
Systematic Testing for Detecting Concurrency Errors in Erlang Programs

Maria Christakis∗, Alkis Gotovos∗ and Konstantinos Sagonas†‡
∗ Department of Computer Science, ETH Zurich, Switzerland

† Department of Information Technology, Uppsala University, Sweden
‡ School of Electrical and Computer Engineering, National Technical University of Athens, Greece

maria.christakis@inf.ethz.ch alkisg@ethz.ch kostis@it.uu.se

Abstract—We present the techniques used in Concuerror, a
systematic testing tool able to find and reproduce a wide class
of concurrency errors in Erlang programs. We describe how we
take advantage of the characteristics of Erlang’s actor model of
concurrency to selectively instrument the program under test
and how we subsequently employ a stateless search strategy to
systematically explore the state space of process interleaving
sequences triggered by unit tests. To ameliorate the problem
of combinatorial explosion, we propose a novel technique for
avoiding process blocks and describe how we can effectively
combine it with preemption bounding, a heuristic algorithm for
reducing the number of explored interleaving sequences. We
also briefly discuss issues related to soundness, completeness
and effectiveness of techniques used by Concuerror.

I. INTRODUCTION

Concurrent programming is a necessity nowadays but such
programs are still notoriously difficult to get right. Specific
interleaving sequences that occur only rarely can trigger un-
expected errors and result in crashes that are surprising even
to expert programmers. This is as true today as it was thirty
years ago. The difference is that thirty years ago it was only
expert programmers who wrote concurrent programs. Today
it is the average programmer. As a result, program crashes
due to concurrency errors are not only more likely to surprise
more programmers, but are also more likely to occur.

Despite advances in model checking and program verifi-
cation, testing seems to still be the predominant technique
for locating software errors. In fact, many programmers are
test conscious and programs often come with extensive test
suites, commonly based on some unit testing framework.
Unfortunately, this kind of testing is not powerful enough
to uncover concurrency errors, let alone give guarantees
for their absence. Independently of language, detection of
concurrency errors requires systematic exploration of in-
terleaving sequences, which is both time consuming and
difficult to get right.

Fortunately, compared to thirty years ago, there have
been significant advances both in programming language
and testing technology. Some programming languages adopt
concurrency models, such as the actor model, that restrict
certain kinds of concurrency errors to a small subset of the
language. Advances in systematic testing include stateless
model checking tools like CHESS [1], an inspiration for

our work, which allows finding important concurrency errors
even with a small number of preemptions between processes.

This paper presents the techniques used in Concuerror, a
stateless model checking tool, that, given an Erlang program
and its (existing) test suite, systematically explores process
interleaving and presents detailed interleaving information
about errors (such as abnormal process exits, stuck processes
and assertion violations) that occur during the execution of
these tests. Concuerror is extremely easy to use and can
support the test-driven development of Erlang programs [2].

The focus of this paper is on Concuerror’s implementation
technology. More specifically, we describe how we take ad-
vantage of the fact that, in an actor language such as Erlang,
the majority of program statements access process-local data
and cannot possibly result in concurrency errors. This, in
turn, allows for a selective instrumentation of the program
that enables Concuerror’s scheduling algorithm to effectively
explore the space of all interleaving sequences of a test
executed against the program and identify concurrency er-
rors that occur during its execution. More importantly, we
propose a novel technique called blocking avoidance that
we effectively combine with iterative context bounding [3]
to significantly reduce the number of explored interleaving
sequences. The techniques used in Concuerror, besides being
effective in identifying erroneous process interleaving se-
quences and giving precise explanations about them, can in
principle also verify the absence of the kinds of concurrency
errors that the tool detects, when the entire interleaving space
has been explored.

Outline. In Section II we briefly present Erlang and an
example program on which we will illustrate our approach.
Section III gives an overview on the techniques used in
Concuerror, and Sections IV and V present them in detail.
Section Section VI describes two efficiency improvements
whose effectiveness is evaluated in Section VII. We review
related work in Section VIII and conclude.

II. PRELIMINARIES

Erlang is an industrially relevant programming language
based on the actor model of concurrency. In Erlang, actors
are realized by language-level processes that, by default,
share no memory and communicate with each other via

asynchronous message passing. Erlang processes are very
lightweight as they are implemented by the runtime system
of the language rather than by OS threads, and typical appli-
cations often create several thousands of them. Processes get
created using the spawn family of functions. A spawn call
creates a new process P having its own private memory area
(stack, heap and mailbox) and returns a process identifier
(PID) for it. Optionally, P can be linked to another process,
typically its parent, or registered under a specific name in
a global table, so that other processes can refer to P using
its name instead of its PID when sending messages to it.
Messages are sent asynchronously using the !/2 expression,
which takes two arguments and is a convenient shorthand for
the send/2 function. A process can then consume messages
using selective pattern matching in receive expressions1,
which are blocking operations in case a process mailbox
does not contain a matching message. Of course, blocking
the execution of a process until a specific kind of message
from another process arrives can lead to stuck processes.

Stuck processes, however, are not the only kinds of
concurrency errors that are possible in Erlang. Although the
majority of memory that programs access is process-local,
the language comes with various built-in functions (BIFs),
implemented in C, that manipulate data structures at the level
of the virtual machine (VM) which are shared between all
processes. Interleaving sequences of calls to these BIFs can
lead to data races or result in abnormal process exits. The
latter may in turn result in abnormal termination of other
processes. Testing for absence of concurrency errors due to
unfortunate process interleaving is complicated by the fact
that many errors are hard to come across and expose by
conventional unit testing. Part of the difficulty lies in that
the scheduling of processes is done by the Erlang VM and
is mostly deterministic. It is currently based on the notion
of reduction steps: roughly, each process gets to execute for
a certain number of “reductions” (currently 2, 000 function
calls) before it has to yield back to its scheduler which then
picks another process to execute. (A process also yields if
it gets blocked on a receive.) Consequently, multiple runs
of the same unit test are most likely to exhibit the same
behavior with respect to process interleaving as such tests
are too small for scheduling non-determinism to take effect.

Running example. A simple Erlang program involving two
processes is shown in Figure 1. The pong/0 function, which
is exported and may be called from outside the ping_pong

module, spawns a process that will execute the code of
function ping/1 (line 6). The spawned process, which is
registered under the same name as the module (line 6),
sends a ping message to the parent process (line 10), which,

1The general form of receive expressions is receive...after. What
comes after the after keyword is a timeout value: either an integer or the
special value infinity, in which case the behavior is that of a receive
expression without an after clause.

1 -module(ping_pong).
2 -export([pong/0]).
3

4 pong() ->
5 Self = self(),
6 register(ping_pong, spawn(fun () -> ping(Self) end)),
7 receive ping -> ok end.
8

9 ping(PongPID) ->
10 PongPID ! ping.

Figure 1: Simple example program involving two processes
and a concurrency error.

in turn, is expected to receive this message and return ok

(line 7). This code has a concurrency error. Its execution will
raise a runtime exception if the spawned process terminates
before the parent process attempts to register its PID, which
would not exist after the process terminates. As a result of
this exception, the process executing function pong/0 will
crash and exit abnormally. This error is so subtle that many
Erlang programmers are not even aware of its possibility.
Still, such errors compromise the robustness of applications.

The core of the problem here is that the sequence of calls
that spawns the new process and registers its PID needs to
run atomically. In the current implementation of Erlang/OTP,
the probability of the parent process being scheduled out
between these two consecutive calls is small2. However, even
if the calls were further apart, which would increase the
likelihood that the first process is scheduled out somewhere
in between, the error cannot easily be provoked with unit
testing because the scheduler of Erlang/OTP is deterministic.
To expose it, one would have to abandon unit for system
testing or employ a randomized scheduler like PULSE [4].
In any case, both styles of testing would have to rely on luck
to provoke and reproduce the error. In contrast, Concuerror
is able to find it immediately with systematic testing.

III. CONCUERROR IN A NUTSHELL

To detect concurrency-related runtime errors such as the
above abnormal process exit, Concuerror, given a program
and its test suite, systematically explores process interleaving
and presents detailed interleaving information on any errors
that occur during the execution of the tests. In addition
to abnormal process exits, Concuerror detects assertion
violations and stuck processes.

Approach. To detect these kinds of errors, Concuerror
effectively explores all interleaving sequences of the pro-
cesses that participate in a test execution using a stateless
search strategy, i.e. a search strategy that does not capture
the shared state of the program. Specifically, recording
an interleaving sequence involves storing information only

2To be precise the probability that reductions are exhausted at the spawn
call is 1/2, 000.

-module(test).
-export([pong_test/0]).
-include_lib("eunit/include/eunit.hrl").

pong_test() ->
?assertEqual(ok, ping_pong:pong()).

(a) Test module for the running example

P1 spawns P11

P11 sends ping to P1

P11 terminates (normal)

P1 terminates (non-existing process exception,
module ping_pong, line 6)

(b) Erroneous interleaving sequence as reported by Concuerror

Figure 2: Erroneous interleaving sequence found by running the test in Concuerror.

about context switches, while enforcing the execution of all
such sequences consists in efficiently controlling when the
participating processes yield or resume execution.

The delegation of control over process execution from the
Erlang scheduler to Concuerror is achieved through source-
to-source instrumentation of the program under test and ex-
ecution in a totally unmodified Erlang/OTP runtime system.
The alternative would have been to modify the runtime
system, but that approach would run the risk of slightly
altering the runtime semantics, besides being more difficult
to implement and maintain across different versions of
Erlang/OTP. More concretely, the program undergoes a parse
transformation that inserts preemption points in the code, i.e.
points where a context switch is allowed to occur, without
altering its semantics. In practice, a context switch may
occur at any function call during the execution of a process
in the Erlang VM. However, to avoid generating redundant
interleaving sequences that lead to the same shared state,
instrumentation in Concuerror inserts preemption points only
at process actions that interact with (i.e. inspect or update)
this shared state, which are very few in Erlang. We call such
actions preemptive. As a result, as long as the semantics
of the program under test is not altered and preemption
points are inserted at all preemptive actions, our approach
is both sound and complete in terms of exploring all valid
interleaving sequences and detecting all the concurrency
errors it targets.

Even though Erlang programs have very few points where
interaction with shared state occurs, the approach we have
described so far may quickly become infeasible as the
number of interleaving sequences grows exponentially in
the number of preemption points. To further reduce redun-
dancy, Concuerror employs a novel technique for avoid-
ing sequences that involve processes blocking on receive

expressions. In addition, it adapts to the Erlang setting a
heuristic prioritization technique, called iterative context-
bounding [3]—preemption bounding for short—that restricts
the number of explored interleaving sequences with respect
to a user-specified parameter.

Note that, as Concuerror does not keep track of the shared
state, executing the same interleaving sequence more than
once may result in different such states in case there are
interactions with uninstrumented processes. In principle, this

problem could be solved by instrumenting all processes
participating in a test execution, including Erlang system and
library processes. In practice, however, this approach may
quickly become infeasible again. For this reason, Concuerror
allows the user to choose which modules of the program un-
der test to instrument and opt for testing process interactions
only at the user-level ignoring any interactions with system
or library processes.

Usage of Concuerror. The typical usage of Concuerror is
as follows. The user opens the tool’s graphical user interface
(GUI), loads a number of Erlang modules and chooses a test
to run. Note that Concuerror can run already existing test
functions and requires no modifications to them or to the
program under test. In addition, since its testing approach is
systematic, programmers need not spawn huge numbers of
processes in their tests to increase the chances of detecting
any concurrency errors—the minimum number of processes
that is necessary to cause the error will do. As an example,
let us assume that the user loads module ping_pong of
Figure 1 and a module containing a test for this program
shown in Figure 2a. This test uses an EUnit [5] assertion to
check whether the return value of ping_pong:pong/0 is ok.

As a first step, Concuerror’s instrumenter applies an
automatic parse transformation to the loaded modules in
order to insert preemption points into the code. In our
running example, preemption points are inserted at all pro-
cess interactions with the shared state, i.e. process creation
(spawn/1 on line 6), process registration (register/2 on
line 6) and message passing (receive on line 7 and !/2 on
line 10). Even though in this simple example preemption
points are inserted at most process actions, in real programs
the actions that interact with the shared state constitute only
a small portion of the code, thus allowing our approach to
handle large programs.

After the transformed modules have been compiled and
loaded, the user chooses an exported function to execute un-
der Concuerror, like the pong/0 function of Figure 1 or the
pong_test/0 function of Figure 2a. The tool’s scheduler ex-
ecutes all possible interleaving sequences of the selected test
function—up to the current preemption bound—and reports
detailed interleaving information on any errors encountered,
like the exception described in the previous section. The
error that Concuerror finds is shown in Figure 2b.

Using this information, the user can iteratively apply code
changes and replay the erroneous interleaving sequence to
observe how program execution is affected. If no errors
are reported, the preemption bound can be increased for
a more thorough exploration, depending on the program’s
complexity and the user’s time constraints. If the exploration
completes without detecting any errors and the preemption
bound has not been reached, the program is indeed free from
the kinds of concurrency errors detected by the tool. In this
case, Concuerror functions not only as a testing, but also as
a verification tool.

IV. PROGRAM INSTRUMENTATION

Concuerror instruments the code of the program under test
at the granularity of modules. The translation is source-to-
source and, as a result, processes yield and resume execution
at preemption points with a simple receive expression:

pause() ->
receive scheduler_prompt -> continue end.

By calling Concuerror’s pause/0 function, a process blocks
on the receive expression until a prompt from the scheduler
is received. In this section, we mainly focus on the instru-
mentation of built-in function calls and receive expressions.
However, our approach allows the user to also insert preemp-
tion points at any function call that interacts with the shared
state. This gives the alternative of instrumenting the code at
a higher level than that of Erlang primitives.

Since, as described in Section II, process exits might
affect the execution of other processes, we have chosen to
place preemption points after any interaction with the shared
state to conveniently separate the last such interaction from
a process exit. This implies that a context switch also needs
to occur before a newly spawned process starts executing the
user code, otherwise the process would only yield execution
after executing the first interaction with the shared state.

A. Built-In Function Calls

The instrumentation of built-in function calls that interact
with the shared state consists in their substitution with calls
to appropriate wrapper functions provided by Concuerror.

The signature of a wrapper function is identical to the sig-
nature of the BIF it is replacing, i.e. it accepts the same argu-
ments and returns the same values. For instance, in our run-
ning example, the erlang:spawn/1 call is transformed into a
call to the wrapper function concuerror:spawn_wrapper/1

with the same arguments, and the !/2 expression is trans-
formed into a concuerror:send_wrapper/2 call.

Internally, all wrapper functions have the same structure:
(1) the original BIF is called, (2) the scheduler is notified
of the process action, (3) the process yields execution (via a
call to concuerror:pause/0) until the scheduler prompts it
to continue, and (4) when execution resumes, the result of
the original BIF call is returned. As an example, consider
the declaration of concuerror:spawn_wrapper/1, which is

spawn_wrapper(F) ->
Fun = fun () -> pause(), F() end,
PID = spawn(Fun),
notify_scheduler(spawn, PID),
pause(),
PID.

Figure 3: Concuerror’s spawn/1 wrapper.

send_wrapper(Dest, Msg) ->
Pair = {Dest, Msg},
Dest ! ?INSTR_MSG(Msg),
notify_scheduler(send, Pair),
pause(),
Msg.

Figure 4: Concuerror’s send/2 wrapper.

shown in Figure 3. Note that the newly spawned process
yields execution immediately after its creation. In Figure 4,
the declaration of concuerror:send_wrapper/2 is shown,
which uses a macro to instrument the message that is being
sent to the destination process so that it contains more
information about the sender. This information includes
the sender’s PID and a unique identifier for distinguish-
ing it from processes that have not been instrumented by
Concuerror (e.g. processes pertaining to the Erlang VM).

B. receive Expressions

The instrumentation of receive expressions is more
complex than that of BIF calls, as receives are language
expressions that are more difficult to intercept and whose
semantics dictates that processes might block while waiting
for a matching message to be received.

Figure 5 shows the instrumentation of the receive ex-
pression in the running example. The call to function
concuerror:receive_check/1, whose definition is shown
in Figure 6, ensures that the process executing the receive

does not block forever in case no matching message ever
arrives. More specifically, on line 3 of Figure 6, the anony-
mous function is used to look for matching messages in
the process mailbox without receiving them, i.e. without
removing them from the message queue. Note that in the
case expression of the anonymous function there are addi-
tional clauses both for uninstrumented matching messages—
sent by processes executing uninstrumented code—and for
instrumented or uninstrumented messages that do not match.
If the mailbox contains a matching message (line 4 of
Figure 6), then function concuerror:receive_check/1 re-
turns, the message is consumed by the receive expres-
sion of Figure 5, the scheduler is notified, and the pro-
cess yields execution at a preemption point (via a call to
concuerror:receive_notify/2). If, however, the mailbox
contains no matching messages, the process notifies the
tool’s scheduler that it is blocked and enters a busy-wait loop
checking for the arrival of a matching message (line 5). As

concuerror:receive_check(
fun (Message) ->

case Message of
{?UNIQUE, _, ping} -> match;
ping -> match;
_ -> no_match

end
end),

receive
{?UNIQUE, PID, ping} ->

concuerror:receive_notify(PID, ping), ok;
ping ->

concuerror:receive_notify(uninstrumented , ping),
ok

end

Figure 5: Instrumentation of the receive expression in the
running example. The general instrumentation of receives
is similar but needs to ensure that all variables it introduces
(e.g. PID in this code) are fresh.

1 receive_check(F) ->
2 {messages, Mailbox} = process_info(self(), messages),
3 case match(F, Mailbox) of
4 match -> continue;
5 no_match -> notify_scheduler(block, self()),
6 loop(F)
7 end.
8

9 loop(F) ->
10 {messages, Mailbox} = process_info(self(), messages),
11 case match(F, Mailbox) of
12 match -> notify_scheduler(unblock, self()),
13 pause();
14 no_match -> loop(F)
15 end.
16

17 match(F, []) -> no_match;
18 match(F, [Msg|Msgs]) ->
19 case F(Msg) of
20 match -> match;
21 no_match -> match(F, Msgs)
22 end.

Figure 6: The concuerror:receive_check/1 function.

soon as such a message arrives, the process requests to be
unblocked (line 11) and when the scheduler prompts it to
continue, the message is received.

C. Timeouts

Concuerror’s instrumenter eliminates any integer timeouts
or delays in the code under test by setting them to zero.
The rationale behind this design decision is twofold: (1) it
is not good programming practice for the robustness of an
application to depend on real-time constraints, and (2) since
our tool soundly explores process interleaving, it always
explores interleaving sequences in which a process action
is scheduled after the execution of other process actions, for
instance due to a delay.

As an example, consider a receive expression with
patterns and an after clause. A timeout value of infinity

means that the process should wait indefinitely for a match-
ing message, which is equivalent to the same receive

expression without the after clause. In such cases, the
expression is instrumented as discussed in Section IV-B. If,
however, the timeout value evaluates to an integer, then it
is set to zero. Consequently, the process will never block
on the receive and it is not necessary to check whether
there is a matching message in the process mailbox, i.e.
the concuerror:receive_check/1 call of Figure 5 is not
needed. This decision to gracefully ignore timeouts sacrifices
Concuerror’s completeness. However, given that delays in
Erlang are not exact but instead lower bounds (i.e. at least as
long as requested), we decided to take the risk of producing
interleaving sequences that are rare or even impossible in
practice rather than not handle programs with real-time
constraints at all. For instance, if we assume that there is
a significant delay in the ping/1 function of the running
example before message ping is sent, then the process
executing the code of function pong/0 is very unlikely to
throw an exception. Nonetheless, Concuerror ignores the
delay and produces the erroneous interleaving sequence,
which is practically rare but still possible according to the
runtime semantics of the language.

V. PROCESS SCHEDULING

After having described the syntactic transformations
through which Concuerror controls interleaving sequences,
let us now present our strategy for systematically exploring
the space of such sequences and discuss the details of
enforcing each of them.

A. Search Strategy

For representing interleaving sequences, each process
must be identified in a way that is both unique and constant
across repeated executions of a test function. For this reason,
Concuerror assigns to each process a logical identifier (LID),
i.e. a string that uniquely identifies the process in the process
tree hierarchy. More concretely, the initial process executing
the code of the test function is identified as P1, the first
two processes spawned (at runtime) by P1 as P11 and P12,
the first process spawned by P12 as P121, and so on. With
this definition, an interleaving sequence is represented as
a sequence of LIDs. Note, however, that not every LID
sequence is a valid interleaving sequence; for example, the
sequence P11P1 is not valid, because P11, which is spawned
by P1, can never be the first process to run.

Concuerror explores the space of valid interleaving se-
quences in a depth-first way. An iteration of the search
consists in running one process at a time to enforce a specific
interleaving sequence. Algorithm 1 shows the search algo-
rithm in pseudo-code. On lines 2–4, an empty interleaving
sequence prefix is pushed to an empty stack that stores un-
explored prefixes. On line 5, a list of erroneous interleaving
sequences is initialized to the empty list. Each iteration of

Algorithm 1 Depth-first search in process interleaving space

1 function SEARCH()
2 unexploredPrefixes ← empty stack
3 emptyPrefix ← empty list
4 PUSH(emptyPrefix, unexploredPrefixes)
5 erroneousPrefixes ← empty list
6 while not ISEMPTY(unexploredPrefixes) do
7 currentPrefix ← POP(unexploredPrefixes)
8 REPLAY(currentPrefix)
9 while not PROCESSTERMINATION() and not ERROR() do
10 activeProcesses ← GETACTIVEPROCS()
11 nextProcess ← POP(activeProcesses)
12 foreach process in activeProcesses

13 unexploredPrefix ← COPY(currentPrefix)
14 APPEND(process, unexploredPrefix)
15 PUSH(unexploredPrefix, unexploredPrefixes)
16 EXECUTE(nextProcess)
17 APPEND(nextProcess, currentPrefix)
18 if ERROR() then
19 APPEND(currentPrefix, erroneousPrefixes)
20 return erroneousPrefixes

the main loop pops a prefix from unexploredPrefixes
and calls function REPLAY to schedule the participating
processes according to this prefix (lines 7–8). Note that
REPLAY executes a prefix by first spawning the initial
process P1. After currentPrefix has been replayed, the
inner loop is entered: an active process is chosen for ex-
ecution (lines 10–11), the alternative interleaving sequence
prefixes are stored for later exploration (lines 12–15), the
chosen process is executed until its next preemption point
(line 16), and the current prefix is updated (line 17). This
inner loop is executed until either all processes terminate
successfully or an error occurs (line 9). In the latter case,
the erroneous interleaving sequence is added to the error
list (lines 18–19), which is returned by the function (line 20)
when the search terminates, i.e. when unexploredPrefixes
becomes empty (line 6), in which case there are no more
unexplored interleaving sequences3.

To evaluate the complexity of the search, observe that
for a program with n processes and ki preemption points
per process i = 1, . . . , n (ki ≤ k for some k), the number
of different interleaving sequences may be as large as the
number of distinct ki-multiset permutations:(∑n

i=1 ki
k1, . . . , kn

)
=

(
∑n

i=1 ki)!∏n
i=1 ki!

≤ (nk)!

(k!)n

Therefore, the time complexity of Algorithm 1 depends on
the number of processes and preemption points in a program
(not on its size) and is in the worst case exponential in both n

3The actual implementation reports each error as soon as it is found by
the algorithm.

1 handle_spawn(ParentLID, ChildPID, Context) ->
2 link(ChildPID),
3 ChildLID = newLID(ChildPID, ParentLID),
4 logAction({spawn, ParentLID, ChildLID}),
5 NewActive = sets:add_element(ChildLID,
6 Context#context.active),
7 NewPrefix = Context#context.prefix ++ [ParentLID],
8 Context#context{active=NewActive, prefix=NewPrefix}.

Figure 7: Scheduler handler for spawn/1 calls.

and k. Furthermore, since at most n−1 interleaving sequence
prefixes are stored at each of the (at most) nk preemption
points, the space complexity is O(n2k).

B. Low-level Scheduling

The instrumentation interface to the user code that
we described in Section IV is not enough to enforce
the execution of specific interleaving sequences. As
shown in Algorithm 1, some additional information (e.g.
currentPrefix, activeProcesses) is also required. This
information is stored in a structure, called scheduler context,
and includes two sets of active and blocked processes,
the current interleaving sequence prefix and the currently
running process.

In the general case, updating the context merely involves
extending the current interleaving sequence prefix with the
process executed last (lines 16–17 of Algorithm 1) and
moving this process to either the active or blocked set
depending on its last preemptive action. However, there
are cases that require special handling. As an example, let
us describe how the scheduler updates the context after
a spawn/1 call (see Figure 7). Function handle_spawn/2

takes as arguments the LID of the parent process that called
spawn/1, the PID of the newly spawned process and the
current context. On line 2, the scheduler links to the new
process; it is essential that the scheduler be linked to all
processes under test so that it is notified of their exits
(normal or abnormal) with appropriate ‘EXIT’ messages. On
line 3, the spawned process is assigned a new LID and, on
line 4, the spawning action is recorded. The remaining lines
of handle_spawn/2 update the context by adding the child
LID to the active set—the parent LID is already active—and
extending the current interleaving sequence prefix with the
LID of the parent process.

The scheduler detects the three types of errors that
Concuerror targets as follows. A stuck process error is
reported whenever all alive processes are blocked, which
means that the program under test cannot make progress.
Such an error might signify the existence of a deadlock in
case the stuck processes circularly depend on each other
to continue execution. Exceptions or assertion violations
are reported whenever a user process exits abnormally.
The distinction between these two kinds of errors is made
depending on the details of the process exit information.

VI. EFFICIENCY IMPROVEMENTS

The exponential time complexity of Algorithm 1 suggests
that the search becomes quickly infeasible as the number of
preemption points increases. In the following, we present
two techniques that significantly improve the efficiency of
the search. The first is a simple partial-order reduction tech-
nique that avoids redundant interleaving sequences involving
process blocks on receive expressions. The second is a
heuristic method, called preemption bounding, that bounds
the number of allowed context switches and drastically
reduces the number of explored interleaving sequences.

A. Blocking Avoidance

As we have already mentioned, when a process executes
a receive expression without any matching messages in its
mailbox, it blocks. The scheduler then chooses an active
process (if any) for execution. As explained in Section IV-B,
the blocked process only becomes active again as soon as a
matching message arrives. More importantly, although the
action of blocking on a receive expression inspects the
shared state (by checking the process mailbox), it does not
update it. In addition, the process cannot resume execution
and interact with the shared state again right after the
block. Therefore, a context switch is guaranteed to occur
at that point, and the inspection of the shared state does
not affect the execution of any process, i.e. is not really
a preemptive action. Consequently, interleaving sequences
containing process blocks are redundant and can be soundly
ignored.

If before resuming the execution of a process (line 16
of Algorithm 1) we knew that it would eventually block,
we could avoid exploring such a redundant interleaving
sequence by choosing another process for execution instead.
Although we do not have this information available in ad-
vance, in the instrumented version of the code it is possible
to check whether the already executing process will block
on a subsequent receive expression, which still allows us
to avoid these redundant sequences. In particular, when the
currently running process is about to block, the scheduler
moves it to the blocked set but does not extend the current
interleaving sequence prefix. This means that the search
continues without taking into account the execution of the
blocked process. Moreover, when replaying an interleaving
sequence prefix, if the last action of the prefix is a process
block, then the search iteration is soundly aborted since the
prefix is redundant and any alternatives will have already
been added to the stack of unexplored prefixes (lines 12–15
of Algorithm 1).

Despite the simplicity of blocking avoidance, Section VII
shows that it significantly reduces the search space and,
therefore, dramatically improves performance on programs
that make heavy use of message passing.

B. Preemption Bounding

To further improve efficiency, we apply a heuristic tech-
nique, called preemption bounding, which was first proposed
by Musuvathi and Qadeer [3] and builds on the hypothesis
that most concurrency errors are revealed with a small
number of context switches. The main idea is to impose
an upper limit on the number of context switches that the
scheduler is allowed to enforce during each search iteration.
However, certain context switches are necessary and leave no
choice to the scheduler, namely those that occur because of
process blocks or exits. These context switches are dictated
by the program semantics and are called non-preemptive. In
contrast, the context switches that are optionally enforced
by the scheduler are called preemptions and their number
may be bounded in order to reduce the explored state space.
Consequently, even if there is a bound on the number
of allowed context switches, the program under test is
still executed from start to finish unlike in other heuristic
techniques, such as iterative deepening.

The preemption bounding algorithm proposed by Musu-
vathi and Qadeer starts with a preemption bound of zero,
which is iteratively increased until the chosen value is
reached. Instead of a single stack for storing unexplored
interleaving sequence prefixes (unexploredPrefixes in
Algorithm 1), two stacks are used, one for storing prefixes
within the current preemption bound (Scurrent), and one
for storing prefixes that exceed this bound (Snext). We
developed a modified version of this algorithm in order to
incorporate blocking avoidance to it. The need for such an
adjustment is shown in the following execution scenario.

Let the program under test consist of three processes,
P1, P11 and P12, and assume that the current preemption
bound is c = 0. Also, assume that the current interleaving
sequence prefix is RP1, where R ∈ {P1, P11, P12}∗, i.e.
P1 is the process executed last, and all three processes
are active. Due to the value of the current bound, no
preemptions are allowed, interleaving sequence prefixes
RP1P11 and RP1P12 are pushed to Snext, and execution
continues with P1. Assume that this time P1 blocks on a
receive expression. If we employ the blocking avoidance
technique presented in Section VI-A, P1 is moved to the
blocked set and the current interleaving sequence prefix is
not updated. At this point, execution continues with an active
process, say P11. As a result, the context switch from P1

to P11, previously considered preemptive, is found to be
non-preemptive. Therefore, in our version of preemption
bounding, RP1P11 is removed from Snext because it is the
current interleaving sequence prefix, and RP1P12 is moved
from Snext to Scurrent for exploration within the current
preemption bound. Thus, we adapt the preemption bounding
algorithm as it was first proposed to also take advantage of
blocking avoidance.

For a program with n processes, ki ≤ k preemption

0 1 2 3 4 5 6 7 8
Preemption bound

100

101

102

103

104

105
To

ta
l n

um
be

r o
f i

nt
er

le
av

in
g

se
qu

en
ce

s

w/o bl. avoidance
with bl. avoidance

0 1 2 3 4
Preemption bound

101

102

103

104

105

106

To
ta

l n
um

be
r o

f i
nt

er
le

av
in

g
se

qu
en

ce
s

w/o bl. avoidance
with bl. avoidance

Figure 8: Number of interleaving sequences with and without blocking avoidance for the pidigits8_test/0 (left) and
attach_noping_test/0 (right) tests.

Table I: Number of processes (n) and maximum number of
preemption points per process (max ki) for the benchmarks.

Test function n max ki

pidigits8_test/0 2 10

attach_noping_test/0 3 14

attach_test/0 3 22

dialyzer_test/0 14 78

points per process, bi ≤ b non-preemptive context switches
per process and a preemption bound of c, the number of
interleaving sequences is exponential in n, b and c, but is
now polynomial in k. As k is usually the most significant
factor in determining the number of interleaving sequences,
preemption bounding allows for efficiently testing large
programs as long as the bound c is chosen sufficiently small.

VII. EVALUATION AND EXPERIENCE

We first evaluate the effectiveness of the techniques
presented in the previous section, blocking avoidance and
preemption bounding, on two small Erlang programs. Note
that, as shown in the preceding sections, the complexity of
the programs under test should not be judged in terms of
program size (e.g. number of LOC), but rather in terms of
the number of participating processes and the number of
preemption points per process. Table I contains the values
of these parameters for the test functions described below.

The first program4 uses message passing to calculate and
print the first N digits of π. The main process of the program
calculates the digits and spawns a new process for printing
them. Test function pidigits8_test/0 calculates and prints
the first eight π digits. The second program5, which we have

4http://shootout.alioth.debian.org/u32q/program.php?test=pidigits\&lang=hipe
5https://github.com/mariachris/Concuerror/tree/master/resources/tdd

presented in detail in a previous publication [2], involves
the creation of a generic registration server, which could,
for instance, be used to manage limited system resources.
Processes may attach to and detach from the server, but
only a limited number of processes are allowed to be at-
tached at any moment. Test function attach_noping_test/0

involves a server process and two other processes that
concurrently attempt to attach themselves to it. Test function
attach_test/0 is similar to attach_noping_test/0, but the
two processes also ping the server to confirm that they have
been correctly attached.

First, we assess the effect of blocking avoidance on the
number of explored interleaving sequences. Figure 8 shows
the total number of interleaving sequences for increasing
values of the preemption bound with and without blocking
avoidance. In both tests, our technique significantly reduces
the number of generated interleaving sequences. In partic-
ular, in pidigits8_test/0 the total number of sequences
is reduced by one and in attach_noping_test/0 by almost
three orders of magnitude. Observe that, as the preemption
bound increases, the efficiency improvement also increases.

We also evaluate how preemption bounding affects the
execution time for test functions attach_noping_test/0 and
attach_test/0. The results are shown in Table II. Note that
for attach_noping_test/0 the execution times are negligi-
ble even for large preemption bounds. For attach_test/0,
which is more complex, execution time increases signifi-
cantly with the preemption bound. This suggests that lower
preemption bounds may be used in fast regression (unit)
test suites, while larger bounds are perhaps better suited
for nightly testing of more intricate interleaving sequences.
As a side note, a preemption bound of two (approximately
2 minutes of execution time for 14 test functions) was
enough to reveal all concurrency errors encountered during
the development of the registration server [2].

Besides applying Concuerror on small benchmarks, we

Table II: Testing time vs. preemption bound for the two registration server tests.

Preemption bound ≤2 3 4 5 6 7

attach_noping_test/0 0m0s 0m0s 0m1s 0m2s 0m5s 0m7s

attach_test/0 0m1s 0m6s 0m26s 1m26s 3m59s 9m23s

have applied it on large Erlang code bases. We report on one
such experience: applying Concuerror to the code base of
Dialyzer, a widely-used static analysis tool which is included
in the Erlang/OTP distribution. Dialyzer’s code base is
about 28,000 LOC and its parallel version uses Erlang’s
concurrency primitives extensively [6]. Using one of the tests
in Dialyzer’s regression suite and the default preemption
bound of two, Concuerror was able to find, in less than
a minute, various interleaving sequences that resulted in
a stuck server process for one of Dialyzer’s components.
This particular concurrency error had not been detected
during several months of Dialyzer’s development. With a
small change we were able to correct this error and include
its fix just in time for the release of Erlang/OTP R15B02
(September 2012).

It should be noted that Dialyzer is a very complex piece
of software. The particular unit test, which revealed the
concurrency error, takes about half a minute to complete
if run in parallel on a machine with four physical cores
(eight threads). The test spawns 14 Erlang processes and
the maximum number of preemption points per process
is 78 (see Table I). In the code base with the error present,
Concuerror detects various interleaving sequences where
the server process is stuck. After correcting the error and
running Concuerror on the same test and with the same
preemption bound, Concuerror does not report any other
concurrency errors after exploring a significant number of in-
terleaving sequences: 24,900 within 42 minutes and 712,000
within 700 minutes. While this does not mean that Dialyzer’s
code base is free from concurrency errors, systematically
exploring this number of interleaving sequences increases
the developers’ confidence significantly.

VIII. RELATED WORK

The problem of effectively exploring process interleaving
to detect concurrency errors in programs is well-studied
by now. In the literature, one can find various approaches
addressing this problem in the fields of software testing
and model checking. Still, our work demonstrates how to
systematically test and replay process interleaving in an actor
programming language and how to design an effective and
efficient tool that takes advantage of the characteristics of
these languages.

The work most closely related to ours is the work on
CHESS [1], a tool that enables systematic testing and debug-
ging of three classes of multithreaded programs—user-mode
Win32, .NET and Singularity programs—by introducing a

thin wrapper layer between the program under test and
the concurrency API. In contrast to our approach, CHESS
targets imperative programs with significantly more shared
state than Erlang, and gains control over thread interleaving
through platform-dependent wrappers instead of syntactic
transformations of the source code. Both tools, however, are
similar in that they employ model checking techniques to
effectively explore all process interleaving sequences.

Other related work in the software testing community
is ExitBlock-RW [7], the first dynamic partial-order re-
duction technique for effectively enumerating and testing
valid interleaving sequences in multithreaded Java programs.
This technique is based on the observation that context
switches need only be placed at synchronization points,
an idea that both CHESS and Concuerror borrow. More
recent approaches in this area include dynamic partial-oder
reduction [8], reachability testing [9], which uses on-the-
fly partial-order reduction techniques, concolic testing [10],
which also handles programs with inputs, and coverage-
guided testing [11], which uses dynamically-learned order-
ing constraints over shared state interactions to select only
high-risk interleaving sequences for execution.

Even though several model checkers target the verification
of concurrent programs, most of them attempt to capture
the program state at the cost of space explosion. Notable
examples of such stateful model checkers are Bogor [12],
CMC [13], Java PathFinder [14], and Basset [15], which is
built on top of Java PathFinder and provides a framework
for testing actor programs compiled to Java bytecode. Our
approach, however, is more similar to the stateless enumer-
ation of process interleaving sequences, as in VeriSoft [16].
Furthermore, the idea of bounding the number of context
switches for efficiency reasons is also present in context-
bounded model checking [17].

Testing tools for Erlang. Although there exist several
testing tools for Erlang, the majority of them currently fails
to be effective in Erlang’s concurrent setting.

EUnit [5] is the Erlang implementation of the popular
xUnit testing framework and is reportedly the testing tool
used most by Erlang developers. Despite its ease of use,
EUnit executes each test under a single interleaving se-
quence and is inadequate for detecting concurrency errors.

QuviQ QuickCheck is a property-based testing tool that
has been extended with the PULSE scheduler [4] for ran-
domly interleaving processes to detect concurrency errors.
Besides the random nature of its testing procedure, which

provides no correctness guarantees, the user is required to
write properties the program should satisfy using a special
notation. This requires the user’s familiarity with the non-
trivial task of writing properties and, additionally, excludes
the use of existing unit tests without any modifications.

McErlang [18] is a model checker that utilizes a custom
runtime simulator of Erlang’s concurrency semantics to
explore the program state space. In principle, the ability to
deploy monitors using linear temporal logic specifications
makes McErlang very powerful in terms of verification
capability. Nevertheless, McErlang in its default mode of
use employs a very coarse-grained process interleaving se-
mantics. The detection of subtle concurrency errors, similar
to the abnormal process exit of our running example, often
requires the manual insertion of unobvious code, a task
that is tedious and, more importantly, requires altering the
original code. Due to problems such as these, McErlang
has so far failed to build a strong user community among
Erlang developers. We have good reasons to believe that the
situation will be very different for Concuerror.

IX. CONCLUSION

We presented a framework for the systematic testing of
Erlang programs in order to effectively detect and reproduce
a wide class of concurrency errors. We showed how this is
accomplished by first instrumenting the program under test
and, subsequently, exploring the state space of interleaving
sequences using an unmodified VM. To ameliorate the prob-
lem of state space explosion, we proposed and employed a
novel technique for avoiding process blocks in receives and
combined it with preemption bounding, a heuristic algorithm
for reducing the number of explored interleaving sequences.

The main future work is developing and employing more
powerful dynamic partial-order techniques that further re-
duce state space redundancy. We also intend to investigate
whether the techniques used by Concuerror can be extended
to handle the distribution primitives of the language. On a
more practical level, we want to look into the issue of au-
tomatic instrumentation of library functions and investigate
how property-based testing tools like PropEr [19] can be
used to automatically generate test cases for Concuerror.

ACKNOWLEDGMENTS

Most of this work was performed when all authors were
associated with the National Technical University of Athens
in Greece. During 2012, the research engagement of the third
author in this work was partially supported by UPMARC and
EU project RELEASE. We also thank Ilias Tsitsimpis and
Valentin Wüstholz for their helpful feedback and comments.

REFERENCES

[1] M. Musuvathi, S. Qadeer, T. Ball, G. Basler, P. A. Nainar,
and I. Neamtiu, “Finding and reproducing Heisenbugs in
concurrent programs,” in OSDI. USENIX, 2008.

[2] A. Gotovos, M. Christakis, and K. Sagonas, “Test-driven
development of concurrent programs using Concuerror,” in
Erlang WS. ACM, 2011.

[3] M. Musuvathi and S. Qadeer, “Iterative context bounding
for systematic testing of multithreaded programs,” in PLDI.
ACM, 2007.

[4] K. Claessen, M. Pałka, N. Smallbone, J. Hughes, H. Svensson,
T. Arts, and U. Wiger, “Finding race conditions in Erlang with
QuickCheck and PULSE,” in ICFP. ACM, 2009.

[5] R. Carlsson and M. Rémond, “EUnit: A lightweight unit
testing framework for Erlang,” in Erlang WS. ACM, 2006.

[6] S. Aronis and K. Sagonas, “On using Erlang for paralleliza-
tion: Experience from parallelizing Dialyzer,” in TFP, ser.
LNCS. Springer, 2013.

[7] D. L. Bruening, “Systematic testing of multithreaded Java
programs,” Master’s thesis, MIT, 1999.

[8] C. Flanagan and P. Godefroid, “Dynamic partial-order reduc-
tion for model checking software,” in POPL. ACM, 2005.

[9] Y. Lei and R. H. Carver, “Reachability testing of concurrent
programs,” IEEE Trans. Softw. Eng., vol. 32, no. 6, 2006.

[10] K. Sen and G. Agha, “Concolic testing of multithreaded
programs and its application to testing security protocols,”
University of Illinois at Urbana Champaign, Tech. Rep.
UIUCDCS-R-2006-2676, 2006.

[11] C. Wang, M. Said, and A. Gupta, “Coverage guided system-
atic concurrency testing,” in ICSE. ACM, 2011.

[12] Robby, M. B. Dwyer, and J. Hatcliff, “Bogor: An extensible
and highly-modular software model checking framework,” in
ESEC/FSE. ACM, 2003.

[13] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and
D. L. Dill, “CMC: A pragmatic approach to model checking
real code,” in OSDI. USENIX, 2002.

[14] W. Visser, K. Havelund, G. Brat, and S. Park, “Model
checking programs,” in ASE. IEEE Computer Society, 2000.

[15] S. Lauterburg, M. Dotta, D. Marinov, and G. Agha, “A
framework for state-space exploration of Java-based actor
programs,” in ASE. IEEE Computer Society, 2009.

[16] P. Godefroid, “Model checking for programming languages
using Verisoft,” in POPL. ACM, 1997.

[17] A. Lal, T. Touili, N. Kidd, and T. W. Reps, “Interprocedural
analysis of concurrent programs under a context bound,” in
TACAS, ser. LNCS. Springer, 2008.

[18] L.-Å. Fredlund and H. Svensson, “McErlang: A model
checker for a distributed functional programming language,”
in ICFP. ACM, 2007.

[19] M. Papadakis and K. Sagonas, “A PropEr integration of types
and function specifications with property-based testing,” in
Erlang WS. ACM, 2011.

