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ABSTRACT
Homa is a new transport protocol for datacenter networks. It pro-
vides exceptionally low latency, especially for workloads with
a high volume of very short messages, and it also supports large
messages and high network utilization. Homa uses in-network
priority queues to ensure low latency for short messages; priority
allocation is managed dynamically by each receiver and inte-
grated with a receiver-driven flow control mechanism. Homa
also uses controlled overcommitment of receiver downlinks to
ensure efficient bandwidth utilization at high load. Our imple-
mentation of Homa delivers 99th percentile round-trip times
less than 15µs for short messages on a 10 Gbps network running
at 80% load. These latencies are almost 100x lower than the best
published measurements of an implementation. In simulations,
Homa’s latency is roughly equal to pFabric and significantly
better than pHost, PIAS, and NDP for almost all message sizes
and workloads. Homa can also sustain higher network loads
than pFabric, pHost, or PIAS.

CCS CONCEPTS
• Networks → Network protocols; Data center networks;

KEYWORDS
Data centers; low latency; network stacks; transport protocols
ACM Reference Format:
Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ouster-
hout. Homa: A Receiver-Driven Low-Latency Transport Protocol Us-
ing Network Priorities . In Proceedings of ACM SIGCOMM 2018
(SIGCOMM ’18). ACM, New York, NY, USA, 15 pages. https://doi.
org/10.1145/3230543.3230564

1 INTRODUCTION
The rise of datacenter computing over the last decade has created
new operating conditions for network transport protocols. Mod-
ern datacenter networking hardware offers the potential for very
low latency communication. Round-trip times of 5µs or less are
now possible for short messages, and a variety of applications
have arisen that can take advantage of this latency [20, 24, 26].
In addition, many datacenter applications use request-response
protocols that are dominated by very short messages (a few hun-
dred bytes or less). Existing transport protocols are ill-suited to
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these conditions, so the latency they provide for short messages
is far higher than the hardware potential, particularly under high
network loads.

Recent years have seen numerous proposals for better trans-
port protocols, including improvements to TCP [2, 3, 31] and
a variety of new protocols [4, 6, 14, 15, 17, 25, 32]. However,
none of these designs considers today’s small message sizes;
they are based on heavy-tailed workloads where 100 Kbyte mes-
sages are considered “small,” and latencies are often measured
in milliseconds, not microseconds. As a result, there is still no
practical solution that provides near-hardware latencies for short
messages under high network loads. For example, we know of
no existing implementation with tail latencies of 100 µs or less
at high network load (within 20x of the hardware potential).

Homa is a new transport protocol designed for small messages
in low-latency datacenter environments. Our implementation
of Homa achieves 99th percentile round trip latencies less than
15 µs for small messages at 80% network load with 10 Gbps
link speeds, and it does this even in the presence of competing
large messages. Across a wide range of message sizes and work-
loads, Homa achieves 99th percentile latencies at 80% network
load that are within a factor of 2–3.5x of the minimum possible
latency on an unloaded network. Although Homa favors small
messages, it also improves the performance of large messages
in comparison to TCP-like approaches based on fair sharing.

Homa uses two innovations to achieve its high performance.
The first is its aggressive use of the priority queues provided
by modern network switches. In order to make the most of the
limited number of priority queues, Homa assigns priorities dy-
namically on receivers, and it integrates the priorities with a
receiver-driven flow control mechanism like that of pHost [13]
and NDP [15]. Homa’s priority mechanism improves tail latency
by 2–16x compared to previous receiver-driven approaches.
In comparison to sender-driven priority mechanisms such as
PIAS [6], Homa provides a better approximation to SRPT (short-
est remaining processing time first); this reduces tail latency by
0–3x over PIAS.

Homa’s second contribution is its use of controlled over-
commitment, where a receiver allows a few senders to transmit
simultaneously. Slightly overcommitting receiver downlinks
in this way allows Homa to use network bandwidth efficiently:
Homa can sustain network loads 2–33% higher than pFabric [4],
PIAS, pHost, and NDP. Homa limits the overcommitment and
integrates it with the priority mechanism to prevent queuing of
short messages.

Homa has several other unusual features that contribute to its
high performance. It uses a message-based architecture rather
than a streaming approach; this eliminates head-of-line block-
ing at senders and reduces tail latency by 100x over streaming
transports such as TCP. Homa is connectionless, which reduces
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connection state in large-scale applications. It has no explicit ac-
knowledgments, which reduces overheads for small messages,
and it implements at-least-once semantics rather than at-most-
once.

2 MOTIVATION AND KEY IDEAS
The primary goal of Homa is to provide the lowest possible
latency for short messages at high network load using current
networking hardware. We focus on tail message latency (99th
percentile), as it is the most important metric for datacenter
applications [2, 33]. A large body of work has focused on low
latency datacenter transport in recent years. However, as our re-
sults will show, existing designs are sub-optimal for tail latency
at high network load, particularly in networks with raw hard-
ware latency in the single-digit microseconds [9, 21, 28, 34].
In this section, we discuss the challenges that arise in such
networks and we derive Homa’s key design features.

2.1 Motivation: Tiny latency for tiny messages
State-of-the-art cut-through switches have latencies of at most a
few hundred nanoseconds [30]. Low latency network interface
cards and software stacks (e.g., DPDK [9]) have also become
common in the last few years. These advances have made it
possible to achieve one-way latencies of a few microseconds
in the absence of queuing, even across a large network with
thousands of servers (e.g., a 3-level fat-tree network).

Meanwhile, many datacenter applications rely on request-
response protocols with tiny messages of a few hundred bytes
or less. In typical remote procedure call (RPC) use cases, it is
almost always the case that either the request or the response
is tiny, since data usually flows in only one direction. The data
itself is often very short as well. Figure 1 shows a collection of
workloads that we used to design and evaluate Homa, most of
which were measured from datacenter applications at Google
and Facebook. In three of these workloads, more than 85% of
messages were less than 1000 bytes. In the most extreme case
(W1), more than 70% of all network traffic, measured in bytes,
was in messages less than 1000 bytes.

To our knowledge, almost all prior work has focused on work-
loads with very large messages. For example, in the Web Search
workload used to evaluate DCTCP [2] and pFabric [4] (W5 in
Figure 1), messages longer than 1 Mbyte account for 95% of
transmitted bytes, and any message shorter than 100 Kbytes
was considered “short.” Most subsequent work has used the
same workloads. To obtain these workloads, message sizes were
estimated from packet captures based on inactivity of TCP con-
nections beyond a threshold (e.g., 50 ms). Unfortunately, this ap-
proach overestimates message sizes, since a TCP connection can
contain many closely-spaced messages. In Figure 1, workloads
W1–W3 were measured explicitly in terms of application-level
messages, and they show much smaller sizes than workloads
W4 and W5, which were extracted from packet captures.

Unfortunately, existing datacenter transport designs cannot
achieve the lowest possible latency for tiny messages at high
network load. We explore the design space in the next section,

W1 Accesses to a collection of memcached servers
at Facebook, as approximated by the statistical
model of the ETC workload in Section 5 and
Table 5 of [5].

W2 Search application at Google [29].
W3 Aggregated workload from all applications

running in a Google datacenter [29].
W4 Hadoop cluster at Facebook [27].
W5 Web search workload used for DCTCP [2].
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Figure 1: The workloads used to design and evaluate Homa.
Workloads W1–W3 were measured from application-level logs of
message sizes; message sizes for W4 and W5 were estimated from
packet traces. The upper graph shows the cumulative distribution of
message sizes weighted by number of messages, and the lower graph
is weighted by bytes. The workloads are ordered by average message
size: W1 is the smallest, and W5 is most heavy-tailed.

but consider, for example, designs that do not take advantage
of in-network priorities (e.g., HULL [3], PDQ [17], NDP [15]).
These designs attempt to limit queue buildup, but none of them
can eliminate queuing altogether. The state-of-the-art approach,
NDP [15], strictly limits queues to 8 packets, equivalent to
roughly 10 𝜇s of latency at 10 Gbps. While this queuing latency
has negligible impact in a network with moderate latency (e.g.,
RTTs greater than 50 µs) or for moderately-sized messages
(e.g., 100 KBytes), it increases by 5x the completion time of a
200-byte message in a network with 5 𝜇s RTT.

2.2 The Design Space
We now present a walk through the design space of low latency
datacenter transport protocols. We derive Homa’s four key de-
sign principles: (i) transmitting short messages blindly, (ii) using
in-network priorities, (iii) allocating priorities dynamically at
receivers in conjunction with receiver-driven rate control, and
(iv) controlled overcommitment of receiver downlinks. While
some past designs use the first two of these techniques, we show
that combining all four techniques is crucial to deliver the lowest
levels of latency at high network load.

We focus on message latency (not packet latency) since it
reflects application performance. A message is a block of bytes
of any length transmitted from a single sender to a single re-
ceiver. The sender must specify the size of a message when
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presenting its first byte to the transport, and the receiver cannot
act on a message until it has been received in its entirety. Knowl-
edge of message sizes is particularly valuable because it allows
transports to prioritize shorter messages.

The key challenge in delivering short messages with low la-
tency is to eliminate queuing delays. Similar to prior work, we
assume that bandwidth in the network core is sufficient to accom-
modate the offered load, and that the network supports efficient
load-balancing [1, 10, 16], so that packets are distributed evenly
across the available paths (we assume simple randomized per-
packet spraying in our design). As a result, queueing will occur
primarily in the downlinks from top-of-rack switches (TORs)
to machines. This happens when multiple senders transmit si-
multaneously to the same receiver. The worst-case scenario is
incast, where an application initiates RPCs to many servers
concurrently and the responses all arrive at the same time.
There is no time to schedule every packet. An ideal scheme
might attempt to schedule every packet at a central arbiter, as
in Fastpass [25]. Such an arbiter could take into account all the
messages and make a global scheduling decision about which
packet to transmit from each sender and when to transmit it. The
arbiter could in theory avoid queues in the network altogether.
However, this approach triples the latency for short messages:
a tiny, single-packet message takes at least 1.5 RTTs if it needs
to wait for a scheduling decision, whereas it could finish within
0.5 RTT if transmitted immediately. Receiver-based scheduling
mechanisms such as ExpressPass [8] suffer the same penalty.

In order to achieve the lowest possible latency, short messages
must be transmitted blindly, without considering potential con-
gestion. In general, a sender must transmit enough bytes blindly
to cover the round-trip time to the receiver (including software
overheads on both ends); during this time the receiver can return
explicit scheduling information to control future transmissions,
without introducing additional delays. We refer to this amount
of data as RTTbytes; it is about 10 KB in our implementation of
Homa for 10 Gbps networks.
Buffering is a necessary evil. Blind transmissions mean that
buffering can occur when multiple senders transmit to the same
receiver. No protocol can achieve minimum latency without in-
curring some buffering. But, ironically, when buffering occurs,
it will increase latency. Many previous designs have attempted
to reduce buffering, e.g., with carefully-engineered rate control
schemes [2, 21, 34], reserving bandwidth headroom [3], or even
strictly limiting the buffer size to a small value [15]. However,
none of these approaches can completely eliminate the latency
penalty of buffering.
In-network priorities are a must. Given the inevitability of
buffering, the only way to achieve the lowest possible latency is
to use in-network priorities. Each output port in a modern switch
supports a small number of priority levels (typically 8), with
one queue for each priority. Each incoming packet indicates
which queue to use for that packet, and output ports service
higher priority queues before lower priority ones. The key to

low latency is assigning packet priorities so that short messages
bypass queued packets for longer messages.

This observation is not new; starting with pFabric [4], several
schemes have shown that switch-based priorities can be used
to improve message latency [6, 7, 13, 14]. These schemes use
priorities to implement various message-size-based scheduling
policies. The most common of these policies is SRPT (shortest
remaining processing time first), which prioritizes packets from
messages with the fewest bytes remaining to transmit. SRPT
provides near-optimal average message latency, and as shown
in prior work [4, 17], it also provides very good tail latency for
short messages. Homa implements an approximation of SRPT
(though the design can support other policies as well).

Unfortunately, in practice, no existing scheme can deliver the
near-optimal latency of SRPT at high network load. pFabric
approximates SRPT accurately, but it requires too many priority
levels to implement with today’s switches. PIAS [6] works with
a limited number of priorities, but it assigns priorities on senders,
which limits its ability to approximate SRPT (see below). In ad-
dition, it works without message sizes, so it uses a “multi-level
queue” scheduling policy. As a result, PIAS has high tail latency
both for short messages and long ones. QJUMP [14] requires
priorities to be allocated manually on a per-application basis,
which is too inflexible to produce optimal latencies.
Making best use of limited priorities requires receiver con-
trol. To produce the best approximation of SRPT with only
a small number of priority levels, the priorities should be de-
termined by the receiver. Except for blind transmissions, the
receiver knows the exact set of messages vying for bandwidth on
its downlink from the TOR switch. As a result, the receiver can
best decide which priority to use for each incoming packet. In ad-
dition, the receiver can amplify the effectiveness of the priorities
by integrating them with a packet scheduling mechanism.

pHost [13], the closest prior scheme to Homa, is an example
of using a receiver-driven approach to approximate SRPT. Its
primary mechanism is packet scheduling: senders transmit the
first RTTbytes of each message blindly, but packets after that
are transmitted only in response to explicit grants from the re-
ceiver. Receivers schedule the grants to implement SRPT while
controlling the influx of packets to match the downlink speed.

However, pHost makes only limited use of priorities: it stat-
ically assigns one high priority for all blind transmissions and
one lower priority for all scheduled packets. This impacts its
ability to approximate SRPT in two ways. First, it bundles all
blind transmissions into a single priority. While this is reason-
able for workloads where most bytes are from large messages
(W4-W5 in Figure 1), it is problematic for workloads where a
large fraction of bytes are transmitted blindly (W1-W3). Second,
for messages longer than RTTbytes, pHost cannot preempt a
larger message immediately for a shorter one. Once again, the
root of the problem is that pHost bundles all such messages into
a single priority, which results in queueing delays. We will show
in §3.4 that this creates preemption lag, which hurts latency,
particularly for medium-sized messages that last a few RTTs.
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Receivers must allocate priorities dynamically. Homa ad-
dresses pHost’s limitations by dynamically allocating multiple
priorities at the receivers. Each receiver allocates priorities for
its own downlink using two mechanisms. For messages larger
than RTTbytes, the receiver communicates a priority for each
packet to its sender dynamically based on the exact set of in-
bound messages. This eliminates almost all preemption lag. For
short messages sent blindly, the sender cannot know about other
messages inbound for the receiver. Even so, the receiver can
provide guidance in advance to senders based on its recent work-
load. Our experiments show that dynamic priority management
reduces tail latency considerably in comparison to static priority
allocation schemes such as those in pHost or PIAS.
Receivers must overcommit their downlink in a controlled
manner. Scheduling packet transmissions with grants from
receivers reduces buffer occupancy, but it introduces a new
challenge: a receiver may send grants to a sender that does not
transmit to it in a timely manner. This problem occurs, for in-
stance, when a sender has messages for multiple receivers; if
more than one receiver decides to send it grants, the sender
cannot transmit packets to all such receivers at full speed. This
wastes bandwidth at the receiver downlinks and can signifi-
cantly hurt performance at high network load. For example, we
find that the maximum load that pHost can support ranges be-
tween 58% and 73% depending on the workload, despite using
a timeout mechanism to mitigate the impact of unresponsive
senders (§5.2). NDP [15] also schedules incoming packets to
avoid buffer buildup, and it suffers from a similar problem.

To address this challenge, Homa’s receivers intentionally
overcommit their downlinks by granting simultaneously to a
small number of senders; this results in controlled packet queu-
ing at the receiver’s TOR but is crucial to achieve high network
utilization and the best message latency at high load (§3.5).
Senders need SRPT also. Queues can build up at senders as
well as receivers, and this can result in long delays for short
messages. For example, most existing protocols implement
byte streams, and an application will typically use a single
stream for each destination. However, this can result in head-
of-line-blocking, where a short message for a given destination
is queued in the byte stream behind a long message for the
same destination. §5.1 will show that this increases tail latency
by 100x for short messages. FIFO packet queues in the NIC
can also result in high tail latency for short messages, even if
messages are transmitted on different streams. For low tail la-
tency, senders must ensure that short outgoing messages are not
delayed by long ones.
Putting it all together. Figure 2 shows an overview of the Homa
protocol. Homa divides messages into two parts: an initial un-
scheduled portion followed by a scheduled portion. The sender
transmits the unscheduled packets (RTTbytes of data) imme-
diately, but it does not transmit any scheduled packets until
instructed by the receiver. The arrival of an unscheduled packet
makes the receiver aware of the message; the receiver then re-
quests the transmission of scheduled packets by sending one

P0

Scheduled Unscheduled

Sender1 Sender2

Receiver

m1 m2

Unscheduled Scheduled

P7

Datacenter
Network

TOR Egress Port
100110101

100110101

G

G

Figure 2: Overview of the Homa protocol. Sender1 is transmitting
scheduled packets of message m1, while Sender2 is transmitting
unscheduled packets of m2.

grant packet for each scheduled packet. Homa’s receivers dy-
namically set priorities for scheduled packets and periodically
notify senders of a set of thresholds for setting priorities for un-
scheduled packets. Finally, the receivers implement controlled
overcommitment to sustain high utilization in the presence of un-
responsive senders. The net effect is an accurate approximation
of the SRPT scheduling policy using a small number of priority
queues. We will show that this yields excellent performance
across a broad range of workloads and traffic conditions.

3 HOMA DESIGN
This section describes the Homa protocol in detail. In addition
to describing how Homa implements the key ideas from the
previous section, this section also discusses several other as-
pects of the protocol that are less essential for performance
but result in a complete and practical substrate for datacenter
RPC. Homa contains several unusual features: it is receiver-
driven; it is message-oriented, rather than stream-oriented; it
is connectionless; it uses no explicit acknowledgments; and it
implements at-least-once semantics, rather than the more tra-
ditional at-most-once semantics. Homa uses four packet types,
which are summarized in Figure 3.

3.1 RPCs, not connections
Homa is connectionless. It implements the basic data transport
for RPCs, each of which consists of a request message from a
client to a server and its corresponding response message. Each
RPC is identified by a globally unique RPCid generated by the
client. The RPCid is included in all packets associated with the
RPC. A client may have any number of outstanding RPCs at a
time, to any number of servers; concurrent RPCs to the same
server may complete in any order.

Independent delivery of messages is essential for low tail
latency. The streaming approach used by TCP results in head-
of-line-blocking, where a short message is queued behind a
long message for the same destination. §5.1 will show that this
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DATA Sent from sender to receiver. Contains a range of bytes within
a message, defined by an offset and a length. Also indicates total
message length.

GRANT Sent from receiver to sender. Indicates that the sender may now
transmit all bytes in the message up to a given offset, and specifies
the priority level to use.

RESEND Sent from receiver to sender. Indicates that sender should
re-transmit a given range of bytes within a message.

BUSY Sent from sender to receiver. Indicates that a response to
RESEND will be delayed (the sender is busy transmitting higher
priority messages, or an RPC operation is still being executed);
used to prevent timeouts.

Figure 3: The packet types used by Homa. All packet types except
DATA are sent at highest priority; the priorities for DATA packets
are specified by the receiver as discussed in §3.4.

increases tail latency by 100x for short messages. Many re-
cent proposals, such as DCTCP, pFabric, and PIAS, assume
dozens of connections between each source-target pair, so that
each messsage has a dedicated connection. However, this ap-
proach results in an explosion of connection state. Even a single
connection for each application-server pair is problematic for
large-scale applications ([23] §3.1, [11] §3.1), so it is probably
not realistic to use multiple connections.

No setup phase or connection is required before a client ini-
tiates an RPC to a server, and neither the client nor the server
retains any state about an RPC once the client has received
the result. In datacenter applications, servers can have large
numbers of clients; for example, servers in Google datacenters
commonly have several hundred thousand open connections
[12]. Homa’s connectionless approach means that the state kept
on a server is determined by the number of active RPCs, not the
total number of clients.

Homa requires a response for each RPC request because this
is the common case in datacenter applications and it allows
the response to serve as an acknowledgment for the request.
This reduces the number of packets required (in the simplest
case, there is only a single request packet and a single response
packet). One-way messages can be simulated by having the
server application return an empty response immediately upon
receipt of the request.

Homa handles request and response messages in nearly iden-
tical fashion, so we don’t distinguish between requests and
responses in most of the discussion below.

Although we designed Homa for newer datacenter applica-
tions where RPC is a natural fit, we believe that traditional appli-
cations could be supported by implementing a socket-like byte
stream interface above Homa. We leave this for future work.

3.2 Basic sender behavior

When a message arrives at the sender’s transport module, Homa
divides the message into two parts: an initial unscheduled por-
tion (the first RTTbytes bytes), followed by a scheduled portion.
The sender transmits the unscheduled bytes immediately, using
one or more DATA packets. The scheduled bytes are not trans-
mitted until requested explicitly by the receiver using GRANT

packets. Each DATA packet has a priority, which is determined
by the receiver as described in §3.4.

The sender implements SRPT for its outgoing packets: if
DATA packets from several messages are ready for transmission
at the same time, packets for the message with the fewest remain-
ing bytes are sent first. The sender does not consider the prior-
ities in the DATA packets when scheduling its packet transmis-
sions (the priorities in DATA packets are intended for the final
downlinks to the receivers). Control packets such as GRANTs
and RESENDs are always given priority over DATA packets.

3.3 Flow control
Flow control in Homa is implemented on the receiver side by
scheduling incoming packets on a packet-by-packet basis, like
pHost and NDP. Under most conditions, whenever a DATA
packet arrives at the receiver, the receiver sends a GRANT
packet back to the sender. The grant invites the sender to trans-
mit all bytes in the message up to a given offset, and the offset is
chosen so that there are always RTTbytes of data in the message
that have been granted but not yet received. Assuming timely
delivery of grants back to the sender and no competition from
other messages, messages can be transmitted from start to finish
at line rate with no delays.

If multiple messages arrive at a receiver simultaneously, their
DATA packets will interleave as determined by their priorities.
If the DATA packets of a message are delayed, then GRANTs
for that message will also be delayed, so there will never be more
than RTTbytes of granted-but-not-received data for a message.
This means that each incoming message can occupy at most
RTTbytes of buffer space in the receiver’s TOR.

If there are multiple incoming messages, the receiver may
stop sending grants to some of them, as part of the overcom-
mitment limits described in §3.5. Once a grant has been sent
for the last bytes of a message, data packets for that message
may result in grants to other messages for which grants had
previously been stopped.

The DATA packets for a message can arrive in any order;
the receiver collates them using the offsets in each packet. This
allows Homa to use per-packet multi-path routing in order to
minimize congestion in the network core.

3.4 Packet priorities
The most novel feature in Homa, and the key to its performance,
is its use of priorities. Each receiver determines the priorities
for all of its incoming DATA packets in order to approximate
the SRPT policy. It uses different mechanisms for unscheduled
and scheduled packets. For unscheduled packets, the receiver
allocates priorities in advance. It uses recent traffic patterns
to choose priority allocations, and it disseminates that infor-
mation to senders by piggybacking it on other packets. Each
sender retains the most recent allocations for each receiver (a
few dozen bytes per receiver) and uses that information when
transmitting unscheduled packets. If the receiver’s incoming
traffic changes, it disseminates new priority allocations the next
time it communicates with each sender.
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Homa allocates priorities for unscheduled packets so that
each priority level is used for about the same number of bytes.
Each receiver records statistics about the sizes of its incoming
messages and uses the message size distribution to compute pri-
ority levels as illustrated in Figure 4. The receiver first computes
the fraction of all incoming bytes that are unscheduled (about
80% in Figure 4). It allocates this fraction of the available pri-
orities (the highest ones) for unscheduled packets, and reserves
the remaining (lower) priority levels for scheduled packets. The
receiver then chooses cutoffs between the unscheduled prior-
ities so that each priority level is used for an equal number of
unscheduled bytes and shorter messages use higher priorities.

R1 R2

S1 S2

m1
m3

m2

Figure 6: Bandwidth can be wasted if a receiver grants to only a single
sender at a time. In this example, S1 has messages ready to send to R1
and R2 while S2 also has a message for R1. If R1 grants to only one
message at a time, it will choose m1, which is shorter than m3. How-
ever, S1 will choose to transmit m2, since it is shorter than m1. As a
result, R1’s downlink will be idle even though it could be used for m3.

For scheduled packets, the receiver specifies a priority in
each GRANT packet, and the sender uses that priority for the
granted bytes. This allows the receiver to dynamically adjust the
priority allocation based on the precise set of messages being
received; this produces a better approximation to SRPT than
approaches such as PIAS, where priorities are set by senders
based on historical trends. The receiver uses a different priority
level for each message, with higher priorities used for messages
with fewer ungranted bytes. If there are more incoming mes-
sages than priority levels, only the highest priority messages
are granted, as described in §3.5. If there are fewer messages
than scheduled priority levels, then Homa uses the lowest of
the available priorities; this leaves higher priority levels free for
new higher priority messages. If Homa always used the highest
scheduled priorities, it would result in preemption lag: when
a new higher priority message arrived, its scheduled packets
would be delayed by 1 RTT because of buffered packets from
the previous high priority message (see Figure 5). Using the
lowest scheduled priorities eliminates preemption lag except
when all scheduled priorities are in use.

3.5 Overcommitment

One of the important design decisions for Homa is how many
incoming messages a receiver should allow at any given time.
A receiver can stop transmission of a message by withhold-
ing grants; once all of the previously-granted data arrives, the
sender will not transmit any more data for that message until the
receiver starts sending grants again. We use the term active to
describe the messages for which the receiver is willing to send
grants; the others are inactive.

One possible approach is to keep all incoming messages ac-
tive at all times. This is the approach used by TCP and most other
existing protocols. However, this approach results in high buffer
occupancy and round-robin scheduling between messages, both
of which contribute to high tail latency.

In our initial design for Homa, each receiver allowed only
one active message at a time, like pHost. If a receiver had mul-
tiple partially-received incoming messages, it sent grants only
to the highest priority of these; once it had granted all of the
bytes of the highest priority message, it began granting to the
next highest priority message, and so on. The reasoning for this
approach was to minimize buffer occupancy and to implement
run-to-completion rather than round-robin scheduling.
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Our simulations showed that allowing only one active mes-
sage resulted in poor network utilization under high load. For
example, with workload W4 from Figure 1, Homa could not use
more than about 63% of the network bandwidth, regardless of of-
fered load. The network was underutilized because senders did
not always respond immediately to grants; this caused downlink
bandwidth to be wasted. Figure 6 illustrates how this can happen.

There is no way for a receiver to know whether a particular
sender will respond to grants, so the only way to keep the down-
link fully utilized is to overcommit: a receiver must grant to more
than one sender at a time, even though its downlink can only
support one of the transmissions at a time. With this approach, if
one sender does not respond, then the downlink can be used for
some other sender. If many senders respond at once, the priority
mechanism ensures that the shortest message is delivered first;
packets from the other messages will be buffered in the TOR.

We use the term degree of overcommitment to refer to the
maximum number of messages that may be active at once on
a given receiver. If there are more than this many messages
available, only the highest priority ones are active. A higher
degree of overcommitment reduces the likelihood of wasted
bandwidth, but it consumes more buffer space in the TOR (up
to RTTbytes for each active message) and it can result in more
round-robin scheduling between messages, which increases
average completion time.

Homa currently sets the degree of overcommitment to the
number of scheduled priority levels: a receiver will grant to
at most one message for each available priority level. This ap-
proach resulted in high network utilization in our simulations,
but there are other plausible approaches. For example, a receiver
might use a fixed degree of overcommitment, independent of
available priority levels (if necessary, several messages could
share the lowest priority level); or, it might adjust the degree of
overcommitment dynamically based on sender response rates.
We leave an exploration of these alternatives to future work.

The need for overcommitment provides another illustration
why it isn’t practical to completely eliminate buffering in a trans-
port protocol. Homa introduces just enough buffering to ensure
good link utilization; it then uses priorities to make sure that the
buffering doesn’t impact latency.

3.6 Incast
Homa solves the incast problem by taking advantage of the
fact that incast is usually self-inflicted: it occurs when a node
issues many concurrent RPCs to other nodes, all of which return
their results at the same time. Homa detects impending incasts
by counting each node’s outstanding RPCs. Once this number
exceeds a threshold, new RPCs are marked with a special flag
that causes the server to use a lower limit for unscheduled bytes
in the response message (a few hundred bytes). Small responses
will still get through quickly, but larger responses will be sched-
uled by the receiver; the overcommitment mechanism will limit
buffer usage. With this approach, a 1000-fold incast will con-
sume at most a few hundred thousand bytes of buffer space in
the TOR.

Incast can also occur in ways that are not predictable; for ex-
ample, several machines might simultaneously decide to issue
requests to a single server. However, it is unlikely that many
such requests will synchronize tightly enough to cause incast
problems. If this should occur, Homa’s efficient use of buffer
space still allows it to support hundreds of simultaneous arrivals
without packet loss (see Section 5.1).

Incast is largely a consequence of the high latency in cur-
rent datacenters. If each request results in a disk I/O that takes
10 ms, a client can issue 1000 or more requests before the first re-
sponse arrives, resulting in massive incast. In future low-latency
environments, incast will be less of an issue because requests
will complete before very many have been issued. For exam-
ple, in the RAMCloud main-memory storage system [24], the
end-to-end round-trip time for a read request is about 5µs. In a
multiread request, it takes the client 1–2µs to issue each request
for a different server; by the time it has issued 3–4 RPCs, re-
sponses from the first requests have begun to arrive. Thus there
are rarely more than a few outstanding requests.
3.7 Lost packets
We expect lost packets to be rare in Homa. There are two reasons
for packet loss: corruption in the network, and buffer overflow.
Corruption is extremely rare in modern datacenter networks, and
Homa reduces buffer usage enough to make buffer overflows
extremely uncommon as well. Since packets are almost never
lost, Homa optimizes lost-packet handling for efficiency in the
common case where packets are not lost, and for simplicity
when packets are lost.

In TCP, senders are responsible for detecting lost packets.
This approach requires acknowledgment packets, which add
overhead to the protocol (the simplest RPC requires two data
packets and two acknowledgments). In Homa, lost packets are
detected by receivers; as a result, Homa does not use any ex-
plicit acknowledgments. This eliminates half of the packets for
simple RPCs. Receivers use a simple timeout-based mechanism
to detect lost packets. If a long time period (a few milliseconds)
elapses without additional packets arriving for a message, the
receiver sends a RESEND packet that identifies the first range
of missing bytes; the sender will then retransmit those bytes.

If all of the initial packets of an RPC request are lost, the server
will not know about the message, so it won’t issue RESENDs.
However, the client will timeout on the response message, and
it will send a RESEND for the response (it does this even if
the request has not been fully transmitted). When the server
receives a RESEND for a response with an unknown RPCid,
it assumes that the request message must have been lost and it
sends a RESEND for the first RTTbytes of the request.

If a client receives no response to a RESEND (because of
server or network failures), it retries the RESEND several times
and eventually aborts the RPC, returning an error to higher level
software.
3.8 At-least-once semantics
RPC protocols have traditionally implemented at most once
semantics, where each RPC is executed exactly once in the
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normal case; in the event of an error, an RPC may be executed
either once or not at all. Homa allows RPCs to be executed more
than once: in the normal case, an RPC is executed one or more
times; after an error, it could have been executed any number
of times (including zero). There are two situations where Homa
re-executes RPCs. First, Homa doesn’t keep connection state, so
if a duplicate request packet arrives after the server has already
processed the original request and discarded its state, Homa will
re-execute the operation. Second, servers get no acknowledg-
ment that a response was received, so there is no obvious time
at which it is safe to discard the response. Since lost packets
are rare, servers take the simplest approach and discard all state
for an RPC as soon as they have transmitted the last response
packet. If a response packet is lost, the server may receive the
RESEND after it has deleted the RPC state. In this case, it will
behave as if it never received the request and issue a RESEND
for the request; this will result in re-execution of the RPC.

Homa allows re-executions because it simplifies the im-
plementation and allows servers to discard all state for inac-
tive clients (at-most-once semantics requires servers to retain
enough state for each client to detect duplicate requests). More-
over, duplicate suppression at the transport level is insufficient
for most datacenter applications. For example, consider a repli-
cated storage system: if a particular replica crashes while exe-
cuting a client’s request, the client will retry that request with a
different replica. However, it is possible that the original replica
completed the operation before it crashed. As a result, the crash
recovery mechanism may result in re-execution of a request,
even if the transport implements at-most-once semantics. Du-
plicates must be filtered at a level above the transport layer.

Homa assumes that higher level software will either tolerate
redundant executions of RPCs or filter them out. The filtering
can be done either with application-specific mechanisms, or
with general-purpose mechanisms such as RIFL [19]. For ex-
ample, a TCP-like streaming mechanism can be implemented
as a very thin layer on top of Homa that discards duplicate data
and preserves order.

4 IMPLEMENTATION
We implemented Homa as a new transport in the RAMCloud
main-memory storage system [24]. RAMCloud supports a vari-
ety of transports that use different networking technologies, and
it has a highly tuned software stack: the total software overhead
to send or receive an RPC is 1–2 µs in most transports. The
Homa transport is based on DPDK [9], which allows it to by-
pass the kernel and communicate directly with the NIC; Homa
detects incoming packets with polling rather than interrupts.
The Homa implementation contains a total of 3660 lines of C++
code, of which about half are comments.

The RAMCloud implementation of Homa includes all of the
features described in this paper except that it does not yet mea-
sure incoming message lengths on the fly (the priorities were
precomputed based on knowledge of the benchmark workload).

The Homa transport contains one additional mechanism not
previously described, which limits buffer buildup in the NIC

CloudLab Infiniband
CPU Xeon D1548 (8 cores @

2.0 GHz)
Xeon X3470 (4 cores @
2.93 GHz)

NICs Mellanox ConnectX-3 (10
Gbps Ethernet)

Mellanox ConnectX-2 (24
Gbps)

Switches HP Moonshot-45XGc (10
Gbps Ethernet)

Mellanox MSX6036 (4X
FDR) and Infiniscale IV
(4X QDR)

Figure 7: Hardware configurations. The Infiniband cluster was used
for measuring Infiniband performance; CloudLab was used for all
other measurements.

transmit queue. In order for a sender to implement SRPT pre-
cisely, it must keep the transmit queue in the NIC short, so
that high priority packets don’t have to wait for lower priority
packets queued previously (as described in §3.2, the sender’s
priority for an outgoing packet does not necessarily correspond
to the priority stored in the packet). To do this, Homa keeps a
running estimate of the total number of untransmitted bytes in
the NIC, and it only hands off a packet to the NIC if the num-
ber of untransmitted bytes (including the new packet) will be
two full-size packets or less. This allows the sender to reorder
outgoing packets when new messages arrive.

5 EVALUATION
We evaluated Homa by measuring the RAMCloud implemen-
tation and also by running simulations. Our goal was to answer
the following questions:

∙ Does Homa provide low latency for short messages even
at high network load and in the presence of long mes-
sages?

∙ How efficiently does Homa use network bandwidth?
∙ How does Homa compare to existing state-of-the-art ap-

proaches?
∙ How important are Homa’s novel features to its perfor-

mance?

5.1 Implementation Measurements
We used the CloudLab cluster described in Figure 7 to measure
the performance of the Homa implementation in RAMCloud.
The cluster contained 16 nodes connected to a single switch
using 10 Gbps Ethernet; 8 nodes were used as clients and 8 as
servers. Each client generated a series of echo RPCs; each RPC
sent a block of a given size to a server, and the server returned
the block back to the client. Clients chose RPC sizes pseudo-
randomly to match one of the workloads from Figure 1, with
Poisson arrivals configured to generate a particular network
load. The server for each RPC was chosen at random.

Figure 8 graphs the performance of Homa and several other
RAMCloud transports for workloads W3-W5 at 80% network
load (W1 and W2 are not shown because RAMCloud’s software
overheads are too high to handle the large numbers of small mes-
sages generated by these workloads at 80% network utilization).
Our primary metric for evaluating Homa, shown in Figure 8, is
99th percentile tail slowdown, where slowdown is the ratio of
the actual time required to complete an echo RPC divided by
the best possible time for an RPC of that size on an unloaded
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Figure 8: Tail latency of Homa and other RAMCloud transports for workloads W3, W4, and W5 at 80% network load. X-axes are linear in
total number of messages (each tick is 10% of all messages). “HomaPx” measures Homa restricted to use only x priorities. “Basic” measures
the preexisting Basic transport in RAMCloud, which corresponds roughly to HomaP1 with no limit on overcommitment. ”InfRC” measures
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CloudLab cluster. InfRC was measured on the Infiniband cluster using the same absolute workload, so its network utilization was only about 33%.
Best-case RPC times (slowdown of 1.0) for 100 byte RPCs are 3.9 µs for InfRC, 4.7 µs for Homa and Basic, and 15.5 µs for TCP.

network. A slowdown of 1 is ideal. The x-axis for each graph
is scaled to match the CDF of message sizes: the axis is linear in
total number of messages, with ticks corresponding to 10% of
all messages in that workload. This results in a different x-axis
scale for each workload, which makes it easier to see results for
the message sizes that are most common.

Homa provides a 99th percentile tail slowdown in the range
of 2–3.5 across a broad range of RPC sizes and workloads. For
example, a 100-byte echo RPC takes 4.7 µs in an unloaded
network; at 80% network load, the 99th-percentile latency was
about 14 µs in all three loads.

To quantify the benefits provided by the priority and overcom-
mitment mechanisms in Homa, we also measured RAMCloud’s
Basic transport. Basic is similar to Homa in that it is receiver-
driven, with grants and unscheduled packets. However, Basic
does not use priorities and it has no limit on overcommitment: re-
ceivers grant independently to all incoming messages. Figure 8
shows that tail latency is 5–15x higher in Basic than in Homa. By
analyzing detailed packet traces we determined that Basic’s high
latency is caused by queuing delays at the receiver’s downlink;
Homa’s use of priorities eliminates almost all of these delays.

Although Homa prioritizes small messages, it also outper-
forms Basic for large ones. This is because Homa’s SRPT pol-
icy tends to produce run-to-completion behavior: it finishes the
highest priority message before giving service to any other mes-
sages. In contrast, Basic, like TCP, tends to produce round-robin
behavior; when there are competing large messages, they all
complete slowly.

For the very largest messages, Homa produces 99th-percentile
slowdowns of 100x or more. This is because of the SRPT policy.
We speculate that the performance of these outliers could be
improved by dedicating a small fraction of downlink bandwidth
to the oldest message; we leave a full analysis of this alternative
to future work.

To answer the question “How many priority levels does Homa
need?” we modified the Homa transport to reduce the number of

priority levels by collapsing adjacent priorities. Figure 8 shows
the results. 99th-percentile tail latency is almost as good with
4 priority levels as with 8, but tail latency increases noticeably
when there are only 2 priority levels. Homa with only one pri-
ority level is still significantly better than Basic; this is because
Homa’s limit on overcommitment results in less buffering than
Basic, which reduces preemption lag.
Homa vs. Infiniband. Figure 8 also measures RAMCloud’s In-
fRC transport, which uses kernel bypass with Infiniband reliable
connected queue pairs. The Infiniband measurements show the
advantage of Homa’s message-oriented protocol over streaming
protocols. We first measured InfRC in its normal mode, which
uses a single connection for each client-server pair. This re-
sulted in tail latencies about 1000x higher than Homa for small
messages. Detailed traces showed that the long delays were
caused by head-of-line blocking at the sender, where a small
message got stuck behind a very large message to the same desti-
nation. Any streaming protocol, such as TCP, will suffer similar
problems. We then modified the benchmark to use multiple
connections per client-server pair (“InfRC-MC” in the figures).
This eliminated the head-of-line blocking and improved tail
latency by 100x, to about the same level as Basic. As discussed
in §3.1, this approach is probably not practical in large-scale
applications because it causes an explosion of connection state.
InfRC-MC still doesn’t approach Homa’s performance, because
it doesn’t use priorities.

Note: the Infiniband measurements were taken on a different
cluster with faster CPUs, and the Infiniband network offers 24
Gpbs applicaiton level bandwidth, vs. 10 Gbps for Homa and
Basic. The software overheads for InfRC were too high to run
at 80% load on the Infiniband network, so we used the same
absolute load as for the Homa and Basic measurements, which
resulted in only 33% network load for Infiniband. As a result,
Figure 8 overstates the performance of Infiniband relative to
Homa. In particular, Infiniband appears to perform better than
Homa for large messages sizes. This is an artifact of measuring
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10 runs.

Infiniband at 33% network load and Homa at 80%; at equal load
factors, we expect Homa to provide significantly lower latency
than Infiniband at all message sizes.
Homa vs. TCP. The “TCP-MC” curves in Figure 8 shows the
performance of RAMCloud’s TCP transport, which uses the
Linux kernel implementation of TCP. Only workloads W4 and
W5 are shown (system overheads were too high to run W3 at
80% load), and only with multiple connections per client-server
pair (with a single connection, tail slowdown was off the scale
of the graphs). Even in multi-connection mode, TCP’s tail la-
tencies are 10–100x higher than for Homa. We also created a
new RAMCloud transport using mTCP [18], a user-level imple-
mentation of TCP that uses DPDK for kernel bypass. However,
we were unable to achieve latencies for mTCP less than 1 ms;
the mTCP developers confirmed that this behavior is expected
(mTCP batches heavily, which improves throughput at the ex-
pense of latency). We did not graph mTCP results.
Homa vs. other implementations. It is difficult to compare
Homa with other published implementations because most prior
systems do not break out small message performance and some
measurements were taken with slower networks. Nonetheless,
Homa’s absolute performance (14 µs round-trip for small mes-
sages at 80% network load and 99th percentile tail latency) is
nearly two orders of magnitude faster than the best available
comparison systems. For example, HULL [3] reported 782 µs
one-way latency for 1 Kbyte messages at 99th percentile and
60% network load, and PIAS [6] reported 2 ms one-way la-
tency for messages shorter than 100 Kbytes at 99th percentile
and 80% network load; both of these systems used 1 Gbps net-
works. NDP [15] reported more than 600 µs one-way latency
for 100 Kbyte messages at 99th percentile in a loaded 10 Gbps
network, of which more than 400 µs was queueing delay.
Incast. To measure the effectiveness of Homa’s incast control
mechanism, we ran an experiment where a single client initiated
a large number of RPCs in parallel to a collection of servers.
Each RPC had a tiny request and a response of approximately
RTTbytes (10 KB). Figure 9 shows the results. With the in-
cast control mechanism enabled, Homa successfully handled
several thousand simultaneous RPCs without degradation. We
also measured performance with incast control disabled; this
shows the performance that can be expected when incast occurs
for unpredictable reasons. Even under these conditions Homa

supported about 300 concurrent RPCs before performance de-
graded because of packet drops. Homa is less sensitive to incast
than protocols such as TCP because its packet scheduling mech-
anism limits buffer buildup to at most RTTbytes per incoming
message. In contrast, a single TCP connection can consume all
of the buffer space available in a switch.

5.2 Simulations
The rest of our evaluation is based on packet-level simulations.
The simulations allowed us to explore more workloads, mea-
sure behavior at a deeper level, and compare with simulations
of pFabric [4], pHost [13], NDP [15], and PIAS [6]. We chose
pFabric for comparison because it is widely used as a bench-
mark and its performance is believed to be near-optimal. We
chose pHost and NDP because they use receiver-driven packet
scheduling, like Homa, but they make limited use of priorities
and don’t use overcommitment. We chose PIAS because it uses
priorities in a more static fashion than Homa and does not use
receiver-driven scheduling.

The simulations used the same network topology as prior eval-
uations of pFabric, pHost, and PIAS, consisting of 144 hosts
divided among 9 racks with a 2-level switching fabric. Host
links operate at 10 Gbps and TOR-aggregation links operate
at 40 Gbps. For additional details about the simulators, see the
complete version of this paper [22].

Our simulations used an all-to-all communication pattern
similar to that of §5.1, except that each host was both a sender
and a receiver, and the workload consisted of one-way messages
instead of RPCs. New messages are created at senders according
to a Poisson process; the size of each message is chosen from one
of the workloads in Figure 1, and the destination for the message
is chosen uniformly at random. For each simulation we selected
a message arrival rate to produce a desired network load, which
we define as the percentage of available network bandwidth
consumed by goodput packets; this includes application-level
data plus the minimum overhead (packet headers, inter-packet
gaps, and control packets) required by the protocol; it does not
include retransmitted packets.
Tail latency vs. pFabric, pHost, and PIAS. Figure 10 displays
99th percentile slowdown as a function of message size at a net-
work load of 80% for the five workloads in Figure 1. It uses
the same axes as Figure 8 except that slowdown is measured in
terms of one-way message delivery, not RPC round-trips. The
Homa curves in Figure 10 are similar to those in Figure 8, but
slowdowns are somewhat less in Figure 10 (the simulations do
not model queueing delays that occur in software, such as when
an incoming packet cannot be processed immediately because
the receiver is still processing an earlier packet).

Homa delivers consistent low latency for small messages
across all workloads, and its performance is similar to pFabric:
99th-percentile slowdown for the shortest 50% of messages is
never worse than 2.2 at 80% network load. pHost and PIAS
have considerably higher slowdown than Homa and pFabric
in Figure 10. This surprised us, because both pHost and PIAS
claimed performance comparable to pFabric. On further review,



Homa: A Receiver-Driven Low-Latency Transport Protocol SIGCOMM ’18, August 20-25, 2018, Budapest, Hungary

1

2

3
4
5

1010

2 3 5 11 28 85 16
7

29
1

50
8

16
12

999
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa

Workload: W1

1

2

3
4
5

1010

3 34 58 17
1

26
9

32
0

36
6

42
7

51
2

26
21

4499
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa

Workload: W2

1

2

3
4
5

1010

36 77 11
0

15
8

26
8

31
3

40
2

57
3

17
55

51
14

69
599

%
 S

lo
w

do
w

n 
(L

og
 S

ca
le

)

pHost
PIAS
pFabric
Homa

Workload: W3

1

2

3
4
5

1010

31
5

37
6

50
2

56
1

66
2

96
0

63
87

49
40

8

12
03

73

1e
+0

799
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

pHost
PIAS
pFabric
Homa

Workload: W4

1

2

3

4
5

10

20

30

72
10

21
63

0

28
84

0

50
47

0

70
65

8

26
96

54

10
58

42
8

22
10

58
6

11
53

74
42

28
84

00
00

Message Size (Bytes)

99
%

 S
lo

w
do

w
n 

(L
og

 S
ca

le
)

NDP
pHost
PIAS
pFabric
Homa

Workload: W5
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linear in total number of messages (each tick corresponds to 10%
of all messages). All measurements except NDP and pHost used
a netwwork load of 80%. NDP and pHost cannot support 80%
network load for these workloads, so we used the highest load that
each protocol could support (70% for NDP, 58–73% for pHost,
depending on workload). The minimum one-way time for a small
message (slowdown is 1.0) is 2.3 µs. NDP was measured only for W5
because its simulator cannot handle partial packets.

we found that those claims were based on mean slowdown. Our
evaluation follows the original pFabric publication and focuses
on 99th percentile slowdown.

A comparison between the pHost and Homa curves in Fig-
ure 10 shows that a receiver-driven approach is not enough by
itself to guarantee low latency; using priorities and overcommit-
ment reduces tail latency by an additional 30–50%.

The performance of PIAS in Figure 10 is somewhat erratic.
Under most conditions, its tail latency is considerably worse
than Homa, but for larger messages in W1 and W2 PIAS pro-
vides better latency than Homa. PIAS is nearly identical to
Homa for small messages in workload W3. PIAS always uses
the highest priority level for messages that fit in a single packet,
and this happens to match Homa’s priority allocation for W3.

PIAS uses a multi-level feedback queue policy, where each
message starts at high priority; the priority drops as the message
is transmitted and PIAS learns more about its length. This policy
is inferior to Homa’s receiver-driven SRPT not only for small
messages but also for most long ones. Small messages suffer
because they get queued behind the high-priority prefixes of
longer messages. Long messages suffer because their priority
drops as they get closer to completion; this makes it hard to
finish them. As a result, PIAS’ slowdown jumps significantly
for messages greater than one packet in length. In addition, with-
out receiver-based scheduling, congestion led to ECN-induced
backoff in workload W4, resulting in slowdowns of 20 or more
for multi-packet messages. Homa uses the opposite approach
from PIAS: the priority of a long message starts off low, but
rises as the message gets closer to finishing; eventually the mes-
sage runs to completion. In addition, Homa’s rate-limiting and
priority mechanisms work well together; for example, the rate
limiter eliminates buffer overflow as a major consideration.
NDP. The NDP simulator [15] could not simulate partial pack-
ets, so we measured NDP only with W5, in which all packets
are full-size; Figure 10 shows the results. NDP’s performance
is considerably worse than any of the other protocols, for two
reasons. First, it uses a rate control mechanism with no over-
commitment, which wastes bandwidth: at 70% network load,
27% of receiver bandwidth was wasted (the receiver had in-
complete incoming messages yet its downlink was idle). We
could not run simulations above 73% network load. The wasted
downlink bandwidth results in additional queuing delays at high
network load. Second, NDP does not use SRPT; its receivers use
a fair-share scheduling policy, which results in a uniformly high
slowdown for all messages longer than RTTbytes. In addition,
NDP senders do not prioritize their transmit queues; this results
in severe head-of-line blocking for small messages when the
transmit queue builds up during bursts. The NDP comparison
demonstrates the importance of overcommitment and SRPT.
Causes of remaining delay. We instrumented the Homa simu-
lator to identify the causes of tail latency (“why is the slowdown
at the 99th percentile greater than 1.0?”) Figure 11 shows that
tail latency is almost entirely due to link-level preemption lag,
where a packet from a short message arrives at a link while it is
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Figure 12: Network utilization limits. The top of each bar indicates
the highest percent of available network bandwidth that the given
protocol can support for the given workload. It counts all bytes in
goodput packets, including application data, packet headers, and
control packets; it excludes retransmitted packets. The bottom part
of each bar indicates the percent of network bandwidth used for
application data at that load.

busy transmitting a packet from a longer message. This shows
that Homa is nearly optimal: the only way to improve tail latency
significantly is with changes to the networking hardware, such
as implementing link-level packet preemption.
Bandwidth utilization. To measure each protocol’s ability to
use network bandwidth efficiently, we simulated each workload-
protocol combination at higher and higher network loads to iden-
tify the highest load the protocol can support (the load generator
runs open-loop, so if the offered load exceeds the protocol’s ca-
pacity, queues grow without bound). Figure 12 shows that Homa
can operate at higher network loads than either pFabric, pHost,
NDP, or PIAS, and its capacity is more stable across workloads.

None of the protocols can achieve 100% bandwidth because
each of them wastes network bandwidth under some conditions.
Homa wastes bandwidth because it has a limited number of
scheduled priority levels: there can be times when (a) all of
the scheduled priority levels are allocated, (b) none of those
senders is responding, so the receiver’s downlink is idle and
(c) there are additional messages for which the receiver could
send grants if it had more priority levels. Figure 13 shows that
this wasted bandwidth increases with the overall network load;
eventually it consumes all of the surplus network bandwidth.
Figure 13 also shows the importance of overcommitment: if
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Figure 13: Wasted bandwidth as a function of network load for the
W4 workload. Each curve uses a different number of scheduled
priorities, which corresponds to the level of overcommitment. Each
𝑦-value is the average fraction of time across all receivers that a
receiver’s link is idle, yet the receiver withheld grants (because of
overcommitment limits) that might have caused the bandwidth to
be used. The diagonal line represents surplus network bandwidth
(100% - network load). Wasted bandwidth cannot ever exceed
surplus bandwidth, so the point where each curve intersects the
diagonal line indicates the maximum sustainable network load.

Queue W1 W2 W3 W4 W5
TOR→Aggr mean 0.7 1.0 1.6 1.7 1.7

max 21.1 30.0 50.3 82.7 93.6
Aggr→TOR mean 0.8 1.1 1.8 1.7 1.6

max 22.4 34.1 57.1 92.2 78.1
TOR→host mean 1.7 5.5 12.8 17.3 17.3

max 58.7 93.0 117.9 146.1 126.4
Table 1: Average and maximum queue lengths (in Kbytes) at
switch egress ports for each of the three levels of the network,
measured at 80% network load. Queue lengths do not include
partially-transmitted or partially-received packets.

receivers grant to only one message at a time, Homa can only
support a network load of about 63% for workload W4, versus
89% with an overcommitment level of 7.

The other protocols also waste bandwidth. pFabric wastes
bandwidth because it drops packets to signal congestion; those
packets must be retransmitted later. NDP and pHost both waste
bandwidth because they do not overcommit their downlinks. For
example, in pHost, if a sender becomes nonresponsive, band-
width on the receiver’s downlink is wasted until the receiver
times out and switches to a different sender. Figure 12 sug-
gests that Homa’s overcommitment mechanism uses network
bandwidth more efficiently than any of the other protocols.
Queue lengths. Some queuing of packets in switches is in-
evitable in Homa because of its use of unscheduled packets
and overcommitment. Even so, Table 1 shows that Homa is
successful at limiting packet buffering: average queue lengths
at 80% load are only 1–17 Kbytes, and the maximum observed
queue length was 146 Kbytes (in a TOR→host downlink). Of
the maximum, overcommitment accounts for as much as 56
Kbytes (RTTbytes in each of 6 scheduled priority levels); the
remainder is from collisions of unscheduled packets. Workloads
with shorter messages consume less buffer space than those with
longer messages. For example, the W1 workload uses only one
scheduled priority level, so it cannot overcommit; in addition,
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its messages are shorter, so more of them must collide simul-
taneously in order to build up long queues at the TOR. The
146-Kbyte peak occupancy is well within the capacity of typical
switches, so the data confirms our assumption that packet drops
due to buffer overflows will be rare.

Table 1 also validates our assumption that there will not
be significant congestion in the core. The TOR→Aggr and
Aggr→TOR queues contain less than 2 Kbytes of data on aver-
age, and their maximum length is less than 100 Kbytes.
Priority utilization. Figure 14 shows how network traffic is di-
vided among the priority levels when executing workload W3 at
three different network loads. For this workload Homa splits the
priorities evenly between scheduled and unscheduled packets.
The four unscheduled priorities are used evenly, with the same
number of network bytes transmitted under each priority level.
As the network load increases, the additional traffic is also split
evenly across the unscheduled priority levels.

The four scheduled priorities are used in different ways de-
pending on the network load. At 50% load, a receiver typically
has only one schedulable message at a time, in which case the
message uses the lowest priority level (P0). Higher priority lev-
els are used for preemption when a shorter message appears
part-way through the reception of a longer one. It is rare for pre-
emptions to nest deeply enough to use all four scheduled levels.
As the network load increases, the usage of scheduled priori-
ties changes. By the time network load reaches 90%, receivers
typically have at least four partially-received messages at any
given time, so they use all of the scheduled priority levels. More
scheduled packets arrive on the highest scheduled level than
any other; the other levels are used if the highest-priority sender
is nonresponsive or if the number of incoming messages drops
below 4. The figure indicates that senders are frequently nonre-
sponsive at 80% network load (more than half of the scheduled
traffic arrives on P0–P2).
Additional information. Page length restrictions forced us to
omit several portions of this section. A complete version of
the paper is available online [22] and includes the following
additional information:

∙ A more comprehensive description of our simulation en-
vironment and the parameters used in simulation.

∙ Measurements of median slowdown for both the imple-
mentation and the simulations (vs. 99th percentile in Fig-
ures 8 and 10), and simulation measurements at 50% net-
work load (vs. 80% load in Figure 10). Homa performed
well in all these measurements, though its advantages
over the other protocols were smaller with lower network
loads and at the median.

∙ Measurements in which we varied the number of unsched-
uled priority levels, the cutoff points between unsched-
uled priority levels, the division of priorities between
scheduled and unscheduled packets, and the number of
unscheduled bytes. In each case, the best hand-chosen
value was the same as the value chosen automatically by
Homa. Among other things, the measurements showed
that workloads with small messages need multiple prior-
ity levels for unscheduled packets (tail slowdown in W1 is
2.5x higher with only a single unscheduled priority level).

6 LIMITATIONS

This section summarizes the most important assumptions Homa
makes about its operating environment. If these assumptions
are not met, then Homa may not achieve the performance levels
reported here.

Homa is designed for use in datacenter networks and capital-
izes on the properties of those networks; it is unlikely to work
well in wide-area networks.

Homa assumes that congestion occurs primarily at host down-
links, not in the core of the network. Homa assumes per-packet
spraying to ensure load balancing across core links, combined
with sufficient overall capacity. Oversubscription is still possi-
ble, as long as there is enough aggregate bandwidth to avoid
significant congestion. We hypothesize that congestion in the
core of datacenter networks will be uncommon because it will
not be cost-effective. If the core is congested, it will result in
underutilization of servers, and the cost of this underutilization
will likely exceed the cost of provisioning more core bandwidth.
If the core does become congested, then Homa latencies will de-
grade. Homa’s mechanisms for limiting buffer occupancy may
reduce the impact of congestion in comparison to TCP-like pro-
tocols, but we leave a full exploration of this topic to future work.

Homa also assumes a single implementation of the protocol
for each host-TOR link, such as in an operating system kernel
running on bare hardware, so that Homa is aware of all incoming
and outgoing traffic. If multiple independent Homa implemen-
tations share a single host-TOR link, they may make conflicting
decisions. For example, each Homa implementation will inde-
pendently overcommit the downlink and assign priorities based
on the input traffic passing through that implementation. Multi-
ple implementations can occur when a virtualized NIC is shared
between multiple guest operating systems in a virtual machine
environment, or between multiple applications that implement
the protocol at user level. Obtaining good performance in these
environments may require sharing state between the Homa im-
plementations, perhaps by moving part of the protocol to the
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NIC or even the TOR. We leave an exploration of this problem
and its potential solutions to future work.

Homa assumes that the most severe forms of incast are pre-
dictable because they are self-inflicted by outgoing RPCs; Homa
handles these situations effectively. Unpredictable incasts can
also occur, but Homa assumes that they are unlikely to have
high degree. Homa can handle unpredictable incasts of several
hundred messages with typical switch buffer capacities; un-
predictable incasts larger than this will cause packet loss and
degraded performance.

The Homa configuration and measurements in this paper
were based on 10 Gbps link speeds. As link speeds increase in
the future, RTTbytes will increase proportionally, and this will
impact the protocol in several ways. A larger fraction of traffic
will be sent unscheduled, so Homa’s use of multiple priority
levels for unscheduled packets will become more important.
With faster networks, workloads will behave more like W1 and
W2 in our measurements, rather than W3-W5. As RTTbytes
increases, each message can potentially consume more space
in switch buffers, and the degree of unpredictable incast that
Homa can support will drop.

7 RELATED WORK
In recent years there have been numerous proposals for new
transport protocols, driven by new datacenter applications and
the well-documented shortcomings of TCP. However, none of
these proposals combines the right set of features to produce
low latency for short messages under load.

The biggest shortcoming of most recent proposals is that
they do not take advantage of in-network priority queues. This
includes rate-control techniques such as DCTCP [2] and HULL [3],
which reduce queue occupancy, and D3 [32] and D2TCP [31],
which incorporate deadline-awareness. PDQ [17] adjusts flow
rates to implement preemption, but its rate calculation is too
slow for scheduling short messages. Without the use of prior-
ities, none of these systems can achieve the rapid preemption
needed by short messages.

A few systems have used in-network priorities, but they do
not implement SRPT. §5.2 showed that the PIAS priority mecha-
nism [6] performs worse than SRPT for most message sizes and
workloads. QJUMP [14] requires priorities to be specified man-
ually on a per-application basis. Karuna [7] uses priorities to
separate deadline and non-deadline flows, and requires a global
calculation for the non-deadline flows. Without receiver-driven
SRPT, none of these systems can achieve low latency for short
messages.

pFabric [4] implements SRPT by assuming fine-grained pri-
ority queues in network switches. Although this produces near-
optimal latencies, it depends on features not available in existing
switches.

pHost [13] and NDP [15] are the systems most similar to
Homa, in that both use receiver-driven scheduling and prior-
ities. pHost and NDP use only two priority levels with static
assignment, which results in poor latency for short messages.
Neither system uses overcommitment, which limits their ability

to operate at high network load. NDP uses fair-share scheduling
rather than SRPT, which results in high tail latencies. NDP in-
cludes an incast control mechanism, in which network switches
drop all but the first few bytes of incoming packets when there
is congestion. Homa’s incast control mechanism achieves a
similar effect using a software approach: instead of truncating
packets in-flight (which wastes network bandwidth), senders
are instructed by the protocol to limit how much data they send.

Almost all of the systems mentioned above, including DCTCP,
pFabric, PIAS, and NDP, use a connection-oriented streaming
approach. As previously discussed, this results in either high
tail latency because of head-of-line blocking at senders, or an
explosion of connections, which is impractical for large-scale
datacenter applications.

A final alternative is to schedule all messages or packets for a
cluster centrally, as in Fastpass [25]. However, communication
with the central scheduler adds too much latency to provide
good performance for short messages. In addition, scaling a sys-
tem like Fastpass to a large cluster is challenging, particularly
for workloads with many short messages.

8 CONCLUSION
The combination of tiny messages and low-latency networks cre-
ates challenges and opportunities that have not been addressed
by previous transport protocols. Homa meets this need with a
new transport architecture that combines several unusual fea-
tures:

∙ It implements discrete messages for remote procedure
calls, not byte streams.

∙ It uses in-network priority queues with a hybrid allocation
mechanism that approximates SRPT.

∙ It manages most of the protocol from the receiver, not the
sender.

∙ It overcommits receiver downlinks in order to maximize
throughput at high network loads.

∙ It is connectionless and has no explicit acknowledgments.
These features combine to produce nearly optimal latency for
short messages across a variety of workloads. Even under high
loads, tail latencies are within a small factor of the hardware
limit. The remaining delays are almost entirely due to the ab-
sence of link-level packet preemption in current networks; there
is little room for improvement in the protocol itself. Finally,
Homa can be implemented with no changes to networking hard-
ware. We believe that Homa provides an attractive platform on
which to build low-latency datacenter applications.
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