
JUGGLER: A Practical Reordering
Resilient Network Stack for Datacenters

Yilong Geng*, Vimalkumar Jeyakumar†, Abdul Kabbani‡, Mohammad Alizadeh§

*Stanford University, †Tetration Analytics, ‡Google, §MIT CSAIL

Abstract
We present JUGGLER, a practical reordering resilient net-
work stack for datacenters that enables any packet to be sent
on any path at any level of priority. JUGGLER adds func-
tionality to the Generic Receive Offload layer at the entry
of the network stack to put packets in order in a best-effort
fashion. JUGGLER’s design exploits the small packet delays
in datacenter networks and the inherent burstiness of traf-
fic to eliminate the negative effects of packet reordering al-
most entirely while keeping state for only a small number
of flows at any given time. Extensive testbed experiments at
10Gb/s and 40Gb/s speeds show that JUGGLER is effective
and lightweight: it prevents performance loss even with se-
vere packet reordering while imposing low CPU overhead.
We demonstrate the use of JUGGLER for per-packet multi-
path load balancing and a novel system that provides band-
width guarantees by dynamically prioritizing packets.

Categories and Subject Descriptors Networks [Network
types]: Data center networks; Networks [Network compo-
nents]: End nodes—Network servers

Keywords Datacenter, Packet reordering, Generic Receive
Offload

1. Introduction
Datacenter networks have demanding and diverse perfor-
mance requirements, from massive bandwidth for “big-data”
workloads, to microsecond-level tail latency for request re-
sponse workloads, to performance predictability and high
utilization in a shared public cloud. To meet these require-
ments, researchers have made significant progress in recent
years, developing better network architectures and systems,
including new topologies and routing techniques [4, 5, 8,

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, contact
the Owner/Author(s). Request permissions from permissions@acm.org or Publications Dept., ACM, Inc., fax +1 (212)
869-0481.

EuroSys ’16, April 18 - 21, 2016, London, United Kingdom
Copyright c© 2016 held by owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2901318.2901334

20, 24, 35, 41, 49], transport mechanisms [7, 9, 22, 25], and
quality of service solutions [28, 29, 34, 43].

Many of these systems benefit from flexible, fine-grained
control over the routing and scheduling of packets. For ex-
ample, per-packet load balancing schemes have been shown
to attain near-ideal tail latency at high network utiliza-
tion [18, 24, 49]. Flow scheduling mechanism such as pFab-
ric [7] have been shown to deliver near-optimal flow comple-
tion times by dynamically increasing the scheduling priority
of a flow’s packets as it nears completion. As datacenter
networks evolve to higher speeds, more stringent latency
targets, and more diverse workloads, it is likely that future
systems will need even more precise control over the routing
and scheduling of packets (§2).

To enable precise control, a datacenter network should
ideally allow any packet to take any path at any level of pri-
ority. Unfortunately, this level of flexibility is not currently
possible due to a longstanding “soft” requirement in TCP/IP
networks: the packets of a TCP flow need to be delivered
in order to the TCP receiver. Historically, this requirement
stems from the fact that TCP treats holes in packet arrivals as
a signal for packet loss. Packet reordering thus severely de-
grades TCP throughput. Current deployments therefore typ-
ically route all packets of a flow on the same path (using
ECMP routing [20, 48]) and at the same priority. Many re-
search designs also take great care to eliminate or minimize
packet reordering [7, 8, 30, 46], often at the expense of added
complexity and a penalty in performance.

In this paper, we present JUGGLER, a practical reordering
resilient network stack for datacenter networks that enables
per-packet path and priority decisions. The goal of JUGGLER
is to remove the constraint of in order packet delivery from
datacenter network design. Taken to the extreme, JUGGLER
enables systems that systematically reorder packets, such as
the aforementioned per-packet load balancing and dynamic
prioritization systems.

JUGGLER sits at the entry point to the network software
stack. It buffers out of order packets for a small number
of active flows over short timescales (e.g., a few hundred
microseconds). It then delivers packets in order to the above
layers in a best effort manner. This minimal design is based

on two key observations about the impact and nature of
packet reordering in high speed datacenter networks.

First, the impact of packet reordering in high speed net-
works extends beyond TCP protocol issues. As observed
in recent work [24], packet reordering also imposes a high
CPU overhead at 10Gb/s and higher speeds. The reason is
that critical optimizations such as Generic Receive Offload
(GRO) [17], which merges bursts of incoming packets to re-
duce per-packet processing overhead, rely on in-order de-
livery. Therefore, JUGGLER operates at the GRO layer to
handle reordering while merging packets for efficiency. This
architectural choice has important practical implications for
JUGGLER’s design (§3). For instance, naively maintaining
state for every TCP connection in GRO is not possible as it
opens up a vector for potential memory exhaustion denial of
service attacks (§3.3).

Second, although packet reordering can be frequent, the
delay for out of order packets can be kept small in datacen-
ters (e.g., to a few hundred microseconds or less). The rea-
son is that datacenter networks have low and uniform packet
delays; by design, datacenter fabrics have nearly identical
latency on different paths and datacenter transports are op-
timized to keep queueing delays small [6].1 This insight en-
ables JUGGLER to hide almost all out of order packets from
the transport layer despite tracking state for only a small
number of flows over short timescales. This keeps the design
simple, efficient, and safe because of the limited resource re-
quirements. We describe JUGGLER’s design in depth in §4.

We implement JUGGLER in the Linux stack (§4.4), and
evaluate it extensively using 10Gb/s and 40Gb/s hardware
testbeds (§5). Our evaluation shows that JUGGLER is easy
to tune and imposes almost zero overhead in the absence of
reordering. JUGGLER handles severe packet reordering with
no impact on throughput and low CPU overhead. For exam-
ple, in adversarial stress tests, it uses less than 5% and 20%
of a single core at 10Gb/s and 40Gb/s speeds respectively.
We also demonstrate two systems enabled by JUGGLER:
per-packet load balancing with near-ideal performance at up
to 90% network utilization, and a novel system that passively
provides bandwidth guarantees to a set of flows by dynami-
cally prioritizing flows which send below their guarantee.

The source code for JUGGLER is publicly available at:
https://github.com/gengyl08/juggler.

2. The Case for Reorder Resiliency in
Datacenter Networks

In this section, we use several use-cases to argue why a re-
ordering resilient network stack that enables packets to take
any route at any priority is desirable in datacenter networks.

1 Recent measurements from Microsoft datacenters [23] show that the 99th
percentile server-server RTT is slightly above 1 millisecond, with only tens
of microseconds of that time due to network queuing delay.

2.1 Flexible and dynamic packet scheduling
Dynamic packet scheduling is the ability to change the net-
work priority of packets in real time based on the needs
of the flow or other stochastically varying network condi-
tions. Changing a packet’s priority relative to another of the
same flow can cause the packets to arrive out of order, be-
cause packets of different priorities are queued separately
in switches and can experience different queueing delays.
However, dynamically changing a flow’s priority is a power-
ful technique for fine-grained traffic differentiation and flow
scheduling controlled by end-hosts [7, 38, 39]. For example,
pFabric [7] dynamically increases a flow’s priority as it nears
completion to implement the Shortest Remaining Process-
ing Time (SRPT) scheduling policy and achieve near-optimal
flow completion times.

We showcase a novel application of this technique: pro-
viding a minimum bandwidth guarantee to one or more traf-
fic flows of a VM (or an application running at an end-host),
using only two priority levels in the network. The key idea
is for end-hosts to mark packets of the flows as high or low
priority based on the measured rate relative to the guarantee.
One way to do this is to mark packets as high priority with a
probability, p, and periodically adapt p as:

p← p+ α(Rt − Rm). (1)

Here, Rt and Rm are the target and measured rates, and α
is a gain factor chosen to stabilize the control loop. Notice
that if Rm < Rt, p will increase, causing a larger fraction
of the flow’s packets to be sent at high priority. This in turn
causes the flow’s rate to increase. It is not difficult to see that
as long as the high priority class is not over-committed (i.e.
the guarantees are feasible), this mechanism will ensure that
the guarantees are met. However, for this to work, the end-
host must be resilient to packet reordering induced by dy-
namically changing packet priorities. Otherwise, as Figure 1
shows, the flow will fail to achieve its guaranteed bandwidth
using a standard “vanilla” network stack.

The above approach has some interesting advantages over
existing systems for providing bandwidth guarantees. Most
prior designs [10, 29, 42, 47] require adding a rate control
layer to the hypervisor, which buffers packets and throttles
traffic to ensure that guarantees are met. Besides additional
complexity, these designs do not co-exist with techniques
such as SRIOV [3] that bypass the hypervisor. By contrast,
the above design is entirely passive: it simply measures the
achieved rate and sets packet priorities. Further, the approach
is quite general; notice that Rt and Rm could be other
metrics such as 99th percentile flow completion time. On
the other hand, the mechanism does rely on the TCP stack of
the VMs to function properly, and may only be appropriate
in trusted environments such as a private datacenter.

We evaluate this technique further in §5.3.1.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Time (second)

0

5

10

15

20

25

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

JUGGLER kernel

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0

Time (second)

0

5

10

15

20

25

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

vanilla kernel

Figure 1. Bandwidth guarantee using dynamic packet
scheduling: 8 flows share a 40Gb/s link. Before time 0, each
flow gets 5Gb/s on average. At time 0, we begin dynam-
ically prioritizing the packets of one of the flows to give
it a 20Gb/s bandwidth guarantee. With JUGGLER, the flow
quickly achieves the desired throughput. The vanilla kernel
(without JUGGLER) however has widely variable throughput
because of its inability to handle packet reordering.

2.2 Fine-grained network load balancing
Prior work has shown that flow-level load balancing (e.g.,
ECMP [26]) creates hotspots and hurts network utiliza-
tion [8, 24, 44, 49]. Therefore, state-of-the-art load balanc-
ing designs such as CONGA [8] and Presto [24] split flows
across different paths to achieve more accurate traffic bal-
ance.

Per packet load balancing would of course be most ac-
curate. However, to avoid the detrimental affects of reorder-
ing on TCP, most existing designs avoid per packet deci-
sions [8, 30, 46] and use other workarounds. For example,
CONGA [8] operates at the level of short bursts of traffic
called flowlets [31] to eliminate almost all packet reordering
seen at the end-host. This detection logic requires new net-
work hardware and is not as precise as per packet decisions.
Presto [24] gets closer to ideal per packet load balancing by
load balancing fixed-size TCP segmentation offload (TSO)
blocks [15].2 However, per-packet load balancing can out-
perform per-TSO load balancing at high network utilization
(see Figure 20 for an illustration).

Our point is not to criticize the above works. On the
contrary, our point is that if the network stack were fully
reorder-resilient, it would simplify the above designs, and
help them achieve even better performance.

2 TSO sends as much as 64KB of data (45 MTU-sized packets) to the
network interface as one large packet to reduce CPU overhead.

2.3 Simpler and cheaper datacenter switches
High-radix “chassis” switches employed at the spine tiers of
datacenter networks are designed in a modular fashion [1,
27], with multiple switching ASICs that are internally con-
nected in a Clos-like topology. To deliver non-blocking per-
formance, these switches load balance traffic across paral-
lel paths through the internal interconnect. Existing switches
use various techniques to maintain packet order, such as
adding reordering buffers at the egress devices, employing
flow-level hash-based load balancing with internal speedup
(extra capacity) to compensate for load imbalances, or cen-
tralized arbitration of the internal fabric. These designs add
complexity and cost and could be avoided if the end-host
network stack was resilient to reordering.

3. Design Considerations
At a high level, the task of a reorder-resilient network stack
is simple: buffer out of order (OOO) packets and deliver
them in the right order to the application. However, sev-
eral practical challenges arise at high speeds such as 10Gb/s
and 40Gb/s. We now discuss the main architectural consid-
erations for developing a reorder-resilient network stack for
high speed networks.

3.1 Where should it be implemented?
Figure 2 shows a representative overview of today’s net-
work stack. The network device driver first processes pack-
ets arriving on the network device and hands them off to the
generic receive offload (GRO) layer that handles per-flow
packet batching. GRO assumes the first packet of a flow in a
batch is in sequence and continues to merge packets as long
as the packet arrivals are in the sequence number order. It
flushes the batched packet (sending it to the higher layer)
whenever its size exceeds a preconfigured maximum (64KB)
or when the next packet is not in sequence. The batched
packets are then demultiplexed through several layers; the
network filtering layer handles both stateless and stateful
packet and flow operations implemented by iptables mod-
ules (e.g., conntrack [2]), followed by the protocol layer
that handles protocol-specific functionality (e.g., TCP) at the
socket layer. Finally, the application is woken up to receive
data from its socket.

In an experiment where we deliberately reordered packets
(see §5 for details), we found that there are two issues that
need fixing. First, reordering breaks GRO’s batching func-
tionality resulting in high CPU usage. Second, the TCP stack
treats mis-sequenced packets as a signal of packet loss due
to an increased number of duplicate acknowledgements. We
confirmed that these two issues are orthogonal in the sense
that they can occur independently of one another and can
both contribute to reducing the flow’s throughput.

There are three main candidates for where to “fix” re-
ordering: (1) add OOO queues at the GRO layer to fix batch-
ing and reordering together; (2) fix the transport layer (TCP)

CPU core context
NAPI + GRO Netfilter ChainsRing Buffer

Network
Interface

Card
TCP
UDP
etc.

App.

Poll

Packet Flow

1-2
4-6

Receive Queues

Packet
+ Header

5-8

Flow Table

Figure 2. The architecture of JUGGLER. JUGGLER uses OOO queues to put packets back in order. In-sequence packet flushing
decisions are made after merging every packet. Timeouts are checked at polling completions.

to gracefully handle out of order packets; or (3) a combi-
nation of batching packets regardless of order at GRO and
correcting the order at TCP.

Since putting packets back in order requires understand-
ing protocol semantics such as TCP flags and sequence num-
bers, dealing with reordering at the TCP layer is architec-
turally appealing. However, we argue that the first solution
(fixing both batching and reordering in GRO) is necessary
in practice. There are two reasons. The first reason is that
the other solutions have higher CPU overhead. Specifically,
TCP changes cannot prevent the per-packet overhead caused
by the inability of GRO to batch out of order packets [24].
Also, batching packets regardless of order in GRO also has
notably higher CPU overhead relative to the first approach.
The reason is that non-contiguous packet payloads cannot
be merged into a larger segment (sk buff). Instead multi-
ple sk buffs would have to be chained in a linked list (see
Figure 3). We implemented this approach and found that it
causes 50% more CPU usage due to more cache misses in a
simple experiment with in-order traffic.

Another pragmatic advantage of fixing reordering at the
GRO layer is that several modules after GRO (iptables mod-
ules, stateful connection tracking conntrack) rely on in-
order delivery to correctly infer TCP state machine for state-
ful packet filtering. Therefore, from a software-engineering
perspective, encapsulating a common packet reordering
functionality outside the netfilter layer provides a cleaner
interface of in-order packets to downstream modules.

3.2 How many packets should be buffered?
Buffering a large number of packets in OOO queues at
the GRO layer may incur a high memory overhead. More
importantly, it can make searching the queue for the right
position for each incoming packet costly in terms of CPU
overhead. Though this is a valid concern, we argue that it
can easily be overcome in datacenters.

The extent to which packets arrive out of order is a func-
tion of the difference in latency across different network
paths and priority levels. However, the latency difference is
expected to be small in a well-engineered datacenter net-

sk_buff

payload 0 payload 1 payload 2

sk_buff

payload 0

sk_buff

payload 2

sk_buff

payload 1

frags[] array batching
(today's GRO)

linked-list batching

Figure 3. Two options to merge multiple sk buffs into
a larger segment. The left figure shows how today’s GRO
merges in-sequence packets using sk buff’s frags[] ar-
ray, while the right figure shows a linked-list of out of order
sk buffs. The latter increases CPU overhead due to higher
cache misses.

work. In fact, datacenter topologies [4, 20] and transports
such as DCTCP [6] are designed to achieve low per packet
latency, even at high utilization. Measurements from a pro-
duction datacenter in Microsoft [23] show that the latency is
typically less than a millisecond. These measurements used
ping and included delays at the end-host stack, which con-
tributes to the ping latency, but does not cause out of order
packets. Further, they were from a network with per-flow
load balancing. As we show in §5, per-packet load balancing
can significantly reduce queueing latency and further lower
the latency difference between network paths. Exploiting the
low latency in datacenter networks allows JUGGLER to elim-
inate almost all reordering by buffering as little as 100s of
microseconds worth of packets.

3.3 How many flows should be tracked?
Implementing an OOO queue at GRO raises further ques-
tions. It is not easy to scale a naive implementation that
keeps track of every open connection at this layer, as a dat-
acenter server today can have millions [45] of established
connections. Keeping state for all such established connec-
tions can quickly become prohibitive.

Even if tracking millions of connections were feasible
through careful engineering, it raises concerns regarding se-
curity and accountability. For instance, consider the crucial
task of accounting the memory allocated for a flow table and
the OOO queue to guard against memory resource exhaus-
tion at the kernel. At GRO, the kernel does not yet know
to which process (or accounting entity) the packet is des-
tined to. This requires further processing, such as routing
the packet to the specific application context, which could
be complex as most network stacks support expressive user-
defined routing policies. Executing these checks can further
increase the CPU cost in the critical path of processing pack-
ets that have only just been received from the network de-
vice. Failure to carefully manage memory by flushing out of
order packets to downstream modules can render JUGGLER
ineffective, increasing CPU usage.

Thus, any implementation has to not only efficiently keep
track of network state to put reordered packet back in order,
but also take precautions to not introduce functionality that
could be exploited as a vector for denial of service attacks.
Such attacks are not hypothetical [16], hence, there must be
strict upper limit on the number of flows tracked in JUG-
GLER. If the limit is surpassed, flows must be evicted and
their memory garbage collected.

Fortunately, the number of active flows on the timescale
of the out-of-order delay is small. Consider a extreme case
where JUGGLER buffers 1 millisecond worth of packets per
flow and every received 1500B packet is from a new flow.
With a 40Gb/s NIC and 16 receive queues, each receive
queue needs to track only about 200 flows.

Based on the above insights, we design eviction strate-
gies for JUGGLER to only keep track of active flows on
the timescale of the out-of-order delay. In practice, we find
that due to the small out-of-order delay and the inherent
burstiness of traffic, the number of distinct active flows that
JUGGLER must track is typically much smaller than the
worst-case bound above (e.g., a few 10s in our evaluations).
See §5.2.2 for details.

4. Design
We now delve into the design of JUGGLER. JUGGLER is an
extension to the GRO layer in the network stack. Since GRO
is in the critical path of receiving packets, our design choices
are biased towards those that minimize CPU usage, cache
misses, and memory usage. Thus, JUGGLER operates in a
best-effort manner. It addresses a (tunable) bounded amount
of reordering, and aggressively evicts stale flow state. We
primarily focus on the handling of TCP traffic, however, our
design principles hold for other transports such as SCTP that
impose packet order as well.

Figure 4 shows the high-level overview of GRO with
JUGGLER’s modules. The NIC processes packets on the
wire, typically hashing packets with the same canonical five-
tuple flow to the same receive (RX) queue. From this point,

Figure 4. The data structures of JUGGLER. Each flow is
tracked in gro table and is part of exactly one of three
doubly linked lists. Flows in the inactive list are safe to evict
while the others are not.

different RX queues operate independently and have their
private data structures; thus we focus our discussion on a
single RX queue. Once the kernel receives a receive interrupt
from the NIC, it switches to polling mode until it empties
all packets on the queue, or up to a brief interval of time
(at most 2 milliseconds). The kernel then hands off packets
to GRO, whose batching interval is the same as the driver’s
polling interval. When the kernel finishes polling, standard
GRO flushes all its packets and starts fresh from the next
polling interval. This is where JUGGLER differs from GRO.

4.1 Data structures
At a high level, JUGGLER keeps a list of flows in a struc-
ture called gro table.3 The flow entries are keyed by the
canonical five-tuple and some additional state shown below:

struct flow_entry {

struct five_tuple key;

struct sk_buff_head *ofo_queue;

u64 flush_timestamp;

u32 seq_next;

u32 lost_seq;

}

JUGGLER uses this state to determine when to buffer
packets to reduce reordering and improve batching, and
when to flush packets up the stack to avoid unnecessary
delays. Additionally, JUGGLER uses two timeout conditions
inseq timeout and ofo timeout to avoid buffering pack-
ets for too long. Flushing packets in a timely manner is es-
pecially important for the underlying TCP protocol to detect
and recover from packet losses as quickly as possible.

The key field identifies the five-tuple flow, while ofo queue

is a doubly-linked list that stores packets sorted in sequence
number order. The flow entry also tracks three other pieces
of state: flush timestamp, seq next, and lost seq. The
field flush timestamp is the last time (nanoseconds since

3 For simplicity, our current implementation uses a linked list for
gro table. It could also be implemented as a hash table.

Figure 5. The life cycle of a flow in JUGGLER. Each phase
corresponds to one of the lists in JUGGLER’s data structure.

epoch) at which JUGGLER flushed packets. Unlike GRO,
JUGGLER uses flush timestamp to hold onto packets
across polling intervals, and selectively flush packets when
the last flush timestamp exceeds the preconfigured value
(inseq timeout). The seq next field is JUGGLER’s best
guess of the largest sequence number that has already been
flushed. We discuss the rationale and semantics of this field
in §4.2.2. The lost seq field helps JUGGLER quickly iden-
tify lost packets from those arriving out of order (§4.2.5).

Finally, JUGGLER also maintains three other linked lists:
the active list, the inactive list, and loss recovery list, which
further optimize JUGGLER’s performance as we explain
shortly. To prevent memory resource exhaustion attacks, we
aggressively limit the total size of per-flow state that we track
in JUGGLER by evicting flows in the inactive list. In practice,
we find that tracking a few tens of flows per gro table is
sufficient to handle realistic workloads (§5.2.2).

4.2 Design details
We walk through the design details by simulating the life of
a flow through various phases in the GRO layer as shown in
Figure 5. There are five phases in the life cycle of a flow: the
initial phase, the build up phase, the active merging phase,
the post merging phase and the loss recovery phase. Flows
in the build up phase and the active merging phase are in
the active list. Flows in the post merging phase are in the
inactive list and ones in the loss recovery phase are in the
loss recovery list. A flow is only in one list at any point in
its lifetime and JUGGLER treats flows in each list differently.
Table 1 lists each stage and its rationale, which we elaborate
below.

4.2.1 Initial phase
For every packet, JUGGLER looks up the flow in gro table

to fetch its state. If this lookup fails, we say JUGGLER sees
a flow for the first time. Note that this need not be the first
packet of the flow from the perspective of the TCP stack.
On the first packet, JUGGLER creates a new entry in the
gro table and adds this entry to the active list. Then, the
flow transitions to the build up phase.

Phase Rationale
Initial phase JUGGLER sees packet for the first time with unknown

seq next (§4.2.1).
Build up phase Learn initial estimate of seq next, which can go back-

wards (§4.2.2).
Active merge phase Merge and flush packets ensuring seq next only moves

forward (§4.2.3).
Post merge phase Flow flushed and can be readily evicted if

needed (§4.2.4).
Loss recovery phase Flow flushed but evicting it can cause delays (§4.2.5).

Table 1. This table shows the phases in the lifetime of a single
flow in JUGGLER and their design rationale. The rationales are
explained in indicated sections in the paper.

Flush condition Rationale
Packet sequence number is before
seq next

Likely to be retransmission

In-sequence segment reaches 64kB Segment size limit reached
Packet has certain flags (e.g., PUSH, UR-
GENT)

Protocol semantics necessitates ur-
gent delivery

Packet differs from in-sequence segment in
TCP options, CE marks, etc

Cannot be merged without losing
information important to TCP

inseq timeout triggers Do not delay in-sequence packets
too much

ofo timeout triggers Missing packet likely to be lost

Table 2. JUGGLER flushing conditions.

4.2.2 Build phase
This phase starts with the first packet of a flow in the ini-
tial phase and ends when JUGGLER flushes packets of this
flow for the first time. On the first packet, JUGGLER sets
seq next in the flow entry to the packet’s sequence num-
ber, as it is JUGGLER’s best guess of the largest sequence
number that has already been flushed to higher layers. As
JUGGLER receives more packets, it updates seq next by
setting it to the smaller of seq next and the new packet’s
sequence number.

Deciding when to flush exposes a tradeoff between time-
liness and CPU efficiency. If JUGGLER flushes late, it can
achieve high batching efficiency, but at the expense of de-
laying packets and increasing latency. However, flushing too
soon reduces opportunities to batch (increasing CPU usage)
and risks sending out of order packets up the stack. JUG-
GLER flushes an OOO queue whenever the flow satisfies one
of several intricate conditions summarized in Table 2.

Flushing conditions. There are two types of flushing condi-
tions: event-driven checks and timeout checks. Event driven
checks (the first four rows of Table 2) are done with the
arrival of a new packet. Most of these checks are self-
explanatory and similar to standard GRO, except for the fact
that JUGGLER only flushes packets that are in order starting
from seq next. Notice that JUGGLER flushes an incoming
packet immediately if its sequence number is smaller than
seq next (except in the build up phase), as this is likely a
retransmitted packet.

There are also two timeout based flushing conditions
unique to JUGGLER, which are checked at the end of
the polling interval and in one high resolution timer call-

back per gro table. To avoid holding packets in JUG-
GLER longer than necessary, JUGGLER flushes all partially
merged in-order segments that have been held longer than
inseq timeout. JUGGLER also uses a global ofo timeout,
which flushes all packets in the out of order queue and tran-
sitions the flow to the loss recovery phase (§4.2.5). After
a flush, JUGGLER updates flush timestamp to the current
timestamp, and sets seq next to the next expected (in order)
sequence number.

Remark 1. The use of the build up phase to learn seq next

is a subtle aspect of JUGGLER’s design. Since JUGGLER
aggressively evicts flows from the inactive list (§4.3), all
evicted flows will go through the build up phase when they
re-enter JUGGLER. At that point, they are indistinguishable
from new flows. One might consider setting seq next to the
first packet’s sequence number on re-entry. However, it is
likely that the first packet is out of order, which would cause
subsequent packets in the same arrival burst to be flushed to
upper layers. Instead, we wait for one polling interval to fin-
ish and allow seq next to briefly go backwards in this build
up phase. In a basic single flow experiment with reordering,
we found that this simple optimization resulted in 6% fewer
segments sent up the stack at no extra implementation cost.

4.2.3 Active merging phase
Following a flush in the build up phase, the flow enters the
active merging phase. It stays in the active merging phase as
long as its out of order queue is not empty. In this phase,
JUGGLER tries to merge new packets with their adjacent
packets, and flushes in-sequence packets on meeting flush
conditions discussed above. If the out of order queue be-
comes empty after flushing in-sequence packets, the flow
enters the post-merge phase.

JUGGLER uses seq next to avoid unnecessarily buffer-
ing packets. Unlike in the build up phase where seq next

can go backward, in the active merging phase seq next is
only allowed to go forward. Packets before seq next are
inferred as retransmissions and thus not buffered. Figure 6
shows an example of this scenario.

4.2.4 Post merge phase
The post merging phase is for a flow to temporarily save its
flow entry state before JUGGLER sees packets of the flow
again. Flows in this phase are good candidates to aggres-
sively evict since a flow enters this phase from the active
merging phase if its out of order queue becomes empty after
flushing some in-sequence packets. When entering the post
merging phase, the flow entry is removed from the active
list and enqueued into the inactive list (Figure 4). If a packet
after seq next from the flow enters JUGGLER, the reverse
process happens. The flow goes back to the active merging
phase and its flow entry is added back to the active list.

35

2

seq_next = NULL

35

seq_next = 3

5 23

seq_next = 2

5 23

seq_next = 4

1

seq_next = 4

1

(1) Init Phase

(2) Build up

(3) Build up

(4) Active merging

(5) Active merging 5

inseq_timeout expires

Before seq_next

Figure 6. JUGGLER receives and buffers a flow’s packets
with sequence numbers 3, 5 and 2 in the build up phase.
After flushing packets 2 and 3 (e.g., due to inseq timeout),
it sets seq next to 4 and the flow enters the active merging
phase. Now if the flow receives a retransmitted packet with
sequence number 1, JUGGLER can immediately infer that it
should not buffer the packet in its out of order queue because
packets up to seq next have already been flushed.

4.2.5 Loss recovery phase
Finally, the loss recovery phase helps identify flows that
are most likely to have had lost packets. A flow enters the
loss recovery phase (from the active merging phase) when
its out of order queue is cleared due to an ofo timeout

expiration. JUGGLER infers this event as packet loss, since
a missing packet did not arrive for at least a time period
of ofo timeout. JUGGLER treats these flows differently.
In particular, it prefers to not evict these flows since their
future packets are likely to have “holes” which could confuse
JUGGLER into more timeouts (§4.3).

On entering the loss recovery phase, JUGGLER stores the
first missing packet’s sequence number in lost seq. The
flow then goes back to the active merging phase as soon
as the hole is filled later. Figure 7 shows an example of
this procedure. Note that JUGGLER operates in a best-effort
fashion in that it only maintains the sequence number for the
first lost packet, and does not require all the holes to be filled
before moving the flow back to the active merging phase.

4.3 Flow eviction
So far, we discussed the life of a flow through JUGGLER’s
state machine, and focused primarily on the conditions un-
der which JUGGLER flushes packets. We now discuss how
JUGGLER manages flow state memory through evictions.

Recall that JUGGLER differs from standard GRO in main-
taining per-flow state. It is critical to keep this memory foot-
print to a minimum so as to not create an opportunity for
memory resource exhaustion attacks (as discussed in §3.3).
Our design aggressively evicts flows from gro table.

23

seq_next = 1
lost_seq = NULL

7

1

(1) Active merging

(2) Loss recovery

(3) Loss recovery

(4) Active merging

5

235

seq_next = 6
lost_seq = 1

6

671

seq_next = 6
lost_seq = 1

seq_next = 6
lost_seq = NULL

ofo_timeout expires

Hole filled

Figure 7. A flow is in the active merging phase with
seq next set to 1, and packets 2, 3, 5 in the out of order
queue. When ofo timeout expires, packets 2, 3 and 5 are
flushed, and seq next advances to 6. Also, lost seq is set
to 1 and the flow is added to the loss recovery list. Later,
when JUGGLER sees packets 7, 6 and 1 in that order, JUG-
GLER enqueues 7 and 6, flushes 1 and adds the flow entry
back to the active list. For simplicity, JUGGLER operates in
a best-effort fashion and does not require all the holes to
be filled before moving the flow back to the active merging
phase. In this example, the flow exits the loss recovery phase
even though JUGGLER never saw packet 4.

When we ran JUGGLER without eviction under real work-
loads, we found that most flow entries are perpetually in
the inactive list. There are several reasons for this behav-
ior. First, most datacenter flows are short, lasting only a few
round-trip times [6]. Second, large high throughput flows are
bursty and exhibit ON-OFF patterns at 10–100 microsec-
ond timescales due to TSO offload [15, 32]. Third, the delay
difference between different paths in datacenter networks is
very small (typically less than a few hundred microseconds).
JUGGLER essentially only needs to track flows during TSO
bursts, and on the timescale of the out of order delay. It can
rapidly evict inactive flows without risk of reordering or loss
in batching efficiency.

JUGGLER triggers flow eviction when it sees a new flow
and gro table is full. Eviction removes the flow’s state and
flushes all its packets to higher layers. However, there are
subtleties on when JUGGLER should evict a flow. Specif-
ically, evicting a flow which has holes in its out of order
queue may cause it to get stuck and have to wait for a time-
out when it re-enters JUGGLER in the future. Figure 8 shows
how such a situation could happen: JUGGLER may wait on
packets already flushed after the flow re-enters.

Thus, evicting flows in the active merging phase is
counter-productive because there could be holes in the out of
order queue. Similarly, it is easy to see that evicting flows in
the loss recovery phase can be equally counter-productive.
Thus, JUGGLER first evicts a flow in the post merge phase,
because JUGGLER knows that these flows have empty out

23

seq_next = 1

seq_next = NULL

seq_next = NULL

seq_next = 1

4

seq_next = 2

1

(1) Active merging

(2) Init phase

(3) Init phase

(4) Build up

(5) Active merging

23

41

14

Flow evicted

inseq_timeout expires

Figure 8. A flow’s seq next is 1 and packets 2 and 3 are in
the out of order queue. JUGGLER flushes all these packets on
eviction. After eviction, packets 4 and 1 arrive in that order,
the flow enters the build up phase and seq next is set to 1,
which will be flushed after inseq timeout. Packets 2 and
3 will never arrive as they have already been flushed, and
packet 4 will therefore be flushed only after ofo timeout

expires.

of order queues and their previous packets were flushed se-
quentially, leaving no holes. If there is no room for the new
flow, JUGGLER evicts flows in an FIFO fashion from the
active merge list.

4.4 Implementation
We implemented JUGGLER for Linux 4.1. It is about 1000
lines of code and involves changing the GRO layer without
touching the TCP stack. We ensured that JUGGLER is API-
compatible with GRO so no code outside GRO needs any
change. Moreover, our implementation behaves identically
to GRO when handling in-order traffic. JUGGLER is open
source and the patch is available at https://github.com/
gengyl08/juggler.

5. Evaluation
Our evaluation consists of two parts. First, we compare
status-quo (“vanilla” Linux kernel) with a JUGGLER-enabled
kernel and confirm that the latter incurs negligible CPU over-
head, can be easily tuned, and is able to operate by only
tracking a very small number of flows. Second, we showcase
JUGGLER’s utility by prototyping new bandwidth guarantee
and load balancing applications that require the end-host to
be reorder resilient to achieve their goal.

Unless otherwise noted, we set inseq timeout to 15µs
and ofo timeout to 50µs, and run our experiments on a
40Gb/s two-stage Clos network with two uplinks from each
of the ToR switch to the Stage 2 switches (Figure 19).

vanilla receiver JUGGLER receiver
0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e

Single flow w/o reordering

vanilla receiver JUGGLER receiver
0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e

Single flow w/ reordering

Application core usage (%) RX queue core usage (%) throughput (% of target throughput)

Figure 9. The CPU overhead of JUGGLER in the single flow
case. Without reordering, JUGGLER does not introduce ex-
tra CPU overhead. In presence of reordering, the vanilla re-
ceiver’s application core gets saturated and it loses through-
put, while JUGGLER uses 10% more CPU and handles re-
ordering gracefully.

5.1 CPU and latency overhead
5.1.1 CPU overhead
By the virtue of its design, JUGGLER’s performance is iden-
tical to standard GRO when processing in-order traffic. For
out of order traffic, however, JUGGLER’s CPU overhead
should be significantly less than that of the vanilla kernel.
To understand the extent to which JUGGLER affects the CPU
performance, we conduct two experiments, one with a single
large flow, and another with many flows, trying to push JUG-
GLER to its flow tracking limits. The topology in this experi-
ment is a two-stage Clos (similar to Figure 19)—the receiver
is connected to the first ToR and the senders are connected
to the other 4 ToRs.

In order to cause out of order packet delivery in the case
when packets are sprayed, we generate some background
traffic such that the average load on the sending ToR up-
links is 50%. We evaluate vanilla kernel and JUGGLER-
enabled kernel under four scenarios, with 1 and 256 flows
(32 senders across the 4 ToRs, each generating 8 flows), and
with equal-cost multi-path (ECMP) and per-packet load bal-
ancing. ECMP load balancing provides a baseline without
reordering, while per-packet load balancing creates packet
reordering because of the variations in queuing on different
paths caused by the background traffic. In all cases we aim
all flows on a single RX queue on the receiver and rate limit
the total throughput to 20Gb/s.4

We found that the CPU usage varies with different CPU
affinity settings of the RX queue and the application. For
the vanilla kernel receiving in-order traffic, we found that
it is always the most efficient to pin the RX queue and the
application on two different cores belonging to the same
CPU socket. We use this same affinity setting for all the
experiments for a fair comparison.

4 We didn’t use 40Gb because a single core cannot handle 40Gb/s of traffic
in our tested.

vanilla receiver JUGGLER receiver
0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e

256 flows w/o reordering

vanilla receiver JUGGLER receiver
0

10

20

30

40

50

60

70

80

90

100

P
e
rc

e
n
ta

g
e

256 flows w/ reordering

Application core usage (%) RX queue core usage (%) throughput (% of target throughput)

Figure 10. The CPU overhead of JUGGLER in the multiple
flow case. The comparisons and results are similar to that of
the single flow case.

Figure 9 and 10 show the CPU usage and throughput re-
sults in each setup. The key takeaways are as follows. The
left subgraphs in the two figures show that when processing
in order traffic, JUGGLER introduces no CPU overhead com-
pared to the vanilla kernel. The right subgraphs in the two
figures show that in the presence of reordering, the vanilla
kernel’s CPU overhead reaches almost 100% on the CPU
core the application runs on (hence, falling short of reach-
ing 20Gb/s in this case). However, with JUGGLER, we can
sustain line-rate.

As soon as we start reordering in both Figure 9 and 10,
the vanilla kernel TCP stack roughly sees 15 times more
segments (of which 40% are out of order), sends 15 times
more ACKs, and loses 35% of its throughput. On the other
hand, JUGGLER hides almost all of the reordering from TCP,
allowing it to operate as normal.

For a fair comparison with the vanilla kernel, we com-
pare JUGGLER with reordering to the vanilla kernel without
reordering. From Figure 9, by comparing “vanilla receiver”
in left and “JUGGLER receiver” in the right graphs, we can
see that JUGGLER uses less than 10% additional CPU on a
single core to deal with 20Gb/s of traffic with reordering.
Figure 10 shows similar results with 256 flows. While there
is still scope for improving this overhead, we believe this is a
modest cost to pay considering the advantages of per-packet
load balancing.

5.1.2 Latency overhead
Since JUGGLER buffers packets and does extra processing
in the critical receive path, one potential concern is the extra
latency it could add to short flows. To investigate this, we
set up an experiment in which one client sends 150 Byte
RPC messages to a server, with no competing traffic in
the network to avoid queueing latency. Given that without
any reordering, JUGGLER is identical to standard GRO, we
have found the median end-to-end latency is the same, with
and without JUGGLER. Of course, as we show in §5.3.2,
the overall latency improves significantly when JUGGLER
is used together with per-packet network load balancing
compared to existing per-flow load balancing schemes.

NetFPGA Switch

0 µs

X µs

Sender Receiver

Figure 11. Testbed to understand the timeout parameters.
Two hosts are connected by a NetFPGA-10G switch, which
hashes each inbound packet to one of two output queues
uniformly at random. The delay of each output queue can
be configured per-packet to precisely control the amount of
reordering seen by the hosts.

5.2 Deep dive into JUGGLER

In this section, we run a series of targeted micro bench-
marks to understand (1) how various tunable parameters af-
fect JUGGLER’s performance (§5.2.1), and (2) the size of
gro table required for JUGGLER’s flow eviction policies
(§5.2.2). For some of the micro benchmarks in this section,
we use a NetFPGA-10G [13] testbed to precisely control the
amount of reordering, while the other micro benchmarks are
run on the 40Gb/s Clos topology in which background traffic
and queueing delays cause reordering.

5.2.1 Timeout parameters
Recall that JUGGLER has only two key tunable, global pa-
rameters: inseq timeout, which trades-off between batch-
ing, that is crucial for CPU overhead, and timely packet de-
livery; and ofo timeout, which trades-off between putting
packets back in order and timely reaction to packet loss.
In-sequence timeout: The parameter insesq timeout en-
sures in-sequence packets are not buffered in GRO for too
long. If inseq timeout is too small, JUGGLER tends to
flush in-sequence packets before they become large enough,
increasing the number of segments seen by TCP (and
hence per-packet overhead). If inseq timeout is too large,
JUGGLER tends to hold in-sequence packets unnecessarily
longer, hurting the RTT of the flow. Therefore, the rule of
thumb is that inseq timeout should be configured to the
minimum value that suffices for receiving the maximum
batch size—a single 64kB TCP segment (or 45 MTUs worth
of packets at line rate). This value is 52µs on a 10Gb/s net-
work and 13µs on a 40Gb/s network.

To validate this, we ran an experiment with two ma-
chines connected by a NetFPGA-10G switch as in Fig-
ure 11. The sender sends a single TCP flow at line rate
(10Gb/s). At the receiver, we measure the extent to which
JUGGLER batches packets and the CPU usage for vari-
ous inseq timeout values. We run the same experiment
3 times at different levels of reordering, with the delay of the
second queue on the NetFPGA switch set to 250µs, 500µs
and 750µs. Figure 12 summarizes the relationship between
inseq timeout, JUGGLER’s batching extent (average num-

0 20 40 60 80 100

inseq_timeout (us)

20

25

30

35

40

45

b
a
tc

h
in

g
 e

x
te

n
t

(M
T
U

s
p
e
r

se
g
m

e
n
t)

Batching extent

0 20 40 60 80 100

inseq_timeout (us)

30

35

40

45

50

55

co
re

 u
sa

g
e
 (

%
)

CPU usage

250us reordering 500us reordering 750us reordering

Figure 12. Tradeoff between batching efficiency and
inseq timeout. The figure illustrates that to maximize
batching efficiency, there is little benefit to increasing
inseq timeout beyond the time it takes to transmit the
maximum sized TSO segment at line rate (52µs at 10Gb/s).

ber of MTUs batched into a TCP segment), and CPU usage.
Increasing inseq timeout helps with batching and CPU
usage until it reaches about 52µs. This threshold is not af-
fected by the amount of reordering seen in the network.

The 52µs threshold is specific to 10Gb/s network speeds.
We also verified that at 40Gb/s, the optimal value for
inseq timeout is 13µs. Also, notice that the batching ex-
tent is initially around 25 MTUs when inseq timeout is 0.
This is because we do not check the value of inseq timeout

after every packet, but only at polling completions; there-
fore, JUGGLER is still able to batch MTUs within individual
polling cycles. As inseq timeout grows, JUGGLER is able
to batch packets spanning multiple polling cycles, reaching
its maximum batching efficiency at about 52µs.

Out of order timeout: Since batching is done only for
packets that are in-sequence, ofo timeout ensures timely
packet delivery in case we do not have in-sequence packets
due to packet loss. This ensures quick loss recovery by the
higher level TCP transport. Intuitively, ofo timeout should
be set to the largest expected delay for out of order packets.
For example, for multi-path load balancing, ofo timeout

should be set to the maximum difference in packet delays
across various network paths.

We use the same testbed as in Figure 11 to understand
the trade-offs for ofo timeout. Figure 13 shows the re-
sults of an experiment where we run a single TCP flow
between the two hosts and measure the throughput of the
flow for various ofo timeout values. We run the same ex-
periment with different amounts of delay for out of order
packets—τ , set to 250µs, 500µs and 750µs—to see how
ofo timeout should be configured. The results show that
with more severe reordering, it takes a larger ofo timeout

to keep the flow at line rate. The minimum ofo timeout

needed is roughly τ−τ0, where τ0 is the interrupt coalescing
period [14] (125µs in our testbed). Interrupt coalescing acts
as an additional reordering buffer layer before JUGGLER, so

0 100 200 300 400 500 600 700 800 900 1000

ofo_timeout (us)

0
2
4
6
8

10

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

250us reordering

0 100 200 300 400 500 600 700 800 900 1000

ofo_timeout (us)

0
2
4
6
8

10

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

500us reordering

0 100 200 300 400 500 600 700 800 900 1000

ofo_timeout (us)

0
2
4
6
8

10

T
h
ro

u
g
h
p
u
t

(G
b
/s

)

750us reordering

Figure 13. Single flow throughout versus ofo timeout.
The amount of reordering seen by the receiver is 250µs,
500µs and 750µs. In all cases the value of ofo timeout

needs to be at least comparable to the amount of reordering
to prevent throughput loss.

its duration should be subtracted from τ when configuring
ofo timeout.

Figure 14 shows the impact ofo timeout has on the la-
tency when packets are being dropped. In this experiment
the server sends 10KB RPC messages to the client through
the NetFPGA switch. The client drops 0.1% of the pack-
ets uniformly at random before they enter JUGGLER. The
99th percentile RPC completion time is measured for vari-
ous ofo timeout values. Still, we configure the NetFPGA
switch to have τ equal to 250µs, 500µs and 750µs to see
how different amounts of reordering affect the optimal value
of ofo timeout. The results show that the tail RPC comple-
tion time stays flat when ofo timeout is small, and starts to
grow rapidly as soon as ofo timeout becomes larger than
τ−τ0. Combining with the first experiment, we can conclude
that ofo timeout should be set to τ − τ0.

Note that we only simulated packet drops in the latency
experiments but not the throughput ones. The reason is
that the throughput of a flow if less sensitive to a large
ofo timeout, in presence of packet losses, compared to its
latency. In a separate experiment, at a 0.1% packet loss rate,
we see the flow loses throughput only when ofo timeout

is larger than 100 milliseconds.

Summary: To summarize, we set inseq timeout to a
value that gives JUGGLER the maximum batching size with
line rate traffic, and set ofo timeout to the expected value
of difference in delays across network paths. Generally, it is
better to slightly over-estimate ofo timeout since packet
loss is rare in datacenters [11].

0 200 400 600 800 1000

ofo_timeout (us)

0.6
0.8
1.0
1.2
1.4
1.6
1.8

9
9
th

 l
a
te

n
cy

(m
s)

250us reordering

0 200 400 600 800 1000

ofo_timeout (us)

1.2
1.4
1.6
1.8
2.0
2.2
2.4

9
9
th

 l
a
te

n
cy

(m
s)

500us reordering

0 200 400 600 800 1000

ofo_timeout (us)

2.0
2.2
2.4
2.6
2.8
3.0
3.2

9
9
th

 l
a
te

n
cy

(m
s)

750us reordering

Figure 14. Small RPC tail latency versus ofo timeout.
The amount of reordering seen by the receiver is 250µs,
500µs and 750µs. Note that the plots use different ranges
for the y-axis. In all cases the value of ofo timeout should
not be configured larger than the amount of reordering in
order to avoid high tail latency.

5.2.2 Size of GRO table
We now look at the size of gro table required to make
JUGGLER’s eviction policy work without performance degra-
dation. The size of gro table grows linearly with the num-
ber of flows tracked by JUGGLER. We discussed in §4.3 that
a small limit of a few 10s of entries in this table is sufficient
for JUGGLER to start evicting inactive flows (§4.2.4) despite
a high flow concurrency at a server, because the length of
the active list and the loss recovery list is small. We now
experimentally verify that this is indeed the case.

Length of active list: We use the same experiment setup
as in Figure 11 to show how the number of concurrent
flows and the amount of reordering in the network affects
the number of active flows that JUGGLER needs to track.
Specifically, we fix reordering to 250µs, 500µs, 750µs and
1ms respectively, sweep the number of concurrent flows
from 64 to 1024, and sample the number of active flows
in JUGGLER. In all experiments, the sender sends 10Gb/s
of total traffic into 4 RX queues of the receiver. Figure 15
shows that the number of active flows grows slowly with the
number of concurrent flows and the amount of reordering.
The number of active flows start to drop after there are more
than 256 concurrent flows because low throughput flows
tend to send single-MTU TSOs which are not affected by
reordering. In the worst case, JUGGLER needs to track less
than 35 active flows.

The previous experiment considered an artificial reorder-
ing scenario. To understand how the number of active flows
behaves in a more realistic reordering scenario, we reran the
experiment described in §5.1.1. On the two-stage Clos topol-

64 128 256 512 1024
Number of concurrent flows

5

10

15

20

25

30

35

9
9
th

 p
e
rc

e
n
ti

le
 o

f
n
u
m

b
e
r

o
f

a
ct

iv
e
 f

lo
w

s

250us reordering
500us reordering
750us reordering
1ms reordering

Figure 15. 99th percentile of the number of active flows in
JUGGLER. It initially grows with the number of concurrent
flows then starts to drop after the latter exceeds 256. The
number of active flows also grows with reordering, and the
growth slows down when reordering is high.

ogy, 32 senders send 256 flows at 20Gb/s in total into a single
NIC receive queue. We generate background traffic such that
the total load on each ToR switch is 50%, and use per-packet
load balancing at the ToR uplinks to cause reordering. We
measured the number of active flows by sampling the size
of the active list at the receiver’s JUGGLER module every 10
milliseconds; Figure 16 (a) shows the histogram. The aver-
age length is less than 1, and 99% of the time it is less than
5. Thus we see even fewer active flows than the last experi-
ment because the reordering caused by real world queueing
delay is on the order of 10s of microseconds, which is much
smaller than what we experimented with in the NetFPGA
setup. Figure 16 (b) shows what happens with a 10Gb/s net-
work interface in the same setup. With the 10Gb/s port, TSO
segments spend 3 times more time on the wire and thus stay
in JUGGLER longer, resulting a bigger active list. Nonethe-
less, 99% of the time, the length of the active list is still less
than 6.

Length of loss-recovery list: The experiment in Figure 16 (b)
has 256 flows competing for the same 10Gb/s-port receiver
so it induces packet losses. The flows that experience packet
losses are enqueued to the loss recovery list and are de-
queued later after the lost packet is retransmitted. The statis-
tics show that on average only 4 flows are enqueued into
the loss recovery list per second and the list turns out to be
almost always empty, confirming the analysis in §4.3.

Summary: The above experiments show that the active and
loss recovery lists are typically small enough to fit within
a small 8 entry gro table in applications like per packet
load balancing. Even if the application requires JUGGLER to
handle up to 1ms of reordering, a 64 entry gro table is
adequate. Since JUGGLER operates independently on a per-

Figure 16. Statistics of length of active list. This length is
typically very small because a flow is in the active list only
when a TSO burst is accumulating in JUGGLER. A flow
spends most of its time in the inactive list.

receive queue basis, the memory requirements scale linearly
with the number of receive queues.

5.3 Case studies of designs enabled by JUGGLER

As we discussed in §2, JUGGLER opens up new design points
to meet the demands of datacenter applications. Below, we
show experimental evidence for two examples: guaranteeing
network bandwidth to a set of flows and fine-grained net-
work load balancing.

5.3.1 Bandwidth enforcement by dynamic priority
adjustment

In §2.1, we discussed how JUGGLER can guarantee some
minimum bandwidth to flows using dynamic packet priori-
tization. Recall that we have a sender module to control the
probability that the flow’s bytes are transmitted at high pri-
ority. This probability is adapted according to the target and
achieved throughput (measured by the sender for every ACK
received) normalized to the line rate. The gain factor, α in
Eq. (1), is set to 0.1 in this experiment.

Figure 17 shows the experiment setup: a 40Gb/s topology
with two TORs, where in the switch interconnecting the two
ToRs there are two queues with one having strict priority
over the other. Two senders are placed under one ToR with
their receivers on the other. Sender 1 sends one (target)
TCP flow with a guaranteed bandwidth B (< 40Gb/s) to
receiver 1. Sender 2 sends 7 antagonist TCP flows, with no
bandwidth constraints or guarantees, to receiver 2. All flows
start at lowest priority.
Results. Figure 18 shows the throughput of the target flow
with a JUGGLER-enabled kernel and the vanilla kernel, as
we vary B. We measure the average and the standard de-
viation of the achieved throughput numbers from 30 runs.
As expected, the throughput of the target flow closely tracks
B until it reaches 25Gb/s, at which point we hit the CPU
limit on a single core.5 Without JUGGLER, the target flow’s

5 This is because NICs today hash one flow to one receive queue.

TOR TOR

Sender 1

Sender 2

Receiver 1

Receiver 2
Background flows

Stage 2 switch

high priority

low priority

Flow with bandwidth
guarantee

Figure 17. Bandwidth enforcement experiment setup. The
stage two switch has two output queues with strict priority.
We try to guarantee the bandwidth of a target flow despite
the background flows by putting a portion of the packets of
the target flow into the high priority queue.

0 5 10 15 20 25 30

Guaranteed bandwidth (Gbps)

0

5

10

15

20

25

30

A
ct

u
a
l
b
a
n
d
w

id
th

 (
G

b
p
s)

Guaranteed bandwidth
Bandwidth using the JUGGLER kernel
Bandwidth using the vanilla kernel

Figure 18. Dynamic packet scheduling to guarantee net-
work bandwidth: JUGGLER’s actual achieved bandwidth (y-
axis) follows the guaranteed bandwidth closely while the
vanilla kernel’s TCP deviates from the ideal guaranteed
bandwidth. Note that the bandwidth of the target flow won’t
be smaller than its fair share bandwidth (5Gb/s) even if its
guaranteed bandwidth is. This is because the fair share band-
width is achieved when all packets of the target flow go
through the low priority queue.

bandwidth is far lower than the guarantee and variable, be-
cause dynamic packet prioritization induces packet reorder-
ing which the vanilla kernel cannot handle.

5.3.2 Fine-grained load balancing
Figure 19 shows the experiment setup. There are 8 servers
under ToR A sending to 8 clients under ToR B using 40Gb/s
NICs. Half of the clients and servers are dedicated for send-
ing and receiving 1MB remote procedure calls (RPCs) and
the other half send and receive 150 Byte RPCs, in an all-to-
all fashion. The senders generate RPCs in an open-loop fash-

TOR TOR

Stage 2 switch Stage 2 switch

Server 1,2,3,4 Client 1,2,3,4
Large all to all RPC

Small all to all RPC Client 5,6,7,8Server 5,6,7,8

Figure 19. Load balancing experiment setup. We have 4
pairs of server running large all to all RPC and another 4
pairs running small all to all RPC in a 40Gb/s Clos network.
The ToR switches are configured to do per-flow, per-packet
level load balancing to compare their performance. We im-
plement per-TSO load balancing at end-hosts in a manner
similar to Presto [24].

25 30 35 40 45 50 55 60 65 70 75 80 85 90

Network load (%)

0

1

2

3

4

5

C
o
m

p
le

ti
o
n
 t

im
e
 (

m
s)

Large RPC 99th completion time

per-flow ECMP

per-MTU load balancing

per-TSO load balancing

25 30 35 40 45 50 55 60 65 70 75 80 85 90

Network load (%)

0

100

200

300

400

500

C
o
m

p
le

ti
o
n
 t

im
e
 (

u
s)

Small RPC 99th completion time

per-flow ECMP

per-MTU load balancing

per-TSO load balancing

Figure 20. Per-packet load balancing improves tail latency
significantly at high network load.

ion, with inter-arrival times drawn from an exponential dis-
tribution (Poisson arrivals), such that the total load on the up-
links is 25%, 50%, 75% and 90% of capacity 80Gb/s. Most
load is due to large 1MB RPCs; the 150 byte small RPCs
generate only 100Mb/s traffic at each server. The traffic gen-
erator randomly multiplexes RPCs across 8 long-lived TCP
sessions between every client-server pair.

Results. We compare the resulting RPC completion times
and the switch buffer occupancy with packet-level load bal-
ancing to per-TSO and per-flow (ECMP) load balancing in
Figure 20. The results show at least 2× better tail latency for
short RPCs with per-packet load balancing compared to per-
flow load balancing after network utilization crosses 50%.
This is consistent with the observed buffer build-up mea-
sured at the ToR switches (figure not shown).

The small RPC tail latency of per-packet load balanc-
ing is 30µs less than that of per-TSO load balancing at
75% load, and 250µs less at 90% load. Such large differ-
ence in tail latency is crucial for latency-sensitive applica-
tions like RAMCloud [40], which can fetch small key-value
pairs within 5µs over an uncongested network. This exper-

iment shows that per-packet load balancing coupled with
JUGGLER’s reorder resiliency is an effective mechanism for
achieving low tail latency even at high utilization.

6. Related Work
Combating packet reordering: Most of the previous work
has focused on fixing TCP protocol problems [12, 19, 36,
50]. These schemes mitigate TCP’s overreaction to out of
order packets, but cannot address CPU overhead due to the
collapse of optimizations such as GRO. Presto [24] is an
end-host based load balancing mechanism that also adds an
out of order buffer to GRO to mitigate the CPU overhead of
reordering. However, Presto requires the sender to send fixed
size chunks and only handles reordering at the TSO level.
Also, Presto maintains state for all established connections,
which may suffer from performance issues and is vulnerable
to memory resource exhaustion attacks. JUGGLER resolves
both TCP and CPU overhead problems and handles severe
packet level reordering. JUGGLER is practical and safe to
deploy as it only keeps state for a very small number of
recent flows by making smart eviction decisions.
Network stack optimizations: The CPU overhead of net-
work processing has been shown to be dominated by per-
packet overhead for real-world workloads [33]. This has led
to receive offload techniques that merge packets in hard-
ware [21] and software [37] to significantly reduce the re-
ceiver’s CPU usage. JUGGLER preserves software receive
offload in presence of reordering to sustain high throughput.

7. Conclusion
JUGGLER is a practical reordering resilient network stack for
datacenters. Our work was motivated by the desire to enable
future datacenter network systems that can transmit packets
on any path and at any level of priority. We demonstrated two
designs enabled by this flexibility: per packet load balancing
and a novel mechanism for giving bandwidth guarantees.
We believe that many other systems can also benefit from
flexible control over packet routing and scheduling.

JUGGLER adds a modest amount of functionality to the
GRO layer to deal with packet reordering in a best effort
fashion. JUGGLER leverages the small network latency and
high traffic burstiness in datacenters to provide reordering
resiliency with a simple and practical design. It aggressively
limits the amount of per-flow state maintained and intelli-
gently selects which flows to track. Extensive experiments
with 10Gb/s and 40Gb/s hardware showed that JUGGLER is
lightweight and efficient, and can handle even severe packet
reordering.

Acknowledgments
We thank our shepherd, Robert Soulé, and the anonymous
EuroSys reviewers for their thoughtful feedback that helped
improve the presentation of the paper.

References
[1] Arista 7500 switch architecture. https://www.arista.

com/assets/data/pdf/Whitepapers/Arista_7500E_

Switch_Architecture.pdf. [Online; accessed 22-
October-2015].

[2] conntrack-tools: Netfilter’s connection tracking userspace
tools. https://www.arista.com/assets/data/pdf/

Whitepapers/Arista_7500E_Switch_Architecture.

pdf. [Online; accessed 22-October-2015].

[3] Overview of single root i/o virtualization (sr-iov).
https://msdn.microsoft.com/en-us/library/

windows/hardware/hh440148(v=vs.85).aspx. [Online;
accessed 22-October-2015].

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, com-
modity data center network architecture. ACM SIGCOMM
Computer Communication Review, 38(4):63–74, 2008.

[5] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic flow scheduling for data center
networks. In NSDI, volume 10, pages 19–19, 2010.

[6] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center tcp
(dctcp). SIGCOMM, 2011.

[7] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker. pFabric: Minimal near-optimal
datacenter transport. SIGCOMM, 2013.

[8] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, F. Matus, R. Pan, N. Yadav, G. Vargh-
ese, et al. Conga: Distributed congestion-aware load balancing
for datacenters. In Proceedings of the 2014 ACM conference
on SIGCOMM, pages 503–514. ACM, 2014.

[9] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and W. Sun. Pias:
Practical information-agnostic flow scheduling for data center
networks. In Proceedings of the 13th ACM Workshop on Hot
Topics in Networks, page 25. ACM, 2014.

[10] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron. To-
wards predictable datacenter networks. In ACM SIGCOMM
Computer Communication Review, volume 41, pages 242–
253. ACM, 2011.

[11] T. Benson, A. Anand, A. Akella, and M. Zhang. Understand-
ing data center traffic characteristics. ACM SIGCOMM Com-
puter Communication Review, 40(1):92–99, 2010.

[12] E. Blanton and M. Allman. On making tcp more robust to
packet reordering. ACM SIGCOMM Computer Communica-
tion Review, 32(1):20–30, 2002.

[13] M. Blott, J. Ellithorpe, N. McKeown, K. Vissers, and H. Zeng.
Fpga research design platform fuels network advances. Xilinx
Xcell Journal, 4(73):24–29, 2010.

[14] J. S. Chase, A. J. Gallatin, and K. G. Yocum. End system
optimizations for high-speed tcp. Communications Magazine,
IEEE, 39(4):68–74, 2001.

[15] G. W. Connery, W. P. Sherer, G. Jaszewski, and J. S. Binder.
Offload of tcp segmentation to a smart adapter, Aug. 10 1999.
US Patent 5,937,169.

[16] conntrack. nf conntrack: table full, dropping packet.
http://security.stackexchange.com/questions/

43205/nf-conntrack-table-full-dropping-packet.

[17] J. Corbet. Jls2009: Generic receive offload. https://

lwn.net/Articles/358910/, 2009. [Online; accessed 22-
October-2015].

[18] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the
impact of packet spraying in data center networks. In IN-
FOCOM, 2013 Proceedings IEEE, pages 2130–2138. IEEE,
2013.

[19] S. Floyd, J. Mahdavi, M. Podolsky, and M. Mathis. An
extension to the selective acknowledgement (sack) option for
tcp. 2000.

[20] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. Vl2: a
scalable and flexible data center network. In ACM SIGCOMM
computer communication review, volume 39, pages 51–62.
ACM, 2009.

[21] L. Grossman. Large receive offload implementation in nete-
rion 10gbe ethernet driver. In Linux Symposium, page 195,
2005.

[22] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson,
A. W. Moore, S. Hand, and J. Crowcroft. Queues dont matter
when you can jump them! In Proc. NSDI, 2015.

[23] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz,
Z. Liu, V. Wang, B. Pang, H. Chen, et al. Pingmesh: A large-
scale system for data center network latency measurement and
analysis. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 139–
152. ACM, 2015.

[24] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and
A. Akella. Presto: Edge-based load balancing for fast datacen-
ter networks. In Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication, pages 465–
478. ACM, 2015.

[25] C.-Y. Hong, M. Caesar, and P. Godfrey. Finishing flows
quickly with preemptive scheduling. ACM SIGCOMM Com-
puter Communication Review, 42(4):127–138, 2012.

[26] C. E. Hopps. Analysis of an equal-cost multi-path algorithm.
2000.

[27] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, et al. B4: Experi-
ence with a globally-deployed software defined wan. In ACM
SIGCOMM Computer Communication Review, volume 43,
pages 3–14. ACM, 2013.

[28] K. Jang, J. Sherry, H. Ballani, and T. Moncaster. Silo: Pre-
dictable message completion time in the cloud. Technical re-
port, Tech. rep., Microsoft Research, 2013. MSR-TR-2013-
95, 2013.

[29] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar,
C. Kim, and A. Greenberg. Eyeq: Practical network perfor-
mance isolation at the edge. REM, 1005(A1):A2, 2013.

[30] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene. Flow-
bender: Flow-level adaptive routing for improved latency and
throughput in datacenter networks. In Proceedings of the 10th
ACM International on Conference on emerging Networking
Experiments and Technologies, pages 149–160. ACM, 2014.

[31] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Dynamic
load balancing without packet reordering. ACM SIGCOMM
Computer Communication Review, 37(2):51–62, 2007.

[32] R. Kapoor, A. C. Snoeren, G. M. Voelker, and G. Porter.
Bullet trains: A study of nic burst behavior at microsecond
timescales. In Proceedings of the ninth ACM conference on
Emerging networking experiments and technologies, pages
133–138. ACM, 2013.

[33] J. Kay and J. Pasquale. Profiling and reducing processing
overheads in tcp/ip. IEEE/ACM Transactions on Networking
(TON), 4(6):817–828, 1996.

[34] J. Lee, M. Lee, L. Popa, Y. Turner, S. Banerjee, P. Sharma, and
B. Stephenson. Cloudmirror: Application-aware bandwidth
reservations in the cloud. USENIX HotCloud, 20, 2013.

[35] Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav. Quartz: a new
design element for low-latency dcns. In Proceedings of the
2014 ACM conference on SIGCOMM, pages 283–294. ACM,
2014.

[36] R. Ludwig and R. H. Katz. The eifel algorithm: making tcp
robust against spurious retransmissions. ACM SIGCOMM
Computer Communication Review, 30(1):30–36, 2000.

[37] A. Menon and W. Zwaenepoel. Optimizing tcp receive per-
formance. In USENIX Annual Technical Conference, pages
85–98. Boston, MA, 2008.

[38] R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. How to im-
prove your network performance by asking your provider for
worse service. In Proceedings of the Twelfth ACM Workshop
on Hot Topics in Networks, page 25. ACM, 2013.

[39] A. Munir, G. Baig, S. M. Irteza, I. A. Qazi, A. X. Liu, and
F. R. Dogar. Friends, not foes: synthesizing existing transport
strategies for data center networks. In Proceedings of the 2014
ACM conference on SIGCOMM, pages 491–502. ACM, 2014.

[40] J. Ousterhout, P. Agrawal, D. Erickson, C. Kozyrakis, J. Lev-
erich, D. Mazières, S. Mitra, A. Narayanan, G. Parulkar,
M. Rosenblum, et al. The case for ramclouds: scalable high-
performance storage entirely in dram. ACM SIGOPS Operat-
ing Systems Review, 43(4):92–105, 2010.

[41] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fu-
gal. Fastpass: A centralized zero-queue datacenter network.
In Proceedings of the 2014 ACM conference on SIGCOMM,
pages 307–318. ACM, 2014.

[42] L. Popa, G. Kumar, M. Chowdhury, A. Krishnamurthy, S. Rat-
nasamy, and I. Stoica. Faircloud: sharing the network in cloud
computing. In Proceedings of the ACM SIGCOMM 2012 con-
ference on Applications, technologies, architectures, and pro-
tocols for computer communication, pages 187–198. ACM,
2012.

[43] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner,
and J. R. Santos. Elasticswitch: practical work-conserving
bandwidth guarantees for cloud computing. In ACM SIG-
COMM Computer Communication Review, volume 43, pages
351–362. ACM, 2013.

[44] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik,
and M. Handley. Improving datacenter performance and ro-
bustness with multipath tcp. ACM SIGCOMM Computer
Communication Review, 41(4):266–277, 2011.

[45] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. In-
side the social network’s (datacenter) network. In Proceed-
ings of the 2015 ACM Conference on Special Interest Group
on Data Communication, pages 123–137. ACM, 2015.

[46] S. Sen, D. Shue, S. Ihm, and M. J. Freedman. Scalable, op-
timal flow routing in datacenters via local link balancing. In
Proceedings of the ninth ACM conference on Emerging net-
working experiments and technologies, pages 151–162. ACM,
2013.

[47] A. Shieh, S. Kandula, A. Greenberg, and C. Kim. Seawall:
performance isolation for cloud datacenter networks. In Pro-
ceedings of the 2nd USENIX conference on Hot topics in cloud
computing, pages 1–1. USENIX Association, 2010.

[48] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead,
R. Bannon, S. Boving, G. Desai, B. Felderman, P. Germano,
et al. Jupiter rising: A decade of clos topologies and central-
ized control in googles datacenter network. In Proceedings of
the 2015 ACM Conference on Special Interest Group on Data
Communication, pages 183–197. ACM, 2015.

[49] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. Detail:
reducing the flow completion time tail in datacenter networks.
ACM SIGCOMM Computer Communication Review, 42(4):
139–150, 2012.

[50] M. Zhang, B. Karp, S. Floyd, and L. Peterson. Rr-tcp: a
reordering-robust tcp with dsack. In Network Protocols, 2003.
Proceedings. 11th IEEE International Conference on, pages
95–106. IEEE, 2003.

