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Abstract— Data Center Networks present a novel, unique and
rich environment for algorithm development and deployment.
Projects are underway in the IEEE 802.1 standards body,
especially in the Data Center Bridging Task Group, to define
new switched Ethernet functions for data center use.

One such project is IEEE 802.1Qau, the Congestion Notifi-
cation project, whose aim is to develop an Ethernet congestion
control algorithm for hardware implementation. A major con-
tribution of this paper is the description and analysis of the
congestion control algorithm—QCN, for Quantized Congestion
Notification— which has been developed for this purpose.

A second contribution of the paper is an articulation of the
Averaging Principle: a simple method for making congestion
control loops stable in the face of increasing lags. This contrasts
with two well-known methods of stabilizing control loops as
lags increase; namely, (i) increasing the order of the system by
sensing and feeding back higher-order derivatives of the state,
and (ii) determining the lag and then choosing appropriate loop
gains. Both methods have been applied in the congestion control
literature to obtain stable algorithms for high bandwidth-delay
product paths in the Internet. However, these methods are either
undesirable or infeasible in the Ethernet context. The Averaging
Principle provides a simple alternative, one which we are able
to theoretically characterize.

I. INTRODUCTION

Data centers have emerged in the past few years as a new
paradigm for interconnecting computing and storage on a
massive scale. There are several viewpoints from which to
approach the development of data centers: as the outgrowth
of large web server farms (for web-hosting), as the con-
vergence of computing and networking (high-performance
computing as typified by the Cloud Computing paradigm),
and as a convergence of local area networks and storage
networks. Several technological innovations have spurred the
rapid deployment of data centers; notably, 10 Gbps Ethernet
technology, the specification of Fiber Channel over Ethernet
(FCoE) standards, server virtualization, and the development
of high-performance Network Interface Cards (NICs).
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The Data Center Bridging Task Group in the IEEE 802.1
Ethernet standards body has several active projects aimed
at enabling enhancements to classical switched Ethernet so
that it may provide more services. Details of the DCB Task
Group’s projects are available at [17]. Particularly relevant to
the present paper are the Congestion Notification (CN, IEEE
802.1Qau) and the Priority-based Flow Control (PFC, IEEE
802.1Qbb) projects. The first project is concerned with the
specification of a Layer 2 congestion control mechanism, in
which a congested switch can control the rates of Layer 2
sources whose packets are passing through the switch. Thus,
the CN project induces congestion control loops at Layer 2
similar to the well-known TCP/RED control loops at Layer
3. The second project is concerned with introducing a link-
level, per-priority flow control or PAUSE function.

Whereas the CN and PFC projects are functionally sim-
ilar to previous work, the operating conditions in switched
Ethernets vastly differ in ways that will be made clear in
the next section. This has necessitated the development of a
novel congestion control scheme, called QCN (for Quantized
Congestion Notification). A primary goal and contribution of
this paper is to describe the QCN algorithm and to present
a mathematical model useful for understanding its stability.
The QCN algorithm shares commonalities with the BIC-TCP
algorithm [15] at the source and the REM [4] and PI [5]
controllers at the switch; therefore, the analytical model we
develop for QCN is useful for understanding BIC-TCP as
well.

A second contribution of this paper is the articulation
of the Averaging Principle, which is a simple method for
improving the stability of congestion control loops in the
presence of increasing lags (or round trip times, RTTs) such
as can occur in high bandwidth-delay product networks. It
is well-known that the stability of a control loop worsens as
the lag between the source and the network increases. Two
main methods of feedback compensation are employed for
restoring stability at large RTTs: (i) determine the RTT and
choose appropriate control gain parameters, and (ii) enrich
the state of the system by feeding back (linear combinations
of) higher order derivatives of the queue-size process at net-
work switches and routers. Most existing congestion control
algorithms for high bandwidth-delay product networks can
be classified as being of one or the other type. See Section
III for details.

The Averaging Principle is another method, which neither
requires knowledge of the RTT nor needs the network
to be upgraded. We apply the Averaging Principle to an



AIMD (for additive increase, multiplicative decrease) scheme
and see that it dramatically improves the stability of the
AIMD scheme. We demonstrate that the Averaging Principle
is equivalent to a scheme which feeds back higher order
derivatives of the queue-size process. This initial result hints
at the fundamental reason for the good performance of the
Averaging Principle and encourages a deeper exploration.

Of necessity, this paper is brief. We have presented the
main points of the QCN algorithm and the Averaging Prin-
ciple deferring detailed treatments to further publications.
We are particularly interested in exploring the Averaging
Principle in greater detail and in seeking out applications
for it outside the congestion control context.

We conclude the introduction by noting that Data Center
Networks provide an excellent opportunity for revisiting
some of the basic issues of packet switched networks,
such as congestion control, switching, forwarding/routing,
measurement and traffic engineering. They have the scale,
in terms of the number of nodes, of a large subnetwork of
the Internet, they operate under new and unique constraints,
and they aim to support novel services, applications and
technologies. This makes Data Center Networks a really
interesting research subject.

II. QCN
The QCN (Quantized Congestion Notification) algorithm

has been developed to provide congestion control at the
Ethernet layer, or at L2. It has been developed for the IEEE
802.1Qau standard, which is a part of the IEEE Data Center
Bridging Task Group’s efforts. A related effort is the Priority
Flow Control project, IEEE 802.1Qbb, for enabling hop-by-
hop, per-priority pausing of traffic at congested links. Thus,
when the buffer at a congested link fills up, it issues a PAUSE
message to upstream buffers, an action which ensures packets
do not get dropped due to congestion. A consequence of link-
level pausing is the phenomenon of “congestion spreading:”
the domino effect of buffer congestion propagating upstream
causing secondary bottlenecks. Secondary bottlenecks are
highly undesirable as they affect sources whose packets do
not pass through the primary bottleneck. An L2 congestion
control scheme allows a primary bottleneck to directly reduce
the rates of those sources whose packets pass through it,
thereby preventing (or reducing the instances of) secondary
bottlenecks. The L2 congestion control algorithm is expected
to operate well regardless of whether link-level pause exists
or not (i.e. packets may be dropped).

Many differences exist between the operating environ-
ments of the Internet and switched Ethernet, which we
list below. These differences and performance requirements
place some unique restrictions on the type of L2 congestion
control that is suitable for the Data Center environment.

Switched Ethernet vs. the Internet. There are several
differences, we only list the most important below. One major
issue which we will only mention briefly is multipathing,
which is a key feature in Ethernet and which quite severely
affects both the design and the performance of congestion
control schemes.

1. No per-packet acks in Ethernet. This has several conse-
quences for congestion control mechanisms: (i) Packet
transmission is not self-clocked as in the Internet, (ii)
path delays (round trip times) are not knowable, and
(iii) congestion must be signaled by switches directly to
sources. The last point makes it difficult to know path
congestion; one only knows about node congestion.

2. Packets may not be dropped. As mentioned, Ethernet
links may be paused and packets may not be dropped. A
significant side-effect of this is that congestion spread-
ing can occur, causing spurious secondary bottlenecks.

3. No packet sequence numbers. L2 packets do not have
sequence numbers from which RTTs, or the length of
the “control loop” in terms of number of packets in
flight, may be inferred.

4. Sources start at the line rate. Unlike the slow-start
mechanism in TCP, L2 sources may start transmission
at the full line rate of 10 Gbps. This is because L2
sources are implemented in hardware, and installing rate
limiters is the only way to have a source send at less
than the line rate. But since rate limiters are typically
few in number, it is preferable to install them only when
a source gets a congestion message from a switch.

5. Very shallow buffers. Ethernet switch buffers are typi-
cally 100s of KBytes deep, as opposed to Internet router
buffers which are 100s of MBytes deep. Even though
in terms of bandwidth-delay product the difference is
about right (Ethernet RTTs are a few 100 µsecs, as
opposed Internet RTTs which are a few 100 msecs),
the transfer of a single file of, say, 1 MByte length can
overwhelm an Ethernet buffer. This is especially true
when L2 sources come on at the line rate.

6. Small number-of-sources regime is typical. In the Inter-
net literature on congestion control, one usually studies
the system when the number of sources is large, which
is typical in the Internet. However, in Ethernet (espe-
cially in Data Centers), it is the small number of sources
that is typical. This imposes serious constraints on the
stability of congestion control loops, see below.

7. Multipathing. Forwarding in Ethernet is done on span-
ning trees. While this avoids loops, it is both fragile
(there is only one path on a tree between any pair
of nodes) and leads to an underutilization of network
capacity. For these reasons, equal cost multipathing
(ECMP) is some times implemented in Ethernet. In
this scenario there is more than one path for packets to
go from an L2 source to an L2 destination. However,
congestion levels on the different paths may be vastly
different!

Performance requirements. The congestion control algo-
rithm should be

a. Stable. This means buffer occupancy processes should
not fluctuate, causing overflows and underflows. Such
episodes either lead to dropped packets or to link
underutilization. This is particularly important when
trying to control a small number of high bandwidth
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Fig. 1: Congestion detection in QCN CP.
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Fig. 2: Sampling (reflection) probability in QCN CP as a
function of |Fb|.

sources with a shallow buffer, whose depth is a fraction
of the bandwidth-delay product. For example, we would
like to operate switch buffers at 30 KByte occupancy
when a single 10 Gbps source is traversing it and the
overall RTT is 500 µsecs. That is, we aim to keep the
buffer occupancy at less than 6% of the bandwidth-delay
product!

b. Responsive. Ethernet link bandwidth on a priority can
vary with time due to traffic fluctuation in other prior-
ities, the appearance of bottlenecks due to pause, the
arrival of new sources, etc. These variations can be
extreme: from 10 Gbps to 0.5 Gbps and back up again.
The algorithm needs to rapidly adapt source rates to
these variations.

c. Fair. When multiple flows share a link, they should
obtain nearly the same share of the link’s bandwidth.

d. Simple to implement. The algorithm will be imple-
mented entirely in hardware. Therefore, it should be
very simple. A corollary of this requirement is that
complicated calculations of rates, control loop gains and
other “variables” should be avoided.

A. The QCN Algorithm
We shall now describe the QCN algorithm. We focus on

its key features and omit a number of details important for
an exact implementation. Those interested are referred to the
QCN pseudo-code [19].

The algorithm is composed of two parts:
(i) Switch or Congestion Point (CP) Dynamics: this is

the mechanism by which a switch buffer attached to
an oversubscribed link samples incoming packets and
generates a feedback message addressed to the source
of the sampled packet. The feedback message contains
information about the extent of congestion at the CP.

(ii) Rate limiter or Reaction Point (RP) Dynamics: this is
the mechanism by which a rate limiter (RL) associated
with a source decreases its sending rate based on
feedback received from the CP, and increases its rate
voluntarily to recover lost bandwidth and probe for extra
available bandwidth.

The CP Algorithm
Following the practice in IEEE standards, we think of the
CP as an ideal output-buffered switch even though actual
implementations may differ. The CP buffer is shown in Fig.
1. The goal of the CP is to maintain the buffer occupancy
at a desired operating point, Qeq.1 The CP computes a con-
gestion measure Fb (defined below) and, with a probability
depending on the severity of congestion, randomly samples2

an incoming packet and sends the value of Fb in a feedback
message to the source of the sampled packet. The value of
Fb is quantized to 6 bits.

Let Q denote the instantaneous queue-size and Qold

denote the queue-size when the the last feedback message
was generated. Let Qoff = Q − Qeq and Qδ = Q − Qold.
Then Fb is given by the formula

Fb = −(Qoff + wQδ), (1)

where w is a non-negative constant, taken to be 2 for the
baseline implementation.

The interpretation is that Fb captures a combination of
queue-size excess (Qoff ) and rate excess (Qδ). Indeed,
Qδ = Q−Qold is the derivative of the queue-size and equals
input rate less output rate. Thus, when Fb is negative, either
the buffers or the link or both are oversubscribed. When
Fb < 0, Fig. 2 shows the probability with which a congestion
message is reflected back to the source as a function of |Fb|.
The feedback message contains the value of Fb, quantized to
6 bits. When Fb ≥ 0, there is no congestion and no feedback
messages are sent.

The RP Algorithm
Since the RP is not given positive rate-increase signals by
the network, it needs a mechanism for increasing its sending
rate on its own. Due to the absence of acks in Ethernet,
the increases of rate need to be clocked internally at the RP.
Before proceeding to explain the RP algorithm, we will need
the following terminology:

• Current Rate (CR): The transmission rate of the RL at
any time.

• Target Rate (TR): The sending rate of the RL just before
the arrival of the last feedback message.

• Byte Counter: A counter at the RP for counting the
number of bytes transmitted by the RL. It times rate
increases by the RL. See below.

• Timer: A clock at the RP which is also used for timing
rate increases at the RL. The main purpose of the timer
is to allow the RL to rapidly increase when its sending

1It is helpful to think of Qeq as roughly equal to 20% of the size of the
physical buffer.

2The actual implementation is slightly different; refer to [19] for details.
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Fig. 3: QCN RP operation.

rate is very low and there is a lot of bandwidth becomes
available. See below.

We now explain the RP algorithm assuming that only the
byte counter is available. Later, we will briefly explain how
the timer is integrated into the RP algorithm. Fig. 3 shows
the basic RP behavior.
Rate decreases. This occurs only when a feedback message
is received, in which case CR and TR are updated as
follows:

TR ← CR, (2)
CR ← CR(1−Gd|Fb|) (3)

where the constant Gd is chosen so that Gd|Fbmax| = 1
2 , i.e.

the sending rate can decrease by at most 50 %.
Rate increases. This occurs in two phases: Fast Recovery
and Active Increase.
Fast Recovery (FR). The byte counter is reset every time
a rate decrease is applied and it enters the FR state. FR
consists of 5 cycles, each cycle equal to 150 KBytes of data
transmission by the RL. The cycles are counted by the byte
counter. At the end of each cycle, TR remains unchanged
while CR is updated as follows:

CR ← 1
2
(CR + TR). (4)

The cycle duration of 150 KBytes is chosen to correspond
to the transmission of 100 packets, each 1500 Bytes long.
The idea is that when the RL has transmitted 100 packets
and, given that the minimum sampling probability at the CP
is 1%, if it hasn’t received a feedback message then it may
infer that the CP is uncongested. Therefore it increases its
rate as above, recovering some of the bandwidth it lost at
the previous rate decrease episode. Thus, the goal of the RP
in FR is to rapidly recover the rate it lost at the last rate
decrease episode.
Note. The BIC-TCP algorithm is the first to introduce
Fast Recovery. We have independently, but subsequently,
rediscovered it.
Active Increase (AI). After 5 cycles of FR have completed,
the RP enters the Active Increase (AI) phase where it probes
for extra bandwidth on the path. During AI, the byte counter
counts out cycles of 50 packets (this can be set to 100
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Fig. 4: Byte Counter and Timer interaction with RL.

packets for a less frequent probing). At the end of a feedback
message, the RL updates TR and CR as follows:

TR ← TR + RAI (5)

CR ← 1
2
(CR + TR), (6)

where RAI is a constant chosen to be 5 Mbps in the baseline
implementation. This completes the description of the basic
RP algorithm using only the Byte Counter.

Supplementary Notes and Remarks
Remark 1. Since rate increases using the Byte Counter
occur at times proportional to the current sending rate of
the RL, when the CR is very small, the duration of Byte
Counter cycles when measured in seconds can become
unacceptably large. Since the speed of bandwidth recovery
(or responsiveness) is a key performance metric, we have
included the Timer in QCN.

The Timer functions similarly as the Byte Counter: it is
reset when a feedback message arrives, enters FR and counts
out 5 cycles of T ms duration (T is 10 ms long in the
baseline), and then enter AI where each cycle is T/2 ms
long.

The Byte Counter and Timer jointly determine rate in-
creases at the RL as shown in Fig. 4. After a feedback
message is received, they each operate independently and
execute their respective cycles of FR and AI. Together, they
determine the state of the RL and its rate changes as follows.

1. The RL is in FR if both the Byte Counter and the Timer
are in FR. In this case, when either the Byte Counter or
the Timer completes a cycle, CR is updated according
to (4).

2. The RL is in AI if only one of the Byte Counter and
the Timer is in AI. In this case, when either completes
a cycle, TR and CR are updated according (5) and (6).

3. The RL is in HAI (for Hyper-Active Increase) if both
the Byte Counter and the timer are in AI. In this case,
the ith time that a cycle for either the Byte Counter or
the Timer is completed, TR and CR are updated as:

TR ← TR + iRHAI (7)

CR ← 1
2
(CR + TR) (8)

where RHAI is constant set to 50 Mbps in the baseline
implementation. So the increments to TR (and hence
of CR) in HAI occur in multiples of 50 Mbps.
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Fig. 5: Comparison of QCN fluid model and ns-2 simulation

Thus, the Byte Counter and Timer should be viewed as
providing “rate increase instances” to the RL. Their state
determines the state and, hence, the amount of rate increase
at the RL.
Remark 2. It is very important to note that the RL goes
to HAI only after at least 500 packets have been sent and
50 msecs have passed since the last congestion feedback
message was received. This doubly ensures that aggressive
rate increases occur only after the RL provides the network
adequate opportunity (in packets sent for possible sampling)
for sending rate decrease signals should there be congestion.
This is vital to ensure the stability of the algorithm, and
while optimizations can be performed to improve its respon-
siveness, in the interests of stability and simplicity, we have
resisted the temptation to optimize.
Remark 3. Other crucial features of the QCN algorithm
(such as Extra Fast Recovery and Target Rate Reduction)
which are useful for ensuring its reliable performance when
the path bandwidth suddenly drops have been omitted here.
Remark 4. The manner of rate increases in QCN during
FR is the central innovation of the BIC-TCP algorithm.
Therefore, the model for QCN’s evolution, presented next,
can be twinned with that of BIC. This would be the first
time that the familiar delay-differential equation model of
TCP can be written down for BIC. The conceptual point
needed for obtaining the delay-differential equation model
was the recognition that there are two independent variables
describing source dynamics: TR and CR. There is usually
only one variable at the source: its current sending rate (or
window size). Since BIC-TCP has an explicit notion of time,
in the form of rate increases occurring once every RTT, a
Timer-only version of QCN would be its counterpart.

B. QCN Fluid Model
The fluid model derived below corresponds with a simpli-

fied version of QCN, with some features pertaining to the
use of the Timer and its transient evolution disabled. Due
to space constraints we also do not explain the derivation of
the equations; for the most part, this is part of the research
literature. The main difference is in our use of two variables,
TR and CR, to represent source behavior. As mentioned
earlier, this is a necessary step, since both TR and CR are
independent variables, although they are inter-dependent.

We compare the accuracy of the model with a packet-level
simulation of QCN using the ns-2 simulator [21]. Consider
a “dumbbell topology” with N sources sharing a single link.
Source i’s TR and CR are denoted by TRi and CRi,
and their evolution is given by the following differential
equations:

dTRi

dt
=− (TRi(t)− CRi(t))CRi(t− τ)p(t− τ)

+ (1− p(t− τ))500RAI
CRi(t− τ)

100
(9)

dCRi

dt
=− (GdFb(t− τ)CRi(t))CRi(t− τ)p(t− τ)

+ (
TRi(t− τ)− CRi(t− τ)

2
)
CRi(t− τ)p(t− τ)

1
(1−p(t−τ))100 − 1

(10)

where p(t) is the time-varying sampling probability at the
switch, and Fb(t) is the congestion price. These quantities
evolve according the the switch dynamics given by:

dq

dt
=

N∑

i=1

CRi(t)− C (11)

Fb(t) = q(t)−Qeq +
w

Cp(t)
(

N∑

i=1

CRi(t)− C) (12)

dp

dt
= 500(Φ(Fb(t))− p(t)) (13)

where Φ() is the function shown in Fig. 2.
Fig. 5 compares the QCN fluid model with ns-2 simula-

tions for the same scenarios. As can be seen, there is a very
good match between the model and simulations.

III. CONGESTION CONTROL IN HIGH
BANDWIDTH-DELAY PRODUCT NETWORKS

A. Background
The difficulties of designing efficient and stable congestion

control protocols for high bandwidth-delay product networks
have been well-documented in the literature. In particular
it is well-known that, with long-lived flows, as lags in
the congestion control loop increase, network queues may
become oscillatory and prone to instability. See, for example,
[12] and [13]. This has spawned many new congestion
control algorithms: [11], [14], [1], [2], [3], [15] and [16].

These problems are further magnified in the data center
environment due to the following two important constraints:



(i) the network is operating with shallow buffers, and (ii)
there are typically a small number of sources active on
each path. While the first constraint places a rigid limit on
the magnitude of oscillations, the second implies the active
sources are of very high rate, ranging from 10% to 100%
of the line rate, making it difficult to tightly control their
sending rates. This makes designing transport mechanisms
for data centers an interesting challenge, requiring the de-
velopment of new algorithms and congestion control theory.

Let us now consider a general control system (i.e., not
necessarily a congestion control system) operating in the
presence of increasing lags between the controller and the
plant. It is well-known that such a system loses stability
margin as lags increase and feedback compensation needs
to be applied to restore stability. There are two major flavors
of feedback compensation: (i) knowing the lags, the system
can adjust the loop gains so as to restore stability, and (ii) the
state-space is enriched at the plant with the addition of higher
order derivatives of the original state. Roughly speaking, the
former leaves the state unchanged while the latter leaves the
gains unchanged.

When particularized to congestion control loops with large
lags (or, equivalently, with high bandwidth-delay products),
feedback compensation has spawned two main approaches.
In one approach, an estimate of the round trip time is used
to find the correct “gains” for the loop to be stable; for
example, this is the approach taken by XCP [1], RCP [2],
and FAST [3]. The second approach aims to improve the
loop stability by including more queue information in the
congestion prices. For instance, the active queue management
protocols REM [4], and PI [5] both use a weighted sum of the
queue size and the net input rate to the queue (or the queue
derivative) as the congestion price. This approach has also
been adopted by the BCN [9] protocol to improve its stability
relative to an earlier version of the same algorithm where
just queue information was fed back. The first approach
is not feasible in Ethernet networks since there are no
per-packet acknowledgments from which round trip times
may be inferred. The second approach introduces a non-
trivial change at the switches and routers, which makes it
undesirable.

This discussion leads to the following interesting question:
Is there a source-side algorithm which does not change loop
gains (since round trip times are not available) and which
improves the control loop stability?

We are encouraged to seek an answer in the affirmative
because of the BIC-TCP and QCN algorithms. BIC-TCP
operates stably in high-bandwidth delay product networks,
even though it changes neither loop gains nor router behavior.
However, it does operate in the self-clocked universe of
Internet congestion control schemes, where window size
changes are made once every round trip time. So there is
the possibility that it implicitly exploits a knowledge of
round trip times to derive stability. The QCN algorithm has
no notion of round trip times! The similarity of operation
of the BIC-TCP and QCN algorithms suggests they are
stable for large lags for a more fundamental reason. Our
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Fig. 6: Basic (top) and AP enabled source (bottom)

attempt to uncover and understand this reason has led us to
the “Averaging Principle,” which we articulate in the next
section.

B. The Averaging Principle
We model a congestion control loop as a sampled-data

control system; i.e., a system in which the state or the plant
output is sampled periodically and fed back to the controller.
Such a model is appropriate for congestion control schemes
where packets are sampled periodically (albeit randomly) at
the switches/routers and feedback is sent to the correspond-
ing sources. We assume that the sampling period is known
to the sources; for example, we take it as the reciprocal of
the minimum sampling probability at the switches, which
is a well-known quantity. Denote by T the length of the
sampling period counted in number of transmitted packets.
For emphasis, we note that T is a deterministic quantity, even
though sampling may occur randomly with a mean sampling
period larger than equal to T .

It is to be noted that Internet congestion control schemes
typically change sending rates in multiples of round trip
times (RTTs), and not in multiples of packets sent. Therefore,
it is natural in such networks for T to have units of time
(or RTTs). However, in keeping with the Ethernet-centric
nature of this paper, we shall take T to be counted in packets
transmitted.

We shall use the notions of Current Rate (CR) and Target
Rate (TR) introduced earlier, see Fig. 6 for an illustration.

The Averaging Principle (AP), Basic form.
In addition to changing the CR upon the receipt of feedback
messages from the network, the AP stipulates that CR be
changed as follows: After T/2 packets have been transmitted
since the receipt of the last feedback message, change CR to
(CR+TR)/2. In other words, halfway during the sampling
interval, let CR move halfway towards TR (which was the
value of the CR before the receipt of the last feedback
message).
Remark 1: The statement of the basic form of the AP
works best when the congestion control loop corresponds
naturally with a sampled-data system. Thus, it works best
when signals arrive from the network regularly, about once
every T transmitted packets. Schemes like BCN, RCP and



XCP in which the network sends both rate increase and
decrease signals at regular intervals are, therefore, naturally
amenable to an application of the AP. Other schemes, such
as TCP, where the network only sends rate decrease signals
can have a more variable period between feedback messages.
Here too the AP applies (witness BIC-TCP and QCN), albeit
in a slightly different form. We defer an elaboration of this
point to further publications.
Remark 2: One could set CR equal to αCR + (1− α)TR,
where α ∈ (0, 1) and apply averaging at points other than
the midpoint of the sampling interval. Other generalizations
are possible.

Effectiveness of the AP: A case study.
To demonstrate the effectiveness of the AP, we will apply it
to an AIMD scheme in which rate increases and decreases
are signaled by the network. This scheme is a version of
the BCN algorithm3 studied by the IEEE DCTG, with some
minor features disabled. We shall refer to it as N-AIMD, for
Network-AIMD. The AP applies equally well to N-MIMD
schemes; although, due to a shortage of space we do not
present those results here.

In N-AIMD, switches randomly sample packets with 1%
probability. Thus, T = 100 packets and the AP is applied
50 packets after the last feedback message was received by
the source. We use a packet counter at the source which is
reset every time a feedback message is received, and which
is incremented for every transmitted packet. Averaging is
applied when the count reaches 50, after which the CR is
unchanged until the next feedback message is received. If the
source receives a feedback message before the packet counter
has reached 50, the counter is reset and no averaging takes
place.

When a packet is sampled at the switch, an Fb value
is computed in exactly the same way as in equation (1).
However, whether Fb is positive or negative, N-AIMD sends
the Fb value to the source of the sampled packet. Upon
receipt of the feedback message, the source updates its rate
as:

R ←
{

R + GiRuFb if Fb ≥ 0 (14a)
R(1−Gd|Fb|) if Fb < 0 (14b)

where Gi, Ru, and Gd are non-negative parameters of the
protocol.

Averaging Principle Simulation.
We compare the N-AIMD scheme to the scheme which
results from applying the AP to N-AIMD (AP-N-AIMD).
We use the packet-level simulator OMNeT++ [10], and
the parameter values of the baseline BCN implementation
[18], namely: Qeq = 16 packets, w = 2, Gi = 0.53333,
Ru = 1000000, Gd = 0.0026667. We adopt the conventional
dumbbell topology with a single bottleneck link and compare
the two schemes under increasing RTTs.

First consider the small number-of-sources-regime. Fig.
7 shows the instantaneous queue sizes for the case where

3For a control-theoretic analysis of BCN, see [9].

Fig. 7: N = 2 sources: N-AIMD (left) vs. AP-N-AIMD (right)

Fig. 8: N = 20 sources: N-AIMD (left) vs. AP-N-AIMD
(right)

2 sources share a bottleneck link with 10 Gbps capacity.
As can be seen, when the RTT is increased to 140 µs, N-
AIMD is no longer stable, while AP-N-AIMD remains quite
stable, keeping the queue oscillations small around Qeq = 16
packets. It isn’t until an RTT of 240 µs that the AP-N-AIMD
also loses its stability, and at this RTT N-AIMD is unstable,
with underflowing queues leading to substantial link under-
utilization.

Now consider a simulation with 20 sources4 as depicted
in Fig. 8. In this case, N-AIMD becomes unstable at an RTT
of 190 µs. But AP-N-AIMD becomes unstable only when
the RTT is increased beyond 230 µs. Hence in this case
as well, the AP improves protocol stability. As the number
of sources increases, the margin of improvement diminishes
because the link is quite well utilized by the aggregate of
sources even under N-AIMD, leaving little margin for AP to
improve.

420 is a large enough number of sources in the Ethernet context.
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Fig. 9: Single source Averaging Principle (top) and its
equivalent (bottom) systems

C. Analysis of the Averaging Principle
So, why does the AP work well in providing feedback

compensation? We now provide an initial answer to this
question. The punch-line is: the AP is equivalent to a scheme
which adds an extra derivative of the queue-size (the second
derivative in the case of N-AIMD) to the state. The latter is
a well-known plant- or switch-side method of increasing the
stability margin; however, it requires a non-trivial change to
the way switches operate. Due to lack of space, we will not
go into the details and proof of this result, but rather just state
a basic representative theorem for the single source case.

Consider the two systems shown in Fig. 9. In System 1,
the source receives the feedback sequence Fb[n] and adjusts
its sending rate according to the AP. R1[n] and R2[n] are the
source’s sending rate before and after the averaging change
is applied and after receiving the nth feedback sample, Fb[n].
Re[n] is the mean of R1[n] and R2[n] which is clearly
the effective rate the switch queue sees, since it acts as an
integrator. In System 2, the source does not employ the AP,
but uses the value 3

4Fb[n]− 1
4Fb[n− 1] to determine its rate

adjustments.

Theorem 1: Systems 1 and System 2 are algebraically
equivalent; that is, if the two systems have the same initial
rate (Re[0] = R[0]) and are given the same feedback
sequence (Fb[n];n ∈ N), they produce identical sequences
of sending rates, i.e. Re[n] = R[n] for all n ≥ 1.

Remark: Since

3Fb[n]− Fb[n− 1]
4

=
Fb[n]

2
+

Fb[n]− Fb[n− 1]
4

≈ Fb

2
+

T

4
dFb

dt
(15)

where T is the duration of a single sample interval.
Theorem 1 shows the AP results in a more stable system,

because it is equivalent to a system which feeds back the
second derivative of the queue-size (i.e. dFb

dt = dQ
dt +w d2Q

dt2 ).

IV. CONCLUSION

Data Center Networks are exciting to the industry and for
research. They afford the opportunity for the development
and deployment of new networking ideas. One development

described in this paper is the QCN L2 congestion control
algorithm. The analytical model of QCN is novel in that it
includes a “memory” element at the source and it can be used
to study BIC-TCP. In trying to understand the fundamental
reason for the good stability of QCN and BIC, we were led
to uncover the Averaging Principle and obtain a theoretical
understanding of the same.
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