceptual and
one concerning deployment. First, the base station marks
each packet with one bit of feedback corresponding to either
accelerate or brake using a measured estimate of the current
rate for the user and a computed estimate of a desired target
rate.2 Second, upon receiving this feedback via an ACK from
the receiver (using the same concept as in ECN), the sender
either accelerates its transmission by sending two packets
(on accelerate), or decelerates by not sending any packet (on
brake). This simple mechanism, which we call Accel-Brake
Control (ABC) achieves a large dynamic range of rates; it
allows the transmission rate to vary from twice the current
value down to 0 within one RTT.

An important goal of our proposal is deployability. We show
how to reuse the existing ECN infrastructure to implement
ABC, presenting two deployment options for networks
without and with legacy ECN routers. The first case applies

2Maintaining the current rate and target rate requires per-user state, but
cellular networks already have per-user state as base stations isolate traffic
for different users in separate queues [30].

https://doi.org/10.1145/3152434.3152437


Figure 1: Power, defined as the ratio of the utilization (i.e.,
measured throughput divided by maximum throughput)
to the 95𝑡ℎ percentile per-packet delay, of various schemes
on traces from eight different cellular networks. Averag-
ing the normalized power across the networks, ABC out-
performs the second-best scheme (Cubic + Codel) by 21%.

to many cellular networks that split TCP connections at the
network boundary [24, 29]; here, we show how to deploy ABC
without any changes to TCP receivers (e.g., running on mobile
phones). In the second case, we show how ABC can co-exist
with legacy ECN with simple changes to the receiver.

Figure 1 shows preliminary performance results. ABC
outperforms prior approaches in terms of throughput/delay
(“power”) across a variety of cellular networks. These results
substantiate our position that, to obtain high throughput and
low packet delays in cellular access networks, the base station
should send direct rate increase/decrease feedback based on
its computed estimate of time-varying capacity, and that such
feedback is readily deployable using existing ECN signaling
mechanisms. We hope that our results will be a call to arms
to cellular network operators to adopt these simple ideas to
improve user experience.

2 RELATED WORK
Traditional end-to-end protocols like TCP Cubic [9] and
NewReno [10, 13] are unable to track time-varying wireless
link capacities well. To achieve high throughput for these
protocols, cellular networks often use deep buffers, which
leads to significant bufferbloat.

Bufferbloat can be reduced using AQM schemes like
CoDel [21] or PIE [22]. Although these schemes are able to
achieve low packet delays, they suffer from under-utilization
because of the conservative increase rules in Cubic and
NewReno—when link capacity increases, the sender is unable
to increase its rates quickly enough. Perhaps for this reason, we
see little evidence of cellular networks using AQM schemes.

Without AQM, Cubic and NewReno rely only on packet
drops to infer congestion, but (especially with deep packet
buffers) this signal is too infrequent for efficient adaptation
to changing link conditions. Recent end-to-end proposals like
Sprout [30] and Verus [33] overcome the spareness of packet
drops by using information about the RTT and the send/receive
rate, and combining this information with prediction strategies
to deduce available capacity.

These schemes face a trade-off between utilization
(throughput) and packet delay because estimating the available
capacity by end-to-end means requires some queue build up.
These schemes have no information about available capacity
when the queue is empty; during such periods, the best they can
do is to increase the rate in “blind” fashion. This approach is
problematic in networks with a large dynamic range of rates: if
the increase is slow, throughput is low, but making the increase
too fast inevitably causes overshoots and large queuing delays.
Thus, we conclude that, end-to-end schemes will find it
difficult to track the available capacity accurately. Router assis-
tance using methods deployed at the base station (or the mobile
device’s network layer) are therefore important to consider.

Perhaps closest in spirit to ABC is VCP [31], which also
relies on succinct feedback. In VCP, the router tells the
sender what kind of window update to use depending on
load: multiplicative-decrease, multiplicative-increase, or
additive-increase. This coarse-grained feedback strategy
limits VCP’s effectiveness in cellular networks with a large
dynamic range of rates. For example, the VCP paper uses
a multiplicative increase factor of 𝜉 = 0.0625, requiring 12
RTTs to double the rate. By contrast, ABC can adjust the rate
between 2× the current value and 0 within 1 RTT, because
it distributes the feedback over a stream of ACKs, instead of
using ACKs in isolation. Moreover, VCP is incompatible with
legacy ECN, making it hard to deploy.

Recent proposals [14, 19] have proposed to use the LTE
infrastructure for inferring the underlying link capacity.
CQIC [19] proposes using the physical layer information at
the receiver (e.g., physical resource blocks allocated) for es-
timating the link capacity. Unlike ABC, this approach requires
receiver modification. MTG [14] proposes modifying the base
station to explicitly communicate the rate, but unlike ABC, it
relies on sending this rate feedback via a new TCP option [23].
However, using a TCP option in this way runs the risk of
packets being dropped silently by middleboxes [12], and
cannot work when IPSec encryption is used [25]. This proposal
also lacks a mechanism for apportioning the bandwidth among
multiple flows of a user. In §5 we show that ABC’s single-bit
feedback is sufficient for communicating the target rate and
its performance is comparable to a full-rate-feedback variant.

3 DESIGN
In ABC, the bottleneck router provides one bit of feedback
per packet. Each bit is an indication to either slightly increase
(accelerate) or slightly decrease (brake) the sender’s conges-
tion window. The router determines the feedback for each
packet using its estimates of a desired target rate, the current
dequeue rate for the sender’s packets, and the packet delays
experienced by the sender’s packets in the bottleneck queue.

3.1 ABC Sender
Sender’s window update rule: On receiving an “accelerate”
bit in an ACK, the sender sends two packets; one replaces the
acknowledged packet, and the other because the congestion
window has “increased by one”. On receiving a “brake”
feedback, the sender sends nothing, not even to replace the



packet that has been received; i.e., the congestion window
reduces by one packet. The intuition for ABC can be drawn
from driving a car on a busy street, where the driver’s actions
are to either slightly accelerate or to tap on the brake. Using
a sequence of these two actions in quick succession, the driver
is able to maintain a suitable car speed.

A single bit of feedback per packet is quite expressive when
accumulated over several packets, such as an RTT’s worth. If
the sender’s window is 𝑤 and a fraction 𝑓 of the packets are
marked with “accelerate,” then in the next RTT the sender
will receive 𝑤 ACKs,3 of which 𝑤𝑓 will be accelerates and
𝑤−𝑤𝑓 will be brakes. As a result, the congestion window
after 1 RTT will be 𝑤+𝑤𝑓−(𝑤−𝑤𝑓)=2𝑤𝑓 .

The router selects 𝑓 ; 𝑓 = 0 throttles the transmission
entirely, 𝑓=1/2 retains the current window, 𝑓=1 doubles it,
and so on. The set of achievable window changes for the next
RTT depends on the number of packets in the current window;
the larger this number, the finer the granularity.
Initial conditions: Each packet transmitted by the sender has
the “accelerate” bit on by default. A router may change an
“accelerate” to “brake” but not vice versa. Thus, by default,
the behavior corresponds to 𝑓=1, but that situation may not
last for long if the current dequeue rate approaches or exceeds
the target rate, or if queues start to build at the router. Routers
are not allowed to change a packet with “brake” set on it to
“accelerate”; the reason is that an ABC router can unilaterally
decide to slow down the rate (brake), but acceleration requires
consensus along the path. We discuss the operation on paths
with multiple ABC routers below.
3.2 ABC Router
The target rate: The ABC router determines the target rate,
𝑡𝑟(𝑡), for each user using the current per-user link capacity,
𝜇(𝑡), and queueing delay, 𝑥(𝑡), using this rule:

𝑡𝑟(𝑡)=𝜂𝜇(𝑡)−𝛽
𝜇(𝑡)

𝛿
(𝑥(𝑡)−𝑑𝑡)

+. (1)

This control rule is inspired by ideas in prior work. First, as
in TUB from ATM networks [15], AVQ [18], and HULL [1],
ABC sets 𝑡𝑟(𝑡) to a value 𝜂𝜇(𝑡), where 𝜂 < 1 represents the
target utilization. This term allows the sender to send traffic
just under bottleneck capacity, trading off a little throughput
for more significant delay reductions. This approach works
in ABC because it doesn’t need to fill up queues to accurately
estimate the available capacity for each sender.

The above target rate by itself is insufficient because there
is a delay of one RTT in feedback to the sender. This delayed
feedback combined with inaccuracies in measurements can
lead to transient queues. We introduce a second term that uses
the current queuing delay, 𝑥(𝑡), to account for stagnant queue
build-up. The router reduces the target rate if 𝑥(𝑡) exceeds a
delay threshold, 𝑑𝑡 (the notation 𝑦+ is defined as max(𝑦,0)).
The reason for a non-zero threshold delay is that wireless
networks exhibit non-deterministic packet service times
because their link rates vary, so any packet arrival process will

3Assuming no delayed ACKs; with delayed ACKs and appropriate byte
counting (RFC 3465), a slightly different calculation will yield the same result.

experience some queue build-up. A non- zero delay threshold
𝑑𝑡 ensures that the target rate does not react to minor delay
fluctuations. The value of 𝑑𝑡 could, in principle, change with
time, but ABC currently uses a static value for simplicity.

The target rate calculation in Eq. (1) requires information
about the per-user link capacity, 𝜇(𝑡). In cellular networks,
because the scheduler manages all the traffic, it knows exactly
what resources have been allocated to each user and can
thus calculate 𝜇(𝑡). The scheduler also guarantees fairness
between users while allocating resources; ABC does not affect
inter-user fairness. We discuss how ABC can achieve fairness
between flows of a given user in §6; this requires a small
modification to the ABC sender.

Equation (1) has three constants, 𝜂,𝛽, and 𝛿, which govern
the stability of the scheme. 𝛿 should be on the order of one
RTT; since the router does not know the RTT precisely, we use
100 ms in our tests. 𝛽 governs how quickly queues drain. We
do not explicitly establish the stability conditions of Eq. (1)
here, but prior methods [3, 16] apply.
Packet marking: To achieve the target rate, 𝑡𝑟(𝑡), the router
measures the sender’s current dequeue rate, 𝑐𝑟(𝑡), and
calculates the fraction of packets, 𝑓(𝑡), that remain marked
as “accelerate” using the following rule:

𝑓(𝑡)=min
{︁1

2
· 𝑡𝑟(𝑡)
𝑐𝑟(𝑡)

,1
}︁
. (2)

The ABC router ensures that no more than a fraction 𝑓(𝑡) of
packets have the “accelerate” indication set. The pseudocode
for the packet marking algorithm is shown below.

On each idle period with no packets:
spare_accel = 0;
In steady state:
for each packet do

calculate 𝑓(𝑡) using Eq. (2);
spare_accel = spare_accel +𝑓(𝑡);
if packet marked with accelerate then

if spare_accel > 1 then
spare_accel = spare_accel − 1;

else
mark brake;

end
end
spare_accel = min(spare_accel, MAXSPARE);
// MAXSPARE is a constant, like 5

end
Algorithm 1: Packet marking at an ABC router. The
MAXSPARE parameter (set to 5 in our implementation)
limits the burstiness of “accelerate” signals.

In this algorithm, packet marking is deterministic; it is
also possible to mark probabilistically, but the results will be
burstier.
Handling multiple access links: Thus far we have described
our solution for a single access link setting, but there can be
multiple access links on a path; for example, a cellular uplink



and a cellular downlink in a video conference between two
smartphone users.

In such settings, the sender should send at the smaller of
the two target rates, which implies that the final “accelerate”
fraction received by the sender should be the minimum over
the multiple ABC links. The packet marking mechanism
described above automatically achieves this behavior because
access routers can only convert an accelerate to a brake.
Rate measurement timescales: We use a moving window
of time to calculate the target rate and current dequeue rate.
When the access link’s rate varies quickly, using a shorter
time window gives better performance, but if the time window
is too short, then the rate estimates might be incorrect. For
cellular networks, the time window used for measurements
should be at least the average inter-schedule time of a user at
the router. Thus, at a base station, the time window should be
greater than 𝑁 ·𝑆

𝑀 , where 𝑁 is the number of active users, 𝑆
is the sub-frame size (≈ 1 ms for LTE), and 𝑀 is the number
of “resource blocks” per sub-frame. We use a window size of
20 ms in our experiments over traces.

4 DEPLOYMENT WITH ECN
We now describe two deployment options for ABC. We begin
with a brief review of standard ECN [8], which our proposal
builds on. Then we discuss how to deploy ABC in networks
without legacy ECN in the routers. In this case, we can deploy
ABC without any modifications to TCP receivers, i.e., mobile
phones can take advantage of ABC for download traffic
without any software changes.4 Finally, we present a way to
deploy ABC that is compatible with legacy ECN but requires
a simple modification to TCP receivers.
Standard ECN: IP packets have two ECN-related bits: ECT
and CE. These two bits are traditionally interpreted as follows

ECT CE Interpretation
0 0 Non ECN-Capable Transport
0 1 ECN-Capable Transport ECT(1)
1 0 ECN-Capable Transport ECT(0)
1 1 ECN set

Routers interpret both (01) and (10) for these bits to indicate
that the connection is ECN capable. To mark a packet with
ECN, a router changes the bits to (11). Upon receiving an
ECN mark (11), the receiver sets the ECN Echo (ECE) flag
in all subsequent ACKs until it receives a Congestion Window
Reduced (CWR) notification from the sender, i.e., a packet
with the CWR flag in the TCP header set to 1. Thus receivers
echo ECN marks for a full round-trip worth of ACKs.
No legacy ECN: Many cellular networks use TCP proxies to
split connections at the network boundary [24, 29]. The op-
erators of such networks can easily disable ECN on the routers
inside the cellular network. This allows a straight forward de-
ployment of ABC without receiver modification. ABC senders
simply use either (01) or (10) for accelerate and routers use
(11) to indicate brake. To ensure that the receiver conveys ac-
celerate/brake signals accurately, the sender sets the CWR flag
4The transport stack on mobile phones of course needs to change to use ABC
for upload traffic.

on every packet. This ensures that the receiver echoes a brake
exactly once (instead of for a full RTT), assuming all packets
are acknowledged and ACKs are not lost. More accurate ECN
feedback mechanisms in the presence of delayed/lost ACKs
have been proposed [2], which require receiver modifications.
ABC can also leverage these techniques.

With legacy ECN: ABC can coexist with legacy ECN by
reinterpreting the ECT and CE bits as follows

ECT CE Interpretation
0 0 Non ECN-Capable Transport
0 1 accelerate ECT(1)
1 0 brake ECT(0)
1 1 ECN set

The ABC sender begins with (01) on every packet (accelerate).
An ABC router can signal brake by flipping the bits to (10).
For legacy routers, both (01) and (10) are equivalent and
indicate ECN capable transport. Thus a legacy routers can
simply use (11) to signal congestion, exactly as in standard
ECN. Finally, the receiver can distinguish between accelerate
(01), brake (10) and ECN set (11).

The receiver must convey both standard ECN and acceler-
ate/brake for ABC. We can use the ECE flag for ECN feedback.
For ABC feedback, we can reuse the NS (nonce sum). The
NS bit was originally proposed to ensure integrity of ECN
feedback [6], but this feature has since been reclassified as
historic [2] since it was never deployed. Therefore, we can re-
purpose the NS bit for ABC’s feedback. Using this scheme, the
sender can react to drops/ECN marks same as standard TCP.

ABC routers do not interfere with the proper operation
of ECN for standard TCP flows. All TCP implementations
transmit packets with ECT/CE set to (10) to indicate ECN-
capable transport. Since ABC only converts “accelerate” (01)
to “brake” (10), it will ignore any packet marked with (10). As
a result, there is no need for senders to convey ABC capability
in packet headers.

Note that any internal encryption used by the cellular net-
work provider does not hinder the ABC router’s ability to mod-
ify ECN bits. The ABC router (base station or mobile phone) is
typically the location where any form of in-network encryption
is removed, which means that the ABC router will have access
to the unencrypted packets and can modify the ECN bits.

A potential vulnerability of the above scheme is that
a malicious router on the path can convert a brake to an
accelerate. However, we can easily detect this at the senders by
sending packets marked with brake once in a while; if any of
these packets return with accelerate, then there are malicious
entities on the path.

5 PRELIMINARY EXPERIMENTS
We evaluate ABC by running real cellular link traces using
Mahimahi, a network emulator tool [20]. We compare ABC
to two state-of-the-art end-to-end protocols for cellular
networks, Sprout [30] and Verus [33]; two AQM schemes, Cu-
bic+Codel [21] and Cubic+PIE [22]; two explicit congestion
control protocols, XCP [16] and VCP [31]; and three end-
to-end protocols, Cubic [9], Vegas [4], and BBR [5]. In each



(a) Uplink (b) Downlink (c) Uplink + Downlink

Figure 2: ABC vs. previous schemes on three Verizon cellular network traces. In each case, ABC outperforms all other
schemes and sits well outside the Pareto frontier of previous schemes.

experiment, we start one flow and measure utilization/through-
out, and the mean, median, and 95𝑡ℎ percentile (p95) per-
packet delay statistics. We use 𝜂=0.98,𝛽=0.75,𝛿=100 ms
and 𝑑𝑡=50 ms for ABC parameters in all experiments.

Figure 1 previously showed the ratio of throughput to 95𝑡ℎ

percentile packet delay (“power”) across eight cellular traces.
ABC outperforms previous schemes, with improvements in
power of up to 47%. Figure 2 shows the throughput and 95𝑡ℎ

percentile packet delay separately for three network traces,
representing uplink, downlink, and combined uplink/downlink
scenarios. In the combined case, we ran traffic with the uplink
and downlink connected in series.

We make five observations from these experiments. First,
ABC exhibits a substantially better throughput/delay tradeoff
than previous schemes. The dashed lines in each figure show
the “Pareto frontier” for previous approaches; each scheme on
this frontier achieves higher throughput or lower delay than the
others. ABC sits well outside the best previous Pareto frontier.

Second, ABC outperforms even previous router-assisted
schemes like XCP that include verbose feedback. The reason
is that XCP’s control law is not suitable for cellular networks.
It uses the “persistent queue size,” measured as the minimum
queue size in the last control interval, to calculate the feedback.
However, the minimum queue size is an unreliable signal
in cellular networks, because of the large variations in link
capacity (and queue size).

Third, ABC also outperforms VCP [31], a previous scheme
with succinct feedback. As discussed in §2, VCP is restricted
to select among a few hard-coded update rules, such as a fixed
multiplicative or additive increase. By not hard-coding a fixed
increase rule, ABC performs better: across the eight cellular
network traces, ABC achieved a 15% higher utilization (0.82
v. 0.72), incurring only a 6% higher mean packet delay (145
ms v. 135 ms).

Fourth, ABC’s performance is similar to an explicit variant
of ABC (E-ABC) that uses multiple bits to simply specify
the target rate on every packet. In contrast to ABC, because
this version of E-ABC is rate-based, it is inherently slower in
reacting to congestion. We find that E-ABC achieves slightly
higher throughput and slightly higher latency compared to
ABC. The important conclusion is that ABC’s single-bit
feedback, with its deployment advantages, does not leave
performance “on the table”.

Figure 3: ABC on a path with two cellular links. ABC’s
rate tracks the bottleneck closely.

Finally, as Figure 2c shows, ABC continues to work well
in the presence of multiple bottlenecks. Figure 3 shows an
example of ABC on a path with two cellular links. At any
given time, one of the two links is the bottleneck, and ABC’s
rate tracks the bottleneck closely.

6 FUTURE WORK
Estimating the link capacity at base stations: Our proposal
relies on the ability of the base station to estimate, 𝜇(𝑡),
the available per-user link capacity (see Eq. (1)). In our
experiments, we obtained this information by measuring the
rate of packet transmissions in our cellular traces. However,
these traces were obtained using a traffic generator which
saturated the cellular link [30]. In practice, during periods
where the queue for a user is empty or the occupancy is very
low, scheduling algorithms on the base station (e.g., the pro-
portionally fair scheduler [26, 28]) may allocate less channel
time to the user than it could have achieved had it sent more
traffic [17]. Therefore, naïvely using the scheduler’s allocation
as 𝜇(𝑡) may cause some underutilization, particularly since
ABC tries to maintain small queues by design.

Fortunately, the base station has low-level visibility into
physical layer resources (e.g., physical resource blocks and
the modulations for each user), from which it can estimate the
user’s potential rate if it sends enough traffic to be bottlenecked
at the base station. For example, a simple approach could be to
simulate the proportional fair scheduler with the current condi-
tions but assuming the user has a large backlog. We therefore



believe it should be possible to obtain a good estimate of 𝜇(𝑡),
even during periods of low queue occupancy. We plan to inves-
tigate the details of a method for this purpose in future work.
Co-design of base station schedulers and ABC signaling:
As mentioned above, existing scheduling algorithms for
base stations use the queue backlog as a proxy for the user’s
demand [17]. ABC signaling mechanisms may provide a
better way to estimate user demands at the base station to
improve scheduling decisions. In particular, ABC senders
can be modified to express their demand using “accelerate”
marks: rather than marking all packets with “accelerate,” a
sender can indicate its desired rate increase by marking an
appropriate fraction of packets “accelerate”.5 The base station
can use this information to both make scheduling decisions
and to calculate the target rate for ABC.
Fairness among ABC flows: Cellular networks ensure
user-level fairness by scheduling users out of separate queues,
but achieving flow-level fairness for a given user requires
changes to ABC’s design. ABC’s window update rule is
effectively a multiplicative-increase/multiplicative-decrease
(MIMD) strategy (§3), which does not provide fairness among
flows contending on a link (see Figure 4a for an illustration).

A simple modification to the ABC sender promises to be
very effective. We can simply add an additive-increase (AI)
component to the window update rule; e.g., the sender can
increase the congestion window by 1 every 𝑇 ms, in addition
to reacting to accelerate/brake feedback. This idea, inspired
by traditional additive-increase/multiplicative-decrease
(AIMD) congestion control protocols, works because ABC’s
brakes reduce the window via multiplicative-decrease during
congestion. Adding an additive component thus creates
an AIMD-like behavior. Figure 4b shows how with an AI
component, two ABC flows achieve the same throughput.

A potential drawback of this approach is that the ABC router
will receive more traffic than it anticipates. This can cause per-
sistent queues and delay, particularly, if a user has a large num-
ber of flows. We plan to investigate ideas like adding a penalty
based on the integral of the queuing delay to the target rate
calculation (similar to the PI [11] AQM) to solve this problem.
Using ABC in other access networks and applications:
ABC is likely to be beneficial in other access networks besides
cellular networks (e.g., home broadband, DSL, etc.). Also,
ABC’s ability to accurately estimate the network’s underlying
bandwidth without filling up queues can be very useful for
applications like live video streaming, where we want to adapt
the video resolution to network conditions while maintaining
low latency. Previous work [32] has shown that estimating the
underlying bandwidth accurately can increase user perceived
quality of experience on LTE networks. We plan to explore
such use cases in future work.

7 CONCLUSION
We presented ABC, a new approach to congestion control
in cellular networks in which bottleneck routers signal rate

5The sender can express a demand of d packets/sec by setting “accelerate”
on d/2 packets every second.

(a) ABC (design in §3)

(b) ABC + AI
Figure 4: Fairness between two ABC flows competing
on a single link with a fixed capacity of 12 Mbit/sec. The
additive-increase (AI) component leads to fairness among
flows.

increases and decreases to senders based on a measured esti-
mate of the current rate and an explicitly computed target rate.
ABC quickly and accurately adapts to time-varying cellular
link conditions, despite using a very simple signaling scheme
that requires only 1 bit of feedback per acknowledgment.
Our preliminary results showed that ABC outperforms prior
approaches, including state-of-the-art cellular congestion
protocols, AQM schemes, explicit rate control protocols, and
more. Across eight real cellular network traces, ABC improves
“power” (ratio of throughput to 95𝑡ℎ percentile packet delay)
by 21% on average. ABC is also deployable immediately using
existing ECN infrastructure and is backwards compatible with
legacy ECN routers and traffic.

Our work shows that significant improvements to con-
gestion control in cellular networks are both possible and
practical; we hope that our results will encourage cellular
network operators to adopt congestion signaling strategies like
ABC to improve user experience.

ACKNOWLEDGMENTS
This work was funded in part by NSF award 1407470 and
DARPA award HR0011-15-2-0047. We thank Anirudh Sivara-
man, Peter Iannucci, Ravi Netravali, Srinivas Narayana, and
the HotNets reviewers for their useful comments and feedback.



REFERENCES
[1] M. Alizadeh, A. Kabbani, T. Edsall, B. Prabhakar, A. Vahdat, and

M. Yasuda. Less is more: trading a little bandwidth for ultra-low latency
in the data center. In Proceedings of the 9th USENIX conference on
Networked Systems Design and Implementation, pages 19–19. USENIX
Association, 2012.

[2] B. B., K. M., and S. R. More Accurate ECN Feedback in TCP.
https://tools.ietf.org/html/draft-ietf-tcpm-accurate-ecn-03, 2017.

[3] H. Balakrishnan, N. Dukkipati, N. McKeown, and C. J. Tomlin. Stability
analysis of explicit congestion control protocols. IEEE Communications
Letters, 11(10), 2007.

[4] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson. TCP Vegas: New Tech-
niques for Congestion Detection and Avoidance. In SIGCOMM, 1994.

[5] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh, and V. Jacobson.
Bbr: Congestion-based congestion control. Queue, 14(5):50:20–50:53,
Oct. 2016.

[6] D. Ely, N. Spring, D. Wetherall, S. Savage, and T. Anderson. Robust
congestion signaling. In Network Protocols, 2001. Ninth International
Conference on, pages 332–341. IEEE, 2001.

[7] S. Floyd. TCP and Explicit Congestion Notification. CCR, 24(5), Oct.
1994.

[8] S. Floyd, K. Ramakrishnan, and D. L. Black. RFC 3168:
The Addition of Explicit Congestion Notification (ECN) to IP.
https://tools.ietf.org/html/rfc3168, 2001.

[9] S. Ha, I. Rhee, and L. Xu. CUBIC: A New TCP-Friendly High-Speed
TCP Variant. ACM SIGOPS Operating System Review, 42(5):64–74,
July 2008.

[10] J. C. Hoe. Improving the Start-up Behavior of a Congestion Control
Scheme for TCP. In SIGCOMM, 1996.

[11] C. V. Hollot, V. Misra, D. Towsley, and W.-B. Gong. On designing
improved controllers for aqm routers supporting tcp flows. In INFOCOM
2001. Twentieth Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings. IEEE, volume 3, pages
1726–1734. IEEE, 2001.

[12] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh, M. Handley, and
H. Tokuda. Is it still possible to extend tcp? In Proceedings of the
2011 ACM SIGCOMM conference on Internet measurement conference,
pages 181–194. ACM, 2011.

[13] V. Jacobson. Congestion Avoidance and Control. In SIGCOMM, 1988.
[14] A. Jain, A. Terzis, H. Flinck, N. Sprecher, S. Arunachalam, and K. Smith.

Mobile throughput guidance inband signaling protocol. IETF, work in
progress, 2015.

[15] R. Jain. Congestion control and traffic management in atm networks:
Recent advances and a survey. Computer Networks and ISDN systems,
28(13):1723–1738, 1996.

[16] D. Katabi, M. Handley, and C. Rohrs. Congestion Control for High
Bandwidth-Delay Product Networks. In SIGCOMM, 2002.

[17] T. E. Kolding. Link and system performance aspects of proportional
fair scheduling in wcdma/hsdpa. In Vehicular Technology Conference,
2003. VTC 2003-Fall. 2003 IEEE 58th, volume 3, pages 1717–1722.
IEEE, 2003.

[18] S. Kunniyur and R. Srikant. Analysis and Design of an Adaptive Virtual
Queue (AVQ) Algorithm for Active Queue Management. In SIGCOMM,
2001.

[19] F. Lu, H. Du, A. Jain, G. M. Voelker, A. C. Snoeren, and A. Terzis.
Cqic: Revisiting cross-layer congestion control for cellular networks. In
Proceedings of the 16th International Workshop on Mobile Computing
Systems and Applications, pages 45–50. ACM, 2015.

[20] R. Netravali, A. Sivaraman, S. Das, A. Goyal, K. Winstein, J. Mickens,
and H. Balakrishnan. Mahimahi: Accurate Record-and-Replay for
HTTP. In USENIX Annual Technical Conference, pages 417–429, 2015.

[21] K. Nichols and V. Jacobson. Controlling Queue Delay. ACM Queue,
10(5), May 2012.

[22] R. Pan, P. Natarajan, C. Piglione, M. Prabhu, V. Subramanian, F. Baker,
and B. VerSteeg. Pie: A lightweight control scheme to address the
bufferbloat problem. In 14th International Conference on High
Performance Switching and Routing (HPSR), 2013.

[23] J. Postel. Transmission control protocol. 1981.
[24] L. Ravindranath, J. Padhye, R. Mahajan, and H. Balakrishnan. Timecard:

Controlling user-perceived delays in server-based mobile applications.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles, pages 85–100. ACM, 2013.

[25] K. Seo and S. Kent. Security architecture for the internet protocol. 2005.
[26] S. Sesia, M. Baker, and I. Toufik. LTE-the UMTS long term evolution:

from theory to practice. John Wiley & Sons, 2011.
[27] C. Tai, J. Zhu, and N. Dukkipati. Making Large Scale Deployment of

RCP Practical for Real Networks. In INFOCOM, 2008.
[28] D. Tse and P. Viswanath. Fundamentals of wireless communication.

Cambridge university press, 2005.
[29] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An untold story

of middleboxes in cellular networks. In ACM SIGCOMM Computer
Communication Review, volume 41, pages 374–385. ACM, 2011.

[30] K. Winstein, A. Sivaraman, and H. Balakrishnan. Stochastic Forecasts
Achieve High Throughput and Low Delay over Cellular Networks. In
NSDI, 2013.

[31] Y. Xia, L. Subramanian, I. Stoica, and S. Kalyanaraman. One More Bit
is Enough. IEEE/ACM Trans. on Networking, 16(6):1281–1294, 2008.

[32] X. Xie, X. Zhang, S. Kumar, and L. E. Li. pistream: Physical layer
informed adaptive video streaming over lte. In Proceedings of the 21st
Annual International Conference on Mobile Computing and Networking,
pages 413–425. ACM, 2015.

[33] Y. Zaki, T. Pötsch, J. Chen, L. Subramanian, and C. Görg. Adaptive
congestion control for unpredictable cellular networks. SIGCOMM
Computer Communication Review, 45(4):509–522, 2015.

https://tools.ietf.org/html/draft-ietf-tcpm-accurate-ecn-03
https://tools.ietf.org/html/rfc3168

	Abstract
	1 Introduction
	2 Related Work
	3 Design
	3.1 ABC Sender
	3.2 ABC Router

	4 Deployment with ECN
	5 Preliminary Experiments
	6 Future work
	7 Conclusion
	References

