
National Technical University of Athens
School of Electrical and Computer Engineering

Division of Computer Science

Dynamic Systematic Testing

of

Concurrent Erlang Programs

Athens, June 2011

Diploma Thesis by Alkis Gotovos
Supervisor: K onstantinos Sagonas

Associate Professor, N.T.U.A.

National Technical University of Athens
School of Electrical and Computer Engineering

Division of Computer Science

Athens, June 2011

Diploma Thesis by Alkis Gotovos
Supervisor: K onstantinos Sagonas

Associate Professor, N.T.U.A.

Dynamic Systematic Testing
of

Concurrent Erlang Programs

Approved by the three-member examining committee on June 14th, 2011.

..........................
Kostas Kontogiannis

Associate Professor, N.T.U.A.

..........................
Nikolaos Papaspyrou

Assistant Professor, N.T.U.A.

..........................
Konstantinos Sagonas

Associate Professor, N.T.U.A.

��
Alkis Gotovos
Graduate Electrical and Computer Engineer, N.T.U.A.

Copyright © 2011 Alkis Gotovos. All rights reserved.
No part of this thesis may be reproduced, in any form or by any means, without permission in writing from the author.

The author of this thesis has used his best efforts in preparing this thesis. These efforts include the development, research, and testing
of the theories and programs to determine their effectiveness. The author makes not warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this thesis. The author shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Any opinions and conclusions expressed herein are solely those of the author and should not be construed as representing the official
opinions or policy of the National Technical University of Athens.

Simplicity is the final achievement
—Frédéric Chopin

v

Abstract
Concurrent programming has become increasingly popular in the last decade; yet, it is notoriously
error-prone. Even worse, traditional testing tools are largely inadequate when it comes to checking
concurrent code. In this thesis we introduce Concuerror, a testing tool for concurrent Erlang pro-
grams, that aims to facilitate the task of detecing and eliminating concurrency-related errors. Con-
cuerror relies on systematically exploring process interleaving to reveal such errors. We describe the
infrastructure that was developed to support this task, as well as the techniques that were used to make
Concuerror more efficient. We also present an extended example of using Concuerror in practice for
test-driven development.

Keywords
Concurrency, software testing, model checking, test-driven development, Erlang

Acknowledgements
First, I would like to thank my supervisor, Kostis Sagonas, not only for his guidance and support dur-
ing the preparation of this diploma thesis, but also because he has been a decisive factor in my choos-
ing to major in Computer Science.

I would also like to thank doctoral student Maria Christakis for her help in developing Concuer-
ror, for our long insightful talks regarding this project, and, most importantly, for our friendship that
has come out of working together for the past year.

Online resources
The source code of the tool developed as part of this thesis can be found at the online github repository
http://www.github.com/mariachris/Concuerror and is distributed under the simplified BSD licence.

Contact
I can be contacted at alkisg@softlab.ntua.gr—any questions or comments are welcome.

http://www.github.com/mariachris/CED
mailto:el3ctrologos%40hotmail.com?subject=

vii

Contents

Introduction 	  1
“If it’s not tested, it’s broken.”  .   1
Oh, the horror!  ..   2
Introducing Concuerror  .   4
Contributions  ..   4

Erlang: A Short Tour 	  5
Basic features  .   5
Concurrency  ..   7

Concuerror Overview 	  11
What's the idea?  ..   11
Goals  ..   12
Scheduler  ..   13
Instrumenter  ..   14
User Interface  ..   16
Putting everything together  ..   16

The Scheduler 	  19
State or no state?  .   19
Context and handlers  ..   20
Getting to the core  .   20
Avoiding blocks  ..   22
The battle for efficiency  ..   27
Detecting and replaying errors  .   30

The Instrumenter 	  31
Instrument what?  .   31
General considerations  .   31
The simple case …  ..   32
… and the hard one!  ..   34
Timeouts  ..   39

viii

Concuerror by Example 	  43
Getting started  ..   43
Starting and stopping the server: The basics    45
Starting and stopping the server: Advanced issues    47
Attaching processes  .   52
Detaching processes  ..   56

Epilogue 	  61
Related work  ..   61
Conclusion and future work  ..   62

Bibliography 	  65

ix

List of Figures

Figure 1.1:  The multifold role of testing in modern software development  �����������������������   1

Figure 1.2:  Concurrent testing techniques' pros and cons  ���������������������������������������   3

Figure 2.1:  The ring of linked processes created by the program of Listing 2.2.  ��������������������   7

Figure 3.1:  Only one way of interleaving the processes of Listing 3.1 leads to an error  ������������   12

Figure 3.2:  Erlang VM scheduler vs Concuerror scheduler in a single core system  ���������������   14

Figure 3.3:  Two approaches for inserting preemption points  �����������������������������������   16

Figure 3.4:  High-level Concuerror architecture  ���   16

Figure 3.5:  Typical workflow when using Concuerror  ���   17

Figure 4.1:  Process LID tree  ���   20

Figure 4.2:  Scheduler subcomponent structure  ���   21

Figure 4.3:  Testing the example of Listing 4.2 using a simple depth-first search  ������������������   23

Figure 4.4:  Testing the example of Listing 4.2 using depth-first search with blocking avoidance  ���   25

Figure 4.5:  Types of context switches  ��   27

Figure 4.6:  Testing the example of Listing 4.2 using preemption bounding with blocking avoidance �  28

Figure 5.1:  An extremely rare interleaving scenario to occur in practice  �������������������������   39

Figure 6.1:  Running our first test successfully in the Concuerror GUI  ��������������������������   44

Figure 6.2:  Information about an erroneous interleaving  ��������������������������������������   45

Figure 6.3:  Concuerror's detailed interleaving information helps understand and fix the error  ����   49

xi

List of Listings

Listing 2.1:  Mergesort in Erlang  ��   6

Listing 2.2:  A simple concurrent Erlang program  ��   8

Listing 3.1:  A simple two process example with a bug  ���   11

Listing 4.1:  Can you spot the potential problem here?  ���   21

Listing 4.2:  Another simple two process example  ���   22

Listing 5.1:  Uninstrumented code  ���   32

Listing 5.2:  Instrumented function calls and send expressions  ���������������������������������   32

Listing 5.3:  Wrapper function for spawn/1  ���   33

Listing 5.4:  Wrapper function for send (!) and send/2  ���   33

Listing 5.4:  Original receive expression  ��   34

Listing 5.5:  Instrumented receive expression (Version 1)  ��������������������������������������   35

Listing 5.6:  Wrapper function (Version 1)  ��   35

Listing 5.7:  Instrumented receive expression (Version 2)  ��������������������������������������   35

Listing 5.8:  Wrapper function (Version 2)  ��   35

Listing 5.9:  Instrumented receive expression (Version 3)  ��������������������������������������   36

Listing 5.10:  Wrapper function (Version 3)  ���   37

Listing 5.11:  Original receive expression without a catchall pattern  �����������������������������   37

Listing 5.12:  Instrumented receive expression without a catchall pattern (Version 3)  �������������   38

Listing 5.13:  Instrumented receive expression (Version 4)  �������������������������������������   38

Listing 5.14:  Program containing a delay  ���   39

Listing 5.15:  Original receive expression with an after clause  �����������������������������������   39

Listing 5.16:  Instrumented receive expression with an after clause  ������������������������������   40

Listing 5.17:  Original receive expression with an after clause and no patterns  �������������������   41

Listing 5.18:  Instrumented receive expression with an after clause and no patterns  ��������������   41

Listing 6.1:  The initial testing module  ��   43

Listing 6.2:  The initial registration server module  ���   44

Listing 6.3:  Add a ping test  ���   45

Listing 6.4:  Add spawn, register and ping to the server  ��   46

xii

Listing 6.5:  Stop the server at the end of our tests  ���   47

Listing 6.6:  Add stop/0 to the server  ���   47

Listing 6.7:  The refactored code of Listing 6.6  ��   48

Listing 6.8:  Test for two stop calls by one process  ���   48

Listing 6.9:  Use whereis/1 before sending a message to the server  ������������������������������   48

Listing 6.10:  Unregister the server before replying to a stop request  ����������������������������   49

Listing 6.11:  Test for two concurrent stop calls by two processes  �������������������������������   50

Listing 6.12:  Monitor the server to deal with multiple concurrent stop calls  ���������������������   51

Listing 6.13:  Test calling ping/0 when the server is not running  ��������������������������������   51

Listing 6.14:  Test for two start calls by one process  ��   51

Listing 6.15:  Check if the server is already running before starting it  ���������������������������   52

Listing 6.16:  Test for two concurrent start calls by two processes  �������������������������������   52

Listing 6.17:  Use try…catch to avoid spurious server processes  ��������������������������������   53

Listing 6.18:  Test for attaching two processes to server  ��   53

Listing 6.19:  Add attach/0 to the server  ��   54

Listing 6.20:  Test already attached processes and full server  ������������������������������������   55

Listing 6.21:  Handle already registered processes and full server  �������������������������������   56

Listing 6.22:  Test detaching a process from the server  ���   56

Listing 6.23:  Test reattaching after detaching  ���   57

Listing 6.24:  Add detach/0 to server  ���   57

Listing 6.25:  Test trying to detach an unattached process  ��������������������������������������   58

Listing 6.26:  Deal with trying to detach an unattached process  ���������������������������������   58

Listing 6.27:  Test for detaching a process as soon as it exits  ������������������������������������   58

Listing 6.28:  Detach a process as soon as it exits  ��   59

Introduction1
“If it’s not tested, it’s broken.”
Back in the old days, testing was part of the verification and validation stage in a soft-
ware product’s lifecycle, following the “real” coding part of implementing the software’s
logic. Unfortunately, software engineers and programmers alike have since realized that
designing and implementing a (well) working software system is much harder than first
thought to be. Partitioning software development into distinct stages and using lots of
paperwork didn’t seem to do the job. Besides, practice has shown that not only do most
defects end up costing more than it would have cost to prevent them, but additionally,
the later a defect is found, the more expensive it is to fix. This is sometimes called the
Defect Cost Increase (DCI) principle in software development [4, p.98].

The realization of the difficulties in software development and the fail-
ure of the existing unflexible development models to rise to the challenge
and produce high quality software at a reasonable cost, gave rise to the Agile
Software Development school. Agile development processes advocate flexibil-
ity and promote, among others, practices of short iterations and incremental
design [33].

From the perspective of modern methodologies, testing is nowadays
thought of as an integral part of software design and implementation, rather
than a sterile verification stage in the software
development process.

Tests are an effective tool for specifying
and communicating software requirements
and design elements. Unlike vague prose and
abstract figures, tests provide a concrete means
for storing and conveying up-to-date project
information. That way, tests may also be used as software documentation.
Moreover, tests can serve as a practical way to measure and report develop-
ment progress. Finally, maybe the most important aspect of testing is the re-
sulting effect on the programmer’s mentality. Tests offer immediate feedback
on programming decisions and boost the programmer’s confidence when
she is faced with complex programming challenges. The deconstruction of
difficult programming problems into an organized procedure of writing tests
and making them pass, increases productivity, facilitates the production of
high quality code and, as a result, dramatically decreases the time spent on
debugging (see Figure 1.1).

The importance of testing is especially stressed by supporters of Extreme

¾¾ Says Bruce Eckel, while debat-
ing whether “strong testing” can
replace “strong typing”; it can very
successfully indeed, he concludes
[34, pp. 67-77].

Tests for...

...requirements & design
specification and
communication

...measuring and reporting
development progress

...verification and
validation

...immediate programming
feedback

...software documentation

Figure 1.1:  The multifold role of test-
ing in modern software development

2� Chapter 1

Programming (XP), a combination of agile principles, values and practices, original-
ly proposed by Kent Beck [4]. In particular, the practice of Test-Driven Development
(TDD) suggests that tests should be the driving force in software creation.

Oh, the horror!
Writing tests for concurrent programs presents a special challenge, namely that of tak-
ing into account the effects of usually complex interactions between various processes
or threads that participate in a program’s execution. As a consequence, testing and de-
bugging in concurrent programming environments is notoriously difficult. Most of us
have heard of (or, if lucky enough, been faced with) horror stories of subtle concurrency
bugs, also known as Heisenbugs in the programming jargon, nigh impossible to figure
out, while eerily vanishing from sight when printing calls or debuggers are brought into
the hunt.

Concurrency is mentioned as one of the topics that TDD cannot handle, because
“[s]ubtle concurrency problems can’t be reliably duplicated by running the code” [3,
p.xii]. Even worse, using traditional testing techniques for concurrent programs can
provide the programmer with a false sense of security. While all tests are passing when
run under “mild” conditions, concurrency bugs might be lurking under the hood. Usu-
ally, these bugs are caused by intricate process or thread interleaving scenarios and will
manifest themselves under random circumstances—more so when the system is put
under heavy load, i.e. conditions where a lot of programs and processes are being run
in parallel and a high percentage of system resources are being used. Furthermore, it can
be a long time after the system’s development is completed before such a bug surfaces
in practice, in which case an extraordinary amount of cost and effort has to be put into
finding and fixing the problem (recall the DCI principle).

Is concurrency destined to bring chaos and despair upon the unfortunate program-
mer who attempts to harness its power? Maybe! Nonetheless, there have been proposed
a number of techniques that aim to alleviate the seemingly grave situation.

Test-Driven Development

Test-Driven Development (TDD) [3] is a software development practice that sug-
gests writing tests before writing code. TDD is incorporated into the main prac-
tices of Extreme Programming (XP), but—like most XP practices—can also be
used on its own. According to the father of TDD, Kent Beck, the goal is clean code
that works. To that end, he suggests a coding workflow of small iterations, each
of them consisting of three steps:

•  Write a small test that does not work.

•  Make the test work as quickly as possible.

•  Refactor to clean up and remove duplication.

Using TDD the programmer decomposes hard problems into small steps and,
that way, the development progress can be monitored test by test. Reportedly,
this results in reduced anxiety due to problem complexity and higher quality
code.

Introduction� 3

•  Instead of waiting for the system to break down under heavy load in production
usage, why not simulate these conditions to test the system under development?
This is the purpose of stress testing. Stress tests can be devised to simulate real
usage conditions or even extreme scenarios that would rarely arise in practice.
However, the random nature of stress testing limits its ability to provide guaran-
ties about the system’s behavior.

•  In another direction, static analysis [7, 13] can be used to detect concurrency re-
lated problems. Static analysis tools use compile-time information to reveal bugs
without having to execute the program. They are typically simple to use and pro-
vide easily understandable results that are directly related to the program’s source
code. Unfortunately, information at compile time is more often than not insuf-
ficient to discover subtle concurrency bugs, especially so in dynamically typed
languages. At the same time, aggressive analyses suffer from a high percentage of
confusing false positives.

•  Model checking [10] is a third way to go. It is usually based on creating a for-
mal model of the system and subsequently using
search algorithms to explore the model’s states.
Although model checking tools provide strict
verification, they often require a translation of
the real system into a formal model. This not

only leads to increased programming ef-
fort and the need to master a new mod-
el-specific language, but also
introduces a further source
of errors, i.e. the ones aris-
ing from mistakes in the
translation process. In ad-
dition, properties verified
by model checking tools
apply to the system model
and not the original sys-

tem itself. The worst part,
though, is that model
checking suffers from the
so called combinatorial
explosion problem, which
leads to very slow analyses
and large memory con-
sumption.

This provides just a
crude classification of the
existing techniques. There

have been proposed a number of other testing
techniques, including random testing or fuzz-
ing, property-based testing, symbolic execution
and concolic testing. Actually, the scenery of

Model checking

+· Sound and complete
verification of system
properties

-· Uses model instead of
actual system

· Combinatorial explosion

Static analysis

+· Simple to use

· Results are directly related
to source code

-· Limited results
(incomplete)

· False positives (unsound)

Stress testing

+· Tests the actual system

· Simulates real usage
conditions

-· Unreliable due to
randomness

Target

+· Tests the actual system

+· Simple to use

· Results are directly related
to source code

+· Sound and complete
verification of system
properties

-· Combinatorial explosion

Figure 1.2:  Concurrent testing tech-
niques' pros and cons

4� Chapter 1

concurrent testing and debugging is quite complex. Several different variations and
combinations of algorithms, techniques and tools have been used over the years de-
pending on the language, operating system and hardware of choice, as well as the exact
problem at hand.

Introducing Concuerror
This thesis is about the design and development of Concuerror, a testing tool for con-
current Erlang programs. Erlang is a general purpose, functional, dynamically typed,
concurrency oriented language [1, 6]. Concuerror offers reliable testing for concurrent
Erlang programs, promotes the use of TDD in concurrent programming environments
and is intended to assist Erlang programmers in writing high quality concurrent soft-
ware. Concuerror is designed to be user-friendly and automated, like static analysis
tools, use real tests written for the original system, like stress testing tools, and provide
sound and complete verification, like model checking tools (see Figure 1.2). Of the
three aforementioned categories, Concuerror is more closely related to model checking,
because it makes use of model checking techniques to systematically explore process in-
terleaving in concurrent programs. Nonetheless, testing in Concuerror is performed on
the actual software system using existing tests, rather than on an artificial system model.

We drew our inspiration from CHESS [30], a systematic testing tool for concurrent
software developed by Microsoft Research. CHESS aims at systematically generating all
interleaving sequences of a given test and is able to consistently reproduce an erroneous
execution. It is capable of testing multithreaded programs written in Win32, .NET or
Singularity.

Although in some aspects our endeavour is very similar to CHESS, we will see in the
following chapters that Erlang’s process-based, no-shared-state concurrency model is
fundamentally different from the multithreaded shared-memory model of the Win32
and .NET platforms.

Contributions
The contributions of this thesis are summarized as follows:

•  Infrastracture

A custom instrumentation and scheduling mechanism that allows to control the
interleaving of processes during the execution of an Erlang program.

•  Algorithms

The use of iterative context bounding and the incorporation of a custom blocking
avoidance scheme.

•  Tool

An integrated testing tool that provides an interactive and easy-to-use environ-
ment for testing and debugging Erlang programs.

What’s next?
Chapter 2 presents a brief introduction to Erlang, particularly its concurrency relat-
ed aspects. Readers familiar with Erlang can skip to Chapter 3, where we discuss the
high-level goals of our project and present an overview of Concuerror's components.

¾¾ Concuerror is pronounced
/ˈkɒŋkərər/, like conqueror.

Erlang: A Short Tour2
Following the establishment of multi-processor computing systems, the newest trends
of distributed programming and cloud computing has software developers shifting
their attention towards languages that support and facilitate concurrent and distrib-
uted system development. Among others, languages like Scala, Clojure and Go, have
become increasingly popular in recent years.

Erlang is one of the oldest concurrency-oriented languages, developed in 1986 by
Joe Armstrong and Ericsson, and released as open-source in 1998. It was specifically
designed to support the implementation of fault-tolerant distributed software systems.
Erlang was originally used in telephony applications and more recently has been used in
backends of distributed applications, like the CouchDB database, the ejabberd XMPP
server and the SimpleDB web service by Amazon. As of June 2011, the Erlang/OTP
implementation is the one almost exclusively used by Erlang developers.

The following sections present a brief overview of the main features of Erlang
with emphasis on its concurrency related aspects. For more detailed information the
reader is referred to introductory Erlang textbooks [1, 6] and the official Erlang/OTP
online documentation.

Basic features
Erlang is a functional language, although not as pure as other popular functional lan-
guages (e.g. Haskell). The main language constructs are functions, almost everything
is an expression and single assignment is used for variables, meaning that variables are
immutable. Erlang uses eager evaluation and supports pattern-matching, list compre-
hensions, higher-order functions and closures.

Among the basic Erlang datatypes are integers, floats, binaries and atoms, the latter
being similar to enumerations in C-like languages. Atoms are represented by alphanu-
meric sequences starting with a lowercase letter, while Erlang variables always begin
with an uppercase letter or an underscore. Other than that, Erlang provides tuples,
which contain a fixed number of elements, and lists, which contain a variable number
of elements, not necessarily of the same kind.

Erlang source code is mainly organized into modules and functions. Only exported
functions are visible outside a module, while the rest of the functions can only be used
inside the module where they are defined. Exported functions are called from outside
their module using the syntax module:function(...). A module that exports a func-
tion for sorting a list is shown in Listing 2.1. In this case, only function mergesort/1 is
visible outside the module and has to be called as ms:mergesort(...). Some remarks
on the code:

¾¾ The most recent Erlang/OTP
release is R14B02 (March 16th,
2011). More information can be
found on the official site of Erlang/
OTP at www.erlang.org.

¾¾ Erlang functions are common-
ly written as their name, followed
by a slash and their arity. This is
done to distinguish between foo/1
and foo/2, which are seperate fun-
tions.

http://couchdb.apache.org/
http://www.process-one.net/en/ejabberd/
http://aws.amazon.com/simpledb/
http://www.erlang.org/doc/
http://www.erlang.org/

6� Chapter 2

•  Lists and tuples

Lists are represented by comma seperated expressions put inside brack-
ets, i.e. [Elem1, Elem2, ...]. The “cons” operator is written as [Head|Tail]
and the expression [Head1, Head2, ..., HeadN|Tail] is equivalent to
[Head1|[Head2|...[HeadN|Tail]...]]. Tuples are represented by comma seper-
ated expressions put inside curly brackets, i.e. {Elem1, Elem2, ...}.

•  Guards

Guard expressions are introduced using the when keyword. The corresponding
clause is entered only if the guard expression is true.

•  Catchall

A catchall pattern is represented by an underscore. Alternatively, variables with an
underscore prefix can be used as catchalls. These variables have exactly the same
functionality as normal variables, but no "unused variable" warnings are emitted
for them by the Erlang compiler.

From the code in Listing 2.1 it is evident that Erlang is dynamically typed. Erlang
code can be written without providing any type information. Nonetheless, type anno-
tations and function specifications have been added to the language to allow users to
provide information that can then be used to check the program for type inconsisten-
cies. The Erlang/OTP distribution provides two tools, named Typer and Dialyzer, that
combine information from user-defined annotations and static program analysis to
detect errors [25, 26].

Erlang programs are normally compiled into bytecode and executed by the Erlang
virtual machine named BEAM. Alternatively, Erlang source files can be compiled to na-
tive code using the HiPE compiler, which is also included in the Erlang/OTP distribu-
tion [23].

Listing 2.1:  Mergesort in Erlang

-module(ms).

-export([mergesort/1]).

split([H1, H2|T]) ->
 {L1, L2} = split(T),
 {[H1|L1], [H2|L2]};
split(L) -> {L, []}.

merge([], L) -> L;
merge(L, []) -> L;
merge([H1|T1], [H2|_T2] = L2) when H1 < H2 -> [H1|merge(T1, L2)];
merge(L1, [H2|T2]) -> [H2|merge(T2, L1)].

mergesort([]) -> [];
mergesort([H] = L) -> L;
mergesort(L) ->
 {L1, L2} = split(L),
 merge(mergesort(L1), mergesort(L2)).

Erlang: A Short Tour� 7

Concurrency
The feature that makes Erlang special is its powerful concurrency mechanism, which
was an essential element of the language's initial design, rather than a later addition.
The cornerstones of Erlang's concurrency are the extremely lightweight processes it
uses, which are completely managed by the Erlang VM and are not mapped to operat-
ing system processes or threads.

Erlang processes have (almost) no shared state and can be created by the thousands
or even millions. The language follows the actor model, which means that inter-process
communication is done via message passing. In a nutshell, every process may create—
or spawn—new processes, asynchronously send messages to other process, and receive
messages from them.

Every process executes its code sequentially and uses a queue—or mailbox—to
store incoming messages. Processes are identified by unique process identifiers (PIDs)
and can be globally registered under a unique name represented by an atom. Processes
can also be linked to each other, so that when one process fails, processes that are linked
to it are also terminated.

Messages are sent using the send (!) operator and are received using receive ex-
pressions. The latter are used to pattern match messages in the process mailbox and
follow a program path depending on the match. If no matching message is available,
receive expressions block until such a message arrives. Erlang provides several built-in
functions (BIFs) for basic operations, including concurrency primitives, like spawning
a new process (spawn/1), registering it under a name (register/2) or linking it to an-
other process (link/1).

Listing 2.2 demonstrates how easy concurrency is in Erlang. The program creates
a ring of processes like the one shown in Figure 2.1, where each process is linked to its
two neighbours, and a message (Token) is trasmitted in a circular fashion from process
to process a finite (TTL) number of times. Again, we can make some remarks on the
code:

•  Concurrency primitives

The BIF spawn_link/1 atomically combines the actions of creating a new process
and linking to it. All spawn related functions have to specify what code will be
executed by the newly spawned process. In this example, we use a closure for that
purpose. The spawn_link/1 function returns the PID of the spawned pro-
cess. The BIF self/0 returns the PID of the calling process. The send
operator (!) uses the PID of a process to specify the message's des-
tination. Note that any Erlang term can be used as a message.

•  Links and exits

To demonstrate how linked processes interact, we use
the BIF exit/1 in the first clause of the receive ex-
pression to abnormally terminate with an exception
the process that receives the final token. When a pro-
cess terminates this way, a signal is sent to each of its
linked processes forcing them to terminate too. In our
example, this results in every process terminating with
an exception, given that processes are circularly linked
to each other. Note that links are symmetrical, thus the
action of process 1 linking to process 2 is equivalent to the
action of process 2 linking to process 1. Erlang also pro-
vides a way for processes to “catch” exit signals, instead of

¾¾ In Erlang, closures are also re-
ferred to as funs and are written as
fun(Args) -> Body end.

Process 1

Process 2

Process 3Process 4

Process 5

Token transmission
direction

link

Figure 2.1:  The ring of linked processes created
by the program of Listing 2.2.

8� Chapter 2

terminating unconditionally. Having called process_flag(trap_exit, true), a
process will not terminate whenever a linked process terminates abnormally, but
rather will receive a message of the form {'EXIT', Pid, Reason}.

•  Library functions

We have used functions from the lists (common list operations) and io (I/O and
formatting operations) library modules of the Erlang/OTP distribution. Library
functions can be called identically to user functions residing in other modules,
i.e. using the module:function(...) syntax, and are visible without the need to
import them.

•  Preprocessor

Erlang's preprocessor allows the use of records and macros, which are expanded
before the program is compiled. In our example, we used the macro NPROC—ref-
erenced as ?NPROC—to define the number of processes in the ring.

•  Tail recursion

Tail-recursive functions like loop/1 are commonly used in Erlang for server-like
processes. The Erlang compiler uses tail-call optimization to avoid memory ex-
haustion due to recursion. Therefore, memory-wise, functions of this form are
equivalent to iterative loops in imperative languages.

Apart from links Erlang also provides monitors. Monitors are similar to links, but
are not symmetrical, which means that a monitored process does not known anything
about being monitored. Similarly to the 'EXIT' message that is sent by the runtime
when a linked process exits, a 'DOWN' message is sent as soon as a monitored process has
exited. In this case, however, the message is sent regardless of the monitoring process'

¾¾ Both lists and io are part of
the Erlang/OTP standard library
(stdlib).

¾¾ Records are data structures
with a fixed number of fields that
are accessed by name.

Listing 2.2:  A simple concurrent Erlang program

-module(ring).

-export([start/2]).

-define(NPROC, 5).

start(TTL, Token) ->
 Fun = fun(_S, N) -> spawn_link(fun() -> loop(N) end) end,
 Next = lists:foldl(Fun, self(), lists:seq(?NPROC, 2, -1)),
 Next ! {TTL, Token},
 loop(Next).

loop(Next) ->
 receive
 {1, Token} ->
 io:format("~p: Received final token (~p)~n",
 [self(), Token]),
 exit(ttl_limit_surpassed);
 {TTL, Token} ->
 io:format("~p: Received token (~p); transmitting to ~p~n",
 [self(), Token, Next]),
 Next ! {TTL - 1, Token},
 loop(Next)
 end.

Erlang: A Short Tour� 9

trap_exit flag.
This was a brief discussion of Erlang's essentials. More advanced features, like ETS

and Dets storage, OTP behaviors, distributed Erlang and hot-swapping, shall not be
discussed here. The most important thing to remember for the rest of this thesis, is
the notion of Erlang's lightweight processes, that do not share memory, execute their
internal actions sequentially, and communicate with each other via message passing.

Concuerror Overview3
What's the idea?
Even in Erlang with its concurrency-made-easy mindset, writing programs with multi-
process interactions is extremely error prone. On top of this, traditional testing is usu-
ally not able to expose concurrency related bugs.

Take a look at the code in Listing 3.1. The process running foo/0 is supposed to
spawn a new process and register it under the name math. The new process executes
bar/3 with the given arguments and sends the result back to the first process. A com-
mon error among novice Erlang programmers lingers among these few lines of code.

What if the newly spawned process running bar/3 terminates before the first pro-
cess executes register/2? In this case, according to the Erlang/OTP documentation the
register/2 call will fail and the process will terminate with an exception. The worst
part is that this case is very hard to detect using conventional tests. We can try repeat-
edly running foo/0, but it is very unlikely that the above exception will occur. Because
the processes are scheduled in parallel, foo's register/2 almost always precedes bar's
termination. The problem will most likely occur randomly after many hours of running
the program under stress (hopefully as a result of stress testing, not production use).

Of the many ways the two processes can be interleaved, only the one described
above leads to an error (see Figure 3.1). If we had a way to systematically run the pro-
gram in every possible process interleaving, we would be able to detect the error with
absolute certainty, without the need for hours of stress testing. The analysis done by
Concuerror is based upon this simple idea.

Erlang provides several “combination-functions” (spawn_link, spawn_monitor) to

Listing 3.1:  A simple two process example with a bug

foo() ->
 Self = self(),
 Pid = spawn(fun() -> bar(Self, 42, 5) end),
 register(math, Pid),
 receive
 Result -> Result
 end.

bar(Target, X, Y) ->
 Target ! {result, X + Y}.

12� Chapter 3

avoid problems similar to the above—no spawn_register function is available though.
In addition, the Erlang/OTP distribution comes with higher level generic libraries that
aim to reduce the need for writing low level concurrent code from scratch and the risk
of doing so.

Even so, as most languages out there, Erlang is rarely used “the optimal way” or “as
recommended by experts”. Moreover, even well structured code often contains process
interactions which become overly complex to follow or reason about, even for moder-
ate size codebases. In such cases, a tool capable of systematically deconstructing process
interactions can be invaluable, both as a verification mechanism (make sure nothing is
wrong) and as a debugging aid (figure out what is wrong).

Along with exceptions, like the one in the previous example, Concuerror can also
detect assertion violations and deadlocks. Assertions
are commonly used in testing as a means of com-
paring expected values of expressions to actual ones.
From Concuerror's point of view an assertion vio-
lation is essentially a user-defined exception that is
raised when an assertion fails. Deadlocks occur when
all participating processes of a program are blocked.
As we will see in the next chapter, the detection of
deadlocks in Concuerror is pretty much straightfor-
ward.

Goals
The ability of a software tool to assist the developer in his task is of prime importance
and should be the main factor in determining the design guidelines. Some high-level
properties that would be desirable for Concuerror from a user's perspective are pre-
sented below.

¾¾ in Erlang/OTP these librar-
ies are called behaviors and pro-
vide abstract implementations of
common concurrency patterns,
like server-client (gen_server), fi-
nite state machine (gen_fsm) and
event handler (gen_event).

register(math, Pid)

Pid = spawn(...)

receive ... end

Target ! {result, ...}Self = self()

foo/0 bar/0

register(math, Pid)

Pid = spawn(...)

EXIT

Self = self()

Interleaving 1

Target ! {result, ...}

EXIT

receive ... end

Pid = spawn(...)

Self = self()

Interleaving 2

Target ! {result, ...}

register(math, Pid)

receive ... end

EXIT

EXIT

Pid = spawn(...)

Self = self()

Interleaving 3

Target ! {result, ...}

EXIT

register(math, Pid)

Pid = spawn(...)

Self = self()

Interleaving 4

Target ! {result, ...}

register(math, Pid)

receive ... end

EXIT

EXIT

EXIT

EXIT

EXCEPTION!

. . .

Figure 3.1:  Only one way of interleaving the processes of Listing 3.1 leads to an error

Concuerror Overview� 13

Soundness

Concuerror should be able to detect every error that is possible to occur in practice
during the execution of a program. To this end, Concuerror should be able to produce
every possible non-redundant interleaving sequence of a program. It is not our inten-
tion to formally prove the soundness of our analysis. However, informally speaking,
Concuerror should produce as many interleaving sequences as possible.

No false positives

Concuerror should produce no false positives, i.e. reported problems that do not actu-
ally exist. Given that every reported problem by Concuerror corresponds to a specific
process interleaving, this property should be easy to satisfy.

User code perturbation

Users should be able to analyze their code as is and use existing tests with minimal
modifications—ideally none.

Interleaving logging and replay

Erroneous interleaving sequences should be presented in detail, so as to give enough
information to the user about the process interaction that caused the problem. Fur-
thermore, the user should be able to replay an erroneous interleaving sequence, that is,
execute the program with exactly the same process interleaving as the one that caused
the error.

Selective instrumentation

The user should be able to choose the portion of the source code that is going to be
analyzed. This enables a layered approach to software verification.

Reasonable time and resources

To be useful in practice, a testing tool has to be quick and lightweight. Time and mem-
ory consumption of Concuerror largely depend on the complexity of the program un-
der test. That said, Concuerror should have minimal overhead in executing each indi-
vidual interleaving sequence and, additionally, avoid producing redundant sequences.

The following sections present a high-level description of Concuerror's components
and their functionality. We will delve into more structural and algorithmic detail in
subsequent chapters.

Scheduler
Recall that our ultimate goal is to execute every possible interleaving sequence of a mul-
tiprocess program and detect sequences that lead to runtime errors. As a prerequisite,
we need to have control over the order in which processes are interleaved. Under the
scheduler of the Erlang VM, process interleaving is pretty much random.

To be able to force a desired interleaving sequence, we have created a component

14� Chapter 3

that takes care of controlling the order in which the commands of the various processes
are executed. We call this component the Concuerror scheduler.

Imagine running the example of Listing 3.1 on a single core system. When re-
peatedly run on the Erlang VM, the program produces various random interleaving
sequences. If we are lucky enough, the erroneous sequence will eventually come up.
The Concuerror scheduler, however, can replay any desired sequence by carefully con-
trolling the interleaving of the participating processes (see Figure 3.2).

The situation is similar when running the program on a multicore system, because
for every possible multicore program execution there exists an equivalent sequential
process interleaving sequence. The Concuerror scheduler always runs one process at a
time, thus simulating the equivalent sequential interleaving sequence of an execution.

By controlling process execution, the Concuerror scheduler is able to force a spe-
cific interleaving sequence. To additionally create every possible sequence, the scheduler
has to utilize a search algorithm. We will see in Chapter 4 that using a classic algo-
rithm, like depth-first search, does not suffice. Instead, we will have to employ more
sophisticated search strategies along with some heuristics to achieve the desired results.

Instrumenter
In our previous presentation of the Concuerror scheduler, we did not discuss at which

¾¾ The equivalence of multicore
executions and sequential process
interleaving sequences is meant
with respect to the "observable
behavior" of a program and is only
valid as long as the program under
test contains no data races. For the
time being, Concuerror's function-
ality is limited to analyzing single-
node programs in order to avoid
some races due to Erlang's fairly
complex distributed semantics.

register(...)

Pid = spawn(...)

receive ... end

Self = self()

foo/0

Erlang VM . . .
EXIT

Target ! {...}

EXIT

bar/0

Pid = spawn(...)

process_flag(...)

Execution N

Target ! {...}

EXIT

register(...)EXCEPTION!

register(...)

Pid = spawn(...)

EXIT

Self = self()

Execution 1

Target ! {...}

receive ... end

EXIT

Pid = spawn(...)

Self = self()

Execution 2

Target ! {...}

register(...)

receive ... end

EXIT

EXIT

Execution 3

Pid = spawn(...)

process_flag(...)

Target ! {...}

register(...)

EXIT

receive ... end

EXIT

Concuerror
scheduler

Erlang VM

Pid = spawn(...)

Self = self()

Execution 1

Target ! {...}

EXIT

register(...)EXCEPTION!

Pid = spawn(...)

Self = self()

Execution 2

Target ! {...}

EXIT

register(...)EXCEPTION!

Pid = spawn(...)

Self = self()

Execution 3

Target ! {...}

EXIT

register(...)EXCEPTION!

Pid = spawn(...)

Self = self()

Execution N

Target ! {...}

EXIT

register(...)EXCEPTION!

. . .

register(...)

Pid = spawn(...)

receive ... end

Self = self()

foo/0

EXIT

Target ! {...}

EXIT

bar/0

Figure 3.2:  Erlang VM scheduler vs Concuerror scheduler in a single core system

Concuerror Overview� 15

point of a program's execution the scheduler is allowed to pause the running process
and switch to another process. Such points in the program flow are called preemption
points and the action of pausing one process and running another is called a preemption.

A naive approach would allow a preemption at each program statement. However,
such an approach would produce a huge number of redundant sequences. There is no
point in interleaving commands with no side-effects, because they only affect the pro-
cess that executes them. Therefore, we place preemption points only at commands that
in some way interact with the outside world with respect to the running process. That
way, the source code is effectively divided into chunks, with each of them containing
only one command with side-effects. Erlang's shared-nothing actor model provides a
big advantage at this point compared to languages with shared memory models. In
Erlang, only a limited number of side-effecting expressions and function calls need to
be considered as preemption points, whereas in a language like C++, every access point
of every global variable would need to be taken into account.

Combinatorial Explosion

Suppose that we have a program of 3 processes, each of them executing 10
commands. If we place preemption points at each command of each process,
there is a total of 5.6x1012 interleaving sequences—a huge number for such a
small program! However, let us assume that only 3 commands of each process
have side-effects. In that case, there are only 1680 interleaving sequences to be
explored. In fact, for n processes of k commands, the number of sequences is
greater than (n!)k, which is exponential in both n and k [27].

This problem arises in many algorithms that compute combinations of entities
and is commonly called combinatorial explosion. Concurrent verification tools
and model checkers suffer from combinatorial explosion, because they are re-
quired to compute interleaving sequences, i.e. combinations of computational
steps, much like Concuerror does.

In this chapter we have presented the simplest method for mitigating the com-
binatorial explosion problem, namely inserting preemption points only at side-
effecting commands. In later chapters we will see more involved methods for
reducing the number of interleaving sequences produced.

What constitutes the placement of a preemption point? When the currently run-
ning process reaches a preemption point, it should pause its execution, inform the
Concuerror scheduler about the event and wait for a prompt to continue. There are two
approaches for achieving this effect (see Figure 3.3).

The first approach involves intercepting user code function calls at runtime and
redirecting them to custom wrapper functions, which implement the above functional-
ity. CHESS uses this approach [30]. In Erlang, send and receive operations are syntactic
constructs, so intercepting function calls is not enough. Furthermore, there seems to
be no way to intercept function calls and send/receive operations without messing with
the Erlang VM, which we would like to avoid in favor of simplicity.

The second approach involves using a custom parse transformer on the user code,
in order to create an instrumented version that contains additional code for pausing/re-
suming the processes and communicating with the scheduler. We have adopted this ap-
proach in Concuerror and the component that implements this functionality is called

¾¾ Even to determine if a vari-
able is global would require a shar-
ing and alias analysis of the source
code. No such analysis is needed in
Concuerror.

16� Chapter 3

the Concuerror instrumenter. For
Concuerror to operate correctly, it
is of foremost importance that the
instrumented source code be se-
mantically equivalent to the origi-
nal. This will be discussed in more

detail in Chapter 5.

User Interface
Concuerror users will probably have to deal with complex concurrency bugs. In order
to understand where the problem lies, let alone fix it, the user needs detailed informa-
tion about process interaction. A command line interface is not able to convey such
information in a nice and usable format. This is why we designed a graphical interface,
which we call the Concuerror GUI.

The GUI allows the user to import Erlang modules and select a test to be executed.
After the analysis is complete, information about any errors encountered is displayed.
Moreover, the user may choose to replay some of the erroneous sequences and acquire
detailed, action by action, interleaving information. That way the GUI assists the user
in visualizing the program flow and spotting where exactly the problem occurs.

Putting everything together
Along with the major components described in the pre-

vious sections, Concuerror uses additional com-
ponents for complementary tasks, like logging
(the Log component) or error reporting and
replay (the Error and Ticket components). A
high-level diagram of the major Concuerror
components and their interaction can be seen
in Figure 3.4.

In a nutshell, the workflow when using
Concuerror in practice is shown in Figure 3.5
and can be described as follows: The user
opens the GUI, imports some Erlang modules
and picks a test to run. As a first step, the in-
strumenter applies a parse transformation to
the imported modules and then compiles the

GENERIC UI

GUI

LOG ERROR/TICKET

INSTRUMENTER SCHEDULER

Figure 3.4:  High-level Concuerror archi-
tecture

Normal execution

Intercepting preemption points

Instrumenting preemption points

User code Instrumenter
Compile

Instrumented
user code

Bytecode
Execute

Erlang VM

Compile
User code

Execute
Bytecode Interceptor Erlang VM

Compile
User code

Execute
Bytecode Erlang VM

Figure 3.3:  Two approaches for inserting preemption points

Concuerror Overview� 17

transformed code. Subsequently, the schedul-
er executes all possible interleaving sequences
of the test using the transformed modules
and reports any errors encountered. The user
can then choose to replay an erroneous execu-
tion, which means that the scheduler runs the
corresponding interleaving sequence and re-
cords detailed information about the processes'
actions, which is displayed in the GUI. Using this information, the
user can apply code changes and replay the erroneous interleaving
to see how the program execution is affected. This procedure can be
repeated as needed.

What's next?
We have seen a crude outline of how

Concuerror works. However, there are sev-
eral features that have
not been explained in
detail. Chapter 4
provides an in-depth
discussion of algo-
rithms and techniques
used in the scheduler,
while Chapter 5
presents the rather tedious job performed by the instrumenter.

No

Yes

User/GUI actions

Error info is
displayed

Open GUI and
import modules

Choose a test to
run

Choose an error
to replay

Detailed
interleaving info

is displayed

Make code
changes

Success! Is error fixed?

Internal Concuerror
operations

Instrumenter
transforms and

compiles

Scheduler
interleaves

Instrumenter
transforms and

compiles

Scheduler replays

Figure 3.5:  Typical workflow when using Concuerror

The Scheduler4
The main purpose of Concuerror is to explore the state-space of a concurrent program.
To this end, the scheduler has to produce interleaving sequences, carefully control pro-
cess interleaving for each sequence, and, at the same time, handle and report process
actions, including any errors that might be encountered. It's like being a policeman in
a 4-way junction trying to control rush hour traffic, while at the same time looking
for the bank robbers amongst the cars. This is not an easy job for the scheduler—any
policeman will tell you so.

State or no state?
The state of a concurrent program consists of at least a program counter for each pro-
cess or thread and the memory contents that can be accessed by any process or thread.
Concuerror should be able to visit every possible program state and report any state
that is erroneous according to some user-defined criteria.

Caching visited program states during state-space exploration can provide a huge
efficiency benefit. On the other hand, it is extremely difficult to capture the program
state of a program written in a modern programming language. This is why Concuerror
was designed to be stateless, i.e. no detailed information about program state is being
held.

Still, to be able to search, that is, reach all states, and replay, that is, reach a specific
state again and again, we need a representation of program states. For that purpose,
Concuerror uses a trace of the interleaving sequence from the initial state to another
state. The mapping of traces to program states is “onto”, but not “one-to-one”. This is
due to the fact that every trace represents a unique program state, namely the one that
the program reaches when the processes are interleaved as shown in the trace, but more
than one traces can lead to the same program state.

We have seen in Chapter 2 that Erlang uses process identifiers (PIDs) to unique-
ly distinguish between processes. Unfortunately, the PID assigned to a process is not the
same between executions of the same program. This means that a trace of PIDs cannot
be used as a state representation. Concuerror uses another way for identifying processes
according to their hierarchical place in the program execution. Each process is assigned
a logical identifier (LID), which we will denote by the letter “P”, followed by a sequence
of numbers separated by periods. The LID P1 is assigned to the initial process of a pro-
gram. Thereafter, every process' LID consists of the LID of its parent followed by the
number of its siblings at the time it was spawned plus one. Thus, P1.1 will be assigned to
the first process spawned by P1, P1.2 to the second one, and so on. This way the process
hierarchy is represented by a tree like the one shown in Figure 4.1

20� Chapter 4

To sum up, in Concuerror processes are represented by unique LIDs, which are
constant across different executions of the same program, while program states are

represented by sequences of LIDs. For the rest of this thesis, we will refer to a
sequence of LIDs as a state, although, as mentioned above, a LID sequence is

more specific than a program state in the sense that more than one LID
sequences can lead to the same program state.

Context and handlers
The scheduler needs to keep track of some process related
information during each execution. We call this informa-
tion the scheduler context. The context contains a set of
paused processes that are ready to be scheduled, called
the active set, a set of processes that are suspended (usu-
ally due to a receive), called the blocked set, the currently

running process and the current state of the program, as well as other less important
information.

Instrumented user code delegates actions with side effects to the scheduler. There
are two stages in handling such an instrumented action: At the first stage, the user
process enters a wrapper function, where it typically executes a modified version of
the original call, informs the scheduler about this action and pauses its execution. This
functionality is implemented by the wrapper subcomponent. At the second stage, the
scheduler logs the action and updates the context accordingly. This is accomplished by
the scheduler's action handler subcomponent.

For example, an instrumented spawn/1 call executes a wrapper function which
takes care of spawning the new process and pausing it right before it starts executing.
Furthermore, the wrapper function reports the action to the scheduler and also pauses
the execution of the user process that called spawn/1. As soon as the action handler is
informed, it creates a LID for the newly spawned process, adds the process to the active
set and logs the spawn action.

In short, the wrapper works in conjunction with the instrumenter and handles the
user side of actions with side-effects, while the action handler takes care of the sched-
uler side of these actions.

Getting to the core
The core components of the scheduler are the ones that perform the actual search in
state-space and control the process execution order. The part of the scheduler that keeps
track of the states to be visited and records error information is called the interleaver.
The part that controls the execution of each individual interleaving sequence, during
both search and replay, is called the driver. The combined operation of these compo-
nents determines the search strategy of the scheduler.

 Figure 4.2 shows the scheduler, including its subcomponents, and its interaction
with some of the other Concuerror components. Notice that the wrapper acts as a kind
of middleware between the scheduler and the instrumenter.

Let us see how a simple depth-first search would work. At the very beginning of
the search procedure, the initial user process (LID = P1) is spawned to execute a user
defined test function and is paused right before starting its execution. The initial con-
text consists of an active set containing process P1, an empty blocked set, no current
process and an empty state (no processes run yet). The search begins by calling the
driver and passing the initial context. At every preemption point the currently running

¾¾ The wrapper is discussed in
Chapter 5, because it is closely
related to the instrumenter.

P1

P1.2P1.1

P1.2.1 P1.2.2

Figure 4.1:  Process LID tree

The Scheduler� 21

process is paused and the driver has to determine which process is going
to be executed next. As long as there is only one active process, there is no
decision to be made and the state at each point is just a sequence of P1s.
However, the situation changes when a spawn call is encountered.

After the spawn call has been handled, there are two processes in the
active set (P1 and P1.1), therefore the driver has to make a choice. Un-
der depth-first search, the driver should continue with P1, but the other
choice has to be stored for future exploration. What is actually stored is
the state that would have resulted if process P1.1 was run instead of P1 at
this point. We call such an interleaving sequence, which does not repre-
sent a completed program execution but is a prefix of unexplored states, a
partial state. The execution continues the same way, saving at each step all
partial states resulting from choices not taken. When the current execu-
tion has finished, i.e. all processes have terminated normally or an error
has occured, the interleaver takes control.

The interleaver records the result of the finished execution and initi-
ates the next one. Depth-first search requires that the last partial state
saved in the previous run be replayed up to the last process in the state.
This is equivalent to using a stack for storing partial states. The search
must then continue from this point on. After the driver has replayed and
finished the rest of the execution of the partial state, the search goes on
in the same manner until there are no more partial states to be explored.

When replaying a (partial) state, we say that the driver is in replay
mode, otherwise we say it is in search mode. The only difference when be-
ing in replay mode is that at each step the process to be executed next is
predetermined, that is, no choice has to be made by the driver.

If you have carefully followed the above algorithm, at least one question should
have arisen by now. Take a look at Listing 4.1 and let us make some Q&A remarks.

Listing 4.1:  Can you spot the potential problem here?

foo() ->
 spawn(fun baz/1),
 bar().

bar() ->
 %% do stuff
 bar().

baz() ->
 halt().

Q:  In what order are partial states inserted into the stack at each step?

A:  The order is actually not important here, except for a small detail. In the previous
description of the algorithm we inserted states by inverse lexicographic ordering of
their last process' LID. The small detail is that any chosen order suffices as long as it
produces all interleaving sequences, or equivalently, as long as the algorithm terminates.
In Listing 4.1 process P1 loops and process P1.1 is supposed to halt the Erlang system.
However, when inserting partial states in the way we did above, the first interleaving
sequence will have infinite length, because the execution of P1.1 will always be left for
a next execution. In general, programs containing potential livelocks are vulnerable to

SCHEDULER

LID

ACTION HANDLER INTERLEAVER

DRIVER

STATE

WRAPPER

INSTRUMENTER

Figure 4.2:  Scheduler subcomponent
structure

22� Chapter 4

non-termination when using DFS. Using round-robin scheduling solves this problem,
but is not compatible with a technique that will be presented later in this chapter.
Therefore, we will assume for now that an execution is simply aborted if it exceeds a
user-defined time limit.

Q:  How are receive expressions handled?

A:  After any blocking call, including receive expressions, the process has to be moved
from the active to the blocked set. Furthermore, it should remain there until it is able
to continue its execution. In the case of a receive expression, a process can continue
as soon as a matching message is available in its mailbox. However, one may notice
that the action of blocking has no effect on the program's execution, thus interleaving
sequences that contain process blocks are actually redundant. In the next section we
present a technique for reducing redundancy due to blocking processes.

Q:  What happens when a process exits?

A:  Obviously the process has to be removed from the active set. However, there is also
a tricky part. We saw that when a process exits in Erlang, it can trigger messages to be
sent to other processes that are linked to it. Therefore, process exits are in fact actions
with side-effects and should be handled in the same way as any other action of that
kind. Fortunately enough, as we will see in Chapter 5, the way that the instru-
menter inserts preemption points ensures that process exits are handled correctly.

Figure 4.3 shows step by step the analysis of the program in Listing 4.2 using the simple
DFS algorithm described above. The aforementioned inverse lexicographic order is used
for inserting partial states into the stack. Notice the redundant sequences caused by
the receive expression in process P1 and the handling of process exits as separate side-
effecting actions.

Listing 4.2:  Another simple two process example

foo() ->
 register(foo, self()),
 spawn(fun bar/0),
 receive
 bar -> ok
 end.

bar() ->
 foo ! bar,
 ok.

Avoiding blocks
We previously noticed that processes blocking on receive expressions produce redun-
dant interleaving sequences. In the example of Figure 4.3 six sequences were produced,
but only three of them are actually needed. The three sequences with a P1-P1-P1 prefix,
i.e. the sequences where process P1 blocks on a receive, are one-to-one semantically

The Scheduler� 23

register(foo, self())

BLOCK spawn(fun bar/0)foo ! bar

receive bar -> ok end EXIT EXIT

EXIT

receive bar -> ok end

Processes to be analyzed
Starting Run 1
(search mode)

Current state

P1 P1 P1 P1.1 P1

Active set

P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1 P1.1 P1 P1

Active set

P1.1 P1 P1 P1 P1.1 P1 P1.1

P1 P1 P1 P1.1 P1.1

P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1 P1.1 P1 P1 P1.1

Active set

P1 P1 P1 P1.1 P1 P1.1

P1 P1 P1 P1.1 P1.1

P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1

Blocked set

Active set

P1 P1.1

Partial state stack

Current state

Active set

P1 P1 P1 P1 P1.1

P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1 P1.1 P1 P1.1

Active set

P1 P1 P1 P1 P1.1

P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1 P1.1 P1 P1.1 P1

Active set

P1 P1 P1 P1.1

P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1 P1.1

Active set

P1 P1.1 P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1

Active set

P1.1 P1 P1 P1.1

Blocked set

P1

Partial state stack

Current state

Active set

P1 P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1 P1.1 P1.1

Active set

P1 P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1 P1.1 P1.1 P1

Active set

P1 P1 P1 P1.1

Blocked set

Partial state stack

P1 P1 P1.1

P1 P1 P1.1 P1.1 P1.1

Starting Run 2
(replay mode)

Starting Run 3
(replay mode)

P1.1 P1.1P1.1

(search mode)

(search mode)(search mode)(search mode)

(search mode)

Finished Run 2

(search mode) Finished Run 1

After 6 steps of
replay mode

(search mode)
After 5 steps of

replay mode

receive bar -> ok end

spawn(fun bar/0)

EXIT

foo ! bar

EXIT

register(foo, self())

Partial state stack

Current state

Blocked set

Active set

Current state

Active set

Blocked set

Partial state stack

P1 P1

P1

foo/0 bar/0

Figure 4.3:  Testing the example of Listing 4.2 using a simple depth-first search (cont'd on the next page)

24� Chapter 4

EXIT

receive bar -> ok end EXIT EXIT

EXIT

receive bar -> ok end

EXITInterleaving sequences produced

Partial state stack

Current state

P1 P1 P1 P1.1 P1.1 P1 P1

Active set

P1 P1 P1.1

Blocked set

Partial state stack

Current state

Active set

P1

Blocked set

Partial state stack

Current state

P1 P1 P1.1

Active set

P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1P1.1

Active set

P1 P1.1 P1 P1 P1.1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1P1.1 P1

Active set

P1.1 P1 P1 P1.1 P1.1

P1 P1 P1.1

P1

P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1.1

Active set

P1 P1 P1.1

P1.1P1 P1 P1.1

P1 P1.1

Blocked set

Partial state stack

Current state

Active set

P1 P1 P1 P1.1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1 P1.1

Active set

P1 P1 P1 P1.1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1 P1.1 P1

Active set

P1 P1 P1.1 P1.1

Blocked set

Partial state stack

Current state

Active set

P1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1.1

Active set

P1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1.1 P1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1.1 P1 P1

Active set

Blocked set

Starting Run 4
(replay mode)

P1 P1

Starting Run 5
(replay mode)

Starting Run 6
(replay mode)

Active set

P1

Finished Run 3
After 3 steps of

replay mode

(search mode) Finished Run 4(search mode)

After 5 steps of
replay mode

Finished Run 5

After 4 steps of
replay mode

(search mode)

Finished Run 6

register(...)

spawn(...)

foo ! bar

EXIT

receive ... end

EXIT

register(...)

spawn(...)

foo ! bar

receive ... end

EXIT

EXIT

register(...)

spawn(...)

foo ! bar

receive ... end

EXIT

EXIT

register(...)

spawn(...)

BLOCK

foo ! bar

EXIT

receive ... end

EXIT

register(...)

spawn(...)

BLOCK

foo ! bar

receive ... end

EXIT

EXIT

register(...)

spawn(...)

BLOCK

foo ! bar

receive ... end

EXIT

EXIT

Figure 4.3 (cont'd)

The Scheduler� 25

equivalent to the three sequences without blocks.
In fact, any interleaving sequence containing a blocking action on a receive is

redundant, because it is equivalent to the sequence obtained by removing the blocking
action. The production of redundant sequences is both time and memory consuming,
as well as confusing for the potential user. We would like Concuerror to report each
error once and only once.

To deal with this problem the scheduler uses a technique we call blocking avoid-
ance. The main idea is simple: Whenever a blocking action is encountered, the sched-
uler moves the current process to the blocked set, ignores the action itself and chooses
another process from the active set to run. Thereafter, the execution continues nor-
mally. There are two points that require some special attention:

•  Instrumentation support

As in the case of the simple DFS, upon the arrival of a matching message for a
blocked process, the latter has to be moved to the active set and remain paused
until the scheduler prompts it to continue. Additionally, blocking avoidance re-
quires that each process be able to determine whether it will block on a receive,
before executing the actual statement. Both tasks call for some complex instru-
mentation of receive expressions, which will be discussed in further detail in
Chapter 5.

•  Aborting executions

By using blocking avoidance we can guarantee that during replay mode no action
in a partial state can ever be a block, except for the last one. For the last action
in a partial state it is not possible to know beforehand whether it is a blocking
receive or not. However, in case it is indeed a blocking receive, we can safely
abort the execution of the partial state without adding anything to the state stack.
This is valid, because all alternatives have either been already executed or have
been stored in the stack for later execution. Additionally, the execution is cer-
tainly redundant because of the last action being a block.

Blocking avoidance effectively prunes state-space branches that contain process
blocks and results in a more efficient analysis, especially in the case of programs with
intense message passing. In Figure 4.4 the program of Listing 4.2 is analyzed again,
this time using blocking avoidance. The analysis is clearly shorter than before and no
redundant interleaving sequences are produced anymore.

¾¾ Blocking actions can be safely
ignored, because they are without
side-effects.

register(foo, self())Processes to be analyzed
Starting Run 1
(search mode)

(search mode)

receive bar -> ok end

spawn(fun bar/0)

EXIT

foo ! bar

EXIT

register(foo, self())

Partial state stack

Current state

Blocked set

Active set

Current state

Active set

Blocked set

Partial state stack

P1 P1

P1

foo/0 bar/0

Figure 4.4:  Testing the example of Listing 4.2 using depth-first search with blocking avoidance (cont'd on the next page)

26� Chapter 4

BLOCK spawn(fun bar/0)foo ! bar

receive bar -> ok end EXIT EXIT

EXIT

receive bar -> ok end

EXIT

Current state

P1 P1 P1.1 P1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1 P1

Active set

P1.1 P1 P1 P1.1 P1 P1.1

P1 P1 P1.1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1 P1 P1.1

Active set

P1 P1 P1.1 P1 P1.1

P1 P1 P1.1 P1.1

Blocked set

Partial state stack

Current state

P1 P1

Blocked set

Active set

P1 P1.1

Partial state stack

Current state

Active set

P1 P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1 P1.1

Active set

P1 P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1 P1.1 P1

Active set

P1 P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1.1

Active set

P1 P1.1

Blocked set

Partial state stack

Current state

P1 P1

Active set

P1.1

Blocked set

P1

Partial state stack

Current state

Active set

P1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1.1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1.1 P1

Active set

P1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1.1 P1 P1

Active set

Blocked set

Partial state stack

P1 P1 P1.1 P1.1

Starting Run 2
(replay mode)

Starting Run 3
(replay mode)

P1.1 P1.1P1.1

(search mode)
Ignoring block
(search mode)

(search mode)

(search mode)

Finished Run 2

(search mode) Finished Run 1

After 5 steps of
replay mode

(search mode)
After 5 steps of

replay mode

Finished Run 3

Active set

P1 P1.1

Active set

P1

Interleaving sequences produced

register(...)

spawn(...)

foo ! bar

receive ... end

EXIT

EXIT

register(...)

spawn(...)

foo ! bar

receive ... end

EXIT

EXIT

register(...)

spawn(...)

foo ! bar

EXIT

receive ... end

EXIT

Figure 4.4 (cont'd)

The Scheduler� 27

The battle for efficiency
At this stage, the Concuerror scheduler possesses its basic functionality, yet the problem
of combinatorial explosion has not been dealt with. Even for programs of moderate size
there is a huge number of interleaving sequences (see p.15), for which there is no
hope to be explored using reasonable time and memory resources.

One of the traditional heuristics used in depth-first algorithms is iterative deepen-
ing. A limit is set on the depth of the search, i.e. the number of actions with side-effects
encountered during execution, and an execution is terminated when surpassing it. The
limit is increased until time or memory resources are exhausted.

Musuvathi and Qadeer have proposed a different heuristic called iterative context-
bounding, or preemption bounding in short, which is used by CHESS [27]. We utilize
preemption bounding in Concuerror to limit the number of interleaving sequences
explored, because of its advantages over iterative depth-bounding.

As a first step towards using preemp-
tion bounding, a distinction has to be
made between preemptions, i.e. context
switches forced upon by the scheduler and
non-preemptive context switches, i.e. context
switches required by the program itself. A
process blocking on a receive forces a non-
preemptive context switch, because another
process has to be scheduled next. On the
other hand, a preemption happens every
time the execution of a still active process
is paused and another process is executed
instead (see Figure 4.5).

Preemption bounding is based on the
idea of limiting the number of preemptions
allowed. Non-preemptive context switches cannot be controlled and, therefore, are
allowed to happen without constraints. Setting a preemption bound equal to c means
that on each execution at most c preemptions are allowed. The number of interleaving
sequences remains exponential in the number of processes and the number of non-
preemptive context switches. However, it is polynomial in the number of side-effecting
actions. In addition, it is exponential in the preemption bound c, which can be chosen
to be sufficiently smaller than the total number of side-effecting actions.

As a consequence, we can produce a small percentage of the total interleaving se-
quences by controlling the preemption bound. This compromises the soundness of the
analysis, but does so in an elegant way, because the produced sequences possess some
particularly attractive properties:

•  No depth limit

Preemption bounding offers unrestricted depth of execution. Even for a preemp-
tion bound of zero, the program is executed from start to finish (in the case of a
terminating program). Contrast this with depth-limited search, which may never
execute parts of the program that require a big number of steps to be reached.

•  "Simplest" error explanation

By starting with a preemption bound of zero and gradually increasing it, any po-
tential error will be exposed by an interleaving sequence containing the smallest
possible number of preemptions. Typically, sequences with less preemptions are
easier to understand, thus preemption bounding provides in a way the simplest

¾¾ Lines of code are not a good
metric in this case, because a small
program might contain a large
number of preemption points and
vice versa.

register(foo, self())

spawn(fun bar/0)

foo ! bar

receive bar -> ok end

EXIT

EXIT

No context-switch

Non-preemptive
context switch

Preemption

Preemption

Non-preemptive
context switch

Figure 4.5:  Types of
context switches

28� Chapter 4

explanation for an error.

•  Useful metric

Having checked a program up to a preemption bound c guarantees that a po-
tential error would need more than c preemptions to be exposed. This provides a
useful verification metric as well as an insightful estimate about the complexity of
any remaining errors in the program.

•  Few preemptions are enough

Many common concurrency-related errors can be exposed by placing a few con-
text switches in the right places. Moreover, interleaving sequences with few pre-
emptions account for most of the program states, while sequences containing a
large number of preemptions are highly redundant and represent only a small
portion of the state-space. In addition to being intuitive, both of the above hy-
potheses are supported by experimental results [27, pp. 452-453].

All in all, favoring interleaving sequences with few preemptions but unlimited
depth is intuitive and practical, while it provides a more balanced exploration than
depth-limited search, which completely explores sequences up to a limited depth and
completely omits deeper ones.

Concuerror uses a modified version of the original preemption bounding algo-
rithm to incorporate the blocking avoidance technique presented in the previous sec-
tion. The key idea of the original algorithm is to use two stacks for storing partial states.
The first stack, called the current partial state stack, is used to store partial states that
contain an equal number of preemptions to the current preemption bound. The second
stack, called the next partial state stack, is used to store partial states that require one
more preemption than the current bound. Thus, only partial states from the current
stack may be retrieved for execution. When the current stack becomes empty, all inter-
leaving sequences containing a number of preemptions up to the current bound have
been produced. At this point, the search continues by increasing the preemption bound
by one and swapping the current and next stacks.

For a given preemption bound, the driver retrieves partial states from the current
stack, replays them and continues the search from there on. The procedure is similar to
the simple DFS, save for the fact that now the driver has to select whether a partial state
will be inserted into the current or the next stack. The choice depends on the kind of
context switch that is happening between the two last actions of the partial state to be
inserted. At each step of an execution the driver has to check if the process that executed
the previous action is still active. If this is the case, the process has to continue its execu-
tion, because running another process in its place would constitute a preemption. The

register(foo, self())Processes to be analyzed
Starting Run 1
(search mode)

(search mode)

receive bar -> ok end

spawn(fun bar/0)

EXIT

foo ! bar

EXIT

register(foo, self())
Current state

Blocked set

Active set

Current state

Active set

Blocked set

Current partial state stack

P1 P1

P1

foo/0 bar/0

Next partial state stack

Current partial state stack

Next partial state stack

Preemption
bound = 0

Figure 4.6:  Testing the example of Listing 4.2 using preemption bounding with blocking avoidance (cont'd on the next page)

The Scheduler� 29

BLOCK spawn(fun bar/0)foo ! bar

EXIT receive bar -> ok end EXIT

EXIT

EXIT

Current state

P1 P1 P1.1

Blocked set

Current state

P1 P1 P1.1 P1

Active set

P1

Blocked set

Current state

P1 P1 P1.1 P1P1P1.1

Active set

Blocked set

Current state

P1 P1

Blocked set

Active set

P1 P1.1

Current state

Active set

P1

Blocked set

Current state

P1 P1 P1.1 P1

Active set

P1

Blocked set

Current state

P1 P1 P1.1 P1 P1

Active set

Blocked set

Current state

P1 P1 P1.1

Active set

P1 P1.1

Blocked set

Current state

P1 P1

Active set

P1.1

Blocked set

P1

Current state

Active set

Blocked set

Current state

Blocked set

Current state

P1 P1 P1.1 P1.1P1

Active set

P1

Blocked set

Partial state stack

Current state

P1 P1 P1.1 P1.1P1 P1

Active set

Blocked set

Starting Run 2
(replay mode)

(search mode)
Non-preemptive
context switch

(search mode)

(search mode) (search mode) Finished Run 1

After 4 steps of
replay mode

(search mode)

Finished Run 3

Active set

P1

Active set

Interleaving sequences produced

Current partial state stack

Next partial state stack

Current partial state stack

Next partial state stack

Current partial state stack

Next partial state stack

P1.1

Current partial state stack

Next partial state stack

P1.1

Current partial state stack

Next partial state stack

P1 P1 P1.1 P1P1 P1 P1.1 P1

Current partial state stack

Next partial state stack

P1 P1 P1.1 P1

Preemption
bound = 1

Current partial state stack

Next partial state stack

Current partial state stack

Next partial state stack

P1.1

Current partial state stack

Next partial state stack

P1 P1 P1.1 P1 P1.1

(search mode)

P1.1

EXIT

Current partial state stack

Next partial state stack

P1 P1 P1.1 P1 P1 P1.1

Finished Run 2
Starting Run 3
(replay mode)

Preemption
bound = 2

P1

P1 P1 P1.1 P1 P1.1

Current partial state stack

Next partial state stack

Current partial state stack

Next partial state stack

register(...)

spawn(...)

foo ! bar

receive ... end

EXIT

EXIT

register(...)

spawn(...)

foo ! bar

receive ... end

EXIT

EXIT

register(...)

spawn(...)

foo ! bar

EXIT

receive ... end

EXIT

Pr. bound = 0 Pr. bound = 1 Pr. bound = 2

Figure 4.6 (cont'd)

30� Chapter 4

partial state that corresponds to the preemption is inserted into the next stack and shall
be explored as soon as the preemption bound is increased. On the other hand, if the
previous process is not active anymore, every possible partial state is inserted into the
current stack, because a non-preemptive context switch is happening.

In Figure 4.6 the combination of preemption bounding and blocking avoidance is
used to analyze the program of Listing 4.2. Constraining the value of the preemption
bound to 0, 1 or 2, we get 1, 2 or 3 interleaving sequences respectively. Note that the
largest possible number of preemptions for this program is 2. Consequently, having a
preemption bound greater or equal to 2 is in this case equivalent to having no preemp-
tion bound at all. Lastly, it should be clear that the algorithm terminates as soon as it
reaches the largest preemption bound possible, at which point every possible interleav-
ing sequence will have been produced.

Detecting and replaying errors
The ultimate goal of producing interleaving sequences is to find the ones that produce
some error. The driver is alert at each step of every execution for any deviation from
normal execution that might occur. As we mentioned in Chapter 3, Concuerror
was designed to detect the same kinds of errors as conventional testing tools, with the
addition of deadlocks which are obviously not detectable when using traditional test-
ing. Potential errors can be classified as follows:

•  Exceptions

Exceptions can be raised by the Erlang runtime at any time and by any process.
As long as the process that exits due to an exception is known to Concuerror, the
current execution is terminated and the error is logged.

•  Assertion violations

Concuerror allows the use of xUnit-style assertions. An assertion violation is es-
sentially a user-defined exception and provides more information about what
went wrong at some point of the program.

•  Deadlocks

The driver reports a deadlock whenever a state with an empty active process set
and a non-empty blocked process set is reached. Although deadlocks are not es-
pecially common in message-passing languages like Erlang, it is fairly simple to
detect them in Concuerror. Note that in Concuerror any program state where
one or more processes are blocked on a receive expression and no other process
is available for scheduling is considered a deadlock.

Each detected error is represented by a structure that we call replay ticket. A replay
ticket contains all information needed to replay a specific interleaving sequence that
leads to an error and, that way, enables individual replay of erroneous executions. This
information includes (at least) the function to run, its module and its arguments, as
well as the state to be replayed.

The Instrumenter5
The instrumenter is the unsung hero of Concuerror. None of the scheduler's achieve-
ments would be possible without properly instrumented user code. By parse transform-
ing source code, which by itself is a particularly tedious task, the instrumenter has to
provide some complex hooks for the scheduler, while at the same time it has to be
extremely careful not to alter the original program's semantics.

In the rest of this chapter we will discuss the operation of the instrumenter in con-
juction with the wrapper subcomponent that handles instrumented functions, because
the two components are working closely together (see Figure 4.2).

Instrument what?
Instrumentation in Concuerror is done at module level. We already know that pre-
emption points need only be placed at side-effecting actions. In Erlang there are sev-
eral side-effecting BIFs and library functions, in addition to the built-in send (!) and
receive expressions.

A send expression is equivalent to the send/2 BIF and does not need to be con-
sidered separately. In addition, the instrumentation of the majority of function calls is
roughly the same, thus it is not necessary at this point to specify exactly which func-
tions are instrumented. Therefore, we shall mainly distinguish between function call
instrumentation and receive instrumentation.

General considerations
The first matter that arises is whether the preemption point, i.e. the point at which a
process' execution may be interrupted, is going to be placed before or after the corre-
sponding side-effecting action. Recall that the action of a process exit may have side-
effects and needs to be handled separately from any preceding actions. Placing preemp-
tion points before side-effecting actions, makes it difficult to separate a process exit
from the last side-effecting action of the same process. This is why Concuerror places
preemption points after side-effecting actions, which results in process exits being natu-
rally separated from the last action. This also means that every newly spawned process
has to be paused immediately, because otherwise it would not pause until after having
executed its first side-effecting action.

A second subtle point has to do with variable names. In the course of instrumen-
tation, user patterns are used as arguments to wrapper function calls. Therefore, any
underscores present in the original code have to be replaced by new underscored vari-

32� Chapter 5

ables, which are equivalent and can be referred to or passed as arguments. In some cases
like the above, we will have to use new variable names which do not clash with already
defined ones. These will be referred to as fresh variables.

Lastly, it should be noted that all instrumentation is done in a depth-first way, in
order to handle nested side-effecting actions.

The simple case …
We will be starting with the instrumentation of function calls, which is consider-
ably simpler than the instrumentation of receive expressions. The actual instrumen-
tation of a function call is as simple as replacing it with a call to a wrapper func-
tion provided by Concuerror. Wrapper functions are written to accept identical
arguments to the original functions. For example, spawn(fun() -> ok end) is re-
placed with wrapper:rep_spawn(fun() -> ok end) and Pid ! Msg is replaced with

Instrumented Functions

At the time of this writing, Concuerror instruments a number of BIFs, in-
cluding demonitor/1, demonitor/2, halt/1, halt/2, link/1, monitor/2,
process_flag/2, register/2, spawn/1, spawn/3, spawn_link/1, spawn_link/3,
spawn_monitor/1, spawn_monitor/3, spawn_opt/3, spawn_opt/4, unlink/1,
unregister/1 and whereis/1.

No Erlang/OTP library function is instrumented yet. This means that if a program
under test contains a call to a library function with side-effects, there are two
options. The default option for now is to ignore the call, which can sometimes
lead to problems. The other option is to include the library itself in the analysis,
i.e. have Concuerror instrument the source code of the library together with the
user source code.

Instrumenting library code can be good and bad. The good part is that Concu-
error has more fine-grained control over process interleaving and may detect
more subtle concurrency errors. The bad part is that the library code contributes
to the complexity of the analysis and, additionally, it is difficult for the user to
understand an interleaving sequence that includes actions performed by the
library. Moreover, it is not sensible to spend time and effort testing the library
code every time a user program is tested. In Chapter 8 we briefly discuss how
this matter should be resolved.

Listing 5.1:  Uninstrumented code

foo() ->
 register(loop, spawn(fun() -> ok end)),
 loop ! loop ! ahoi.

Listing 5.2:  Instrumented function calls and send expressions

foo() ->
 wrapper:rep_register(loop, wrapper:rep_spawn(fun() -> ok end)),
 wrapper:rep_send(loop, wrapper:rep_send(loop, ahoi)).

The Instrumenter� 33

wrapper:rep_send(Pid, Msg). For example, after instrumenting function calls and
send expressions, the code of Listing 5.1 is trasformed to that of Listing 5.2.

Internally, wrapper functions follow a generic four-step structure:

•  Call the original function

The original function or a slightly modified version of it is called and the return
value is saved.

•  Notify the scheduler

The scheduler is notified of the action, including any necessary information, like
the name of the function called, the arguments provided or its return value.

•  Pause

The user process pauses its execution until the scheduler prompts it to continue.

•  Return

When the execution continues, the return value of the original function, which
was saved in the first step, is returned.

As an example, take a look at the wrapper for spawn/1, which is shown in Listing 5.3.
We have talked before about the need to pause a newly spawned process just before it
begins executing the user function it is intended to. This is accomplished here by calling
pause/0 right after the new process is spawned. The rest of the steps should be pretty
obvious.

Listing 5.3:  Wrapper function for spawn/1

rep_spawn(Fun) ->
 Result = spawn(fun() -> pause(), Fun() end),
 notify_scheduler(spawn, Result),
 pause(),
 Result.

The send wrapper shown in Listing 5.4 is more interesting. When analyzing a pro-
gram, there are usually a lot of messages being passed around. Some of them originate
in instrumented user processes, while others come from uninstrumented processes or
the Erlang runtime itself. In Concuerror, we want to provide the user with as much
information as possible about process interactions. To that end, additional information
is added to messages sent by instrumented user processes (e.g. the sender's pid), hence
the use of that strange INSTR_MSG macro instead of the original message. Of course, this
has to be supported by the receive instrumentation as well. The rest of the wrapper
function should again be easy to understand.

Other wrapper functions are very similar to the above, with possibly minor changes
if some special handling is needed, depending on the original function's semantics.

¾¾ This is where the actual pre-
emption point in the user program
lies.

¾¾ Our function pause/0 is essen-
tially a receive expression; some-
thing like
pause() ->
 receive
 scheduler_prompt ->
 continue
 end.

Listing 5.4:  Wrapper function for send (!) and send/2

rep_send(Pid, Msg) ->
 Pid ! ?INSTR_MSG(Msg),
 notify_scheduler(send, {Pid, Msg}),
 pause(),
 Msg.

34� Chapter 5

… and the hard one!
There are some properties of receive expressions that make them particularly hard to
instrument. First, a built-in language expression, rather than a function call, is used
for receiving messages. Unlike function calls, there are no arguments to be passed to
wrapper functions in this case. To convey information to some wrapper function we are
going to need some complex syntax transforms. Second, receives are blocking actions
and require different handling from most actions that are non-blocking. Last, receive
expressions may contain timeouts, which can normally not be handled by a tool like
Concuerror. However, timeouts have to be ignored in an elegant way that does not alter
the program's semantics and at the same time does not miss interleaving sequences that
could occur in practice.

We will present the instrumentation of receive expressions in an incremental way,
starting from the simplest idea and gradually proceeding to more complex ones.

Version 1
In the previous section we mentioned that messages are instrumented to carry addi-
tional information. This means that patterns in receive expressions have to be altered
so that instrumented messages are matched correctly. Other than that, a preemption
point has to be inserted immediately after a message has been received. We can place
a function call to a wrapper function as the first thing to be executed after the pattern
has been matched.

Following these simple ideas, the receive expression of Listing 5.4 would be trans-
formed to that of Listing 5.5. For the sake of simplicity we will assume that instrument-
ed messages are tuples consisting of a unique atom, the sender's pid and the original
message. The wrapper function should just notify the scheduler and pause the process,
as shown in Listing 5.6.

Problem:  If no matching message is available, the instrumented receive expression will
block for ever. The only way for the process to pause would be to reach a preemption
point, but this is not possible without the arrival of a matching message.

Version 2
What we essentially need, is a preemption point in case there is no matching message
available. When we were talking about the scheduler, it was assumed that a blocked
process is automagically moved from the blocked to the active set, as soon as a match-
ing message arrives. In fact, either synchronous polling of the process or asynchro-
nous process-initiated notification can be used to change the state of the process from
blocked to active. Either way, some kind of loop is needed in order to repeatedly check
for the arrival of matching messages.

Listing 5.4:  Original receive expression

receive
 [foo|Tail] = List -> bar;
 Other ->
 baz(),
 gazonk()
end

The Instrumenter� 35

This can be accomplished by a combination of adding an after clause with a zero
timeout value to the original statement and encapsulating the new statement inside an
anonymous function that is passed as an argument to a wrapper function. The result is
shown in Listing 5.7.

Function rep_receive/1 depends on the exact implementation, but, in any case,
its structure is similar to that shown in Listing 5.8. If there are no matching mes-
sages, the after clause is entered, the scheduler is notified of the block and the process
pauses. After having been prompted to continue, the process calls rep_receive again
and repeats the same procedure until a message arrives. When a message is available, the

Listing 5.5:  Instrumented receive expression (Version 1)

receive
 {?UNIQUE, Fresh1, [foo|Tail] = List} ->
 wrapper:rep_receive_notify(Fresh1, [foo|Tail]),
 bar;
 {?UNIQUE, Fresh2, Other} ->
 wrapper:rep_receive_notify(Fresh2, Other),
 baz(),
 gazonk()
end

Listing 5.6:  Wrapper function (Version 1)

rep_receive_notify(From, Msg) ->
 notify_scheduler('receive', {From, Msg}),
 pause().

Listing 5.7:  Instrumented receive expression (Version 2)

wrapper:rep_receive(
 fun(Fresh1) ->
 receive
 {?UNIQUE, Fresh2, [foo|Tail] = List} ->
 wrapper:rep_receive_notify(Fresh2, [foo|Tail]),
 bar;
 {?UNIQUE, Fresh3, Other} ->
 wrapper:rep_receive_notify(Fresh3, Other),
 baz(),
 gazonk()
 after 0 -> Fresh1()
 end
 end)

Listing 5.8:  Wrapper function (Version 2)

rep_receive(Fun) ->
 Fun(fun() -> notify_scheduler(block, self()),
 pause(),
 rep_receive(Fun)
 end).

36� Chapter 5

after clause is not entered and the loop is broken.

Problem:  This method gives rise to a subtle syntax error, that occurs when there is an
assignment to a variable inside the receive expression. In the previous example, if the
variable List gets bound inside the receive, it should be visible after that. However,
putting the whole statement inside an anonymous function, makes the variable local to
that function and hides it from the rest of the program.

Version 3
As it seems, we cannot put the receive expression inside a function and pass it as an ar-
gument to our wrapper function. Nevertheless, what our wrapper function really needs
to know about is the receive patterns, so that it can check about matching messages.
Therefore, we can instrument the receive expression itself as in Version 1 and, before
that, add a call to a wrapper function, passing along the patterns in the form of a case
expression inside an anonymous function. This method is shown in Listing 5.9.
We effectively combine the two previous methods and use a call to rep_receive in
order to guarantee that a matching message will have arrived by the time the instru-
mented receive expression is executed. The case statement is used by the wrapper to
manually check the mailbox for matching messages, without actually consuming them,
as shown in Listing 5.10. We use process_info/2 with a messages argument to retrieve
the process' mailbox in the form of a list and then our function match/2 is used to check
the messages one by one.

If a matching message is found, rep_receive/1 returns immediately and the pro-
gram continues to the actual receive expression. Otherwise, the process is reported as
blocked to the scheduler and enters a busy-loop checking for the arrival of a matching
message. As soon as one arrives, the scheduler is notified and the process waits for a
prompt to continue its execution and receive the message that has arrived.

In our example, there is a catchall clause (Other -> ...) present in the origi-
nal receive expression, which means that the process will block at the wrapper func-
tion only if there is no message at all available. If the original expression contains no
catchall clause, we have to add one to the instrumented case expression, so that the
process blocks in the wrapper function in case there are non-matching messages avail-

Listing 5.9:  Instrumented receive expression (Version 3)

wrapper:rep_receive(
 fun(Fresh1) ->
 case Fresh1 of
 {?UNIQUE, Fresh2, [foo|Tail] = List} -> match;
 {?UNIQUE, Fresh3, Other} -> match
 end
 end),
receive
 {?UNIQUE, Fresh4, [foo|Tail] = List} ->
 wrapper:rep_receive_notify(Fresh4, [foo|Tail]),
 bar;
 {?UNIQUE, Fresh5, Other} ->
 wrapper:rep_receive_notify(Fresh5, Other),
 baz(),
 gazonk()
end

The Instrumenter� 37

able. For example, the receive expression of Listing 5.11 is instrumented as shown in
Listing 5.12.

Problem:  We have successfully dealt with messages between user processes executing
instrumented code. However, even if there are no uninstrumented user processes, there
is still the Erlang/OTP runtime which may send messages that we are not able to instru-
ment (e.g. 'EXIT' messages).

Version 4
Actually, part of the mechanism for handling uninstrumented messages has already
been implemented by adding a unique atom to the tuple of instrumented messages.
This lets us differentiate between instrumented and uninstrumented messages and al-
lows the insertion of additional pattern-action pairs for handling uninstrumented mes-
sages, as shown in Listing 5.13. The additional patterns are identical to the patterns

Listing 5.10:  Wrapper function (Version 3)

rep_receive(Fun) ->
 {messages, Mailbox} = process_info(self(), messages),
 case match(Fun, Mailbox) of
 match -> continue;
 nomatch ->
 notify_scheduler(block, self()),
 loop(Fun)
 end.

loop(Fun) ->
 {messages, Mailbox} = process_info(self(), messages),
 case match(Fun, Mailbox) of
 match ->
 notify_scheduler(unblock, self()),
 pause();
 nomatch -> loop(Fun)
 end.

match(Fun, []) ->
 nomatch;
match(Fun, [Msg|Rest]) ->
 case Fun(Msg) of
 match -> match;
 nomatch -> match(Fun, Rest)
 end.

Listing 5.11:  Original receive expression without a catchall pattern

receive
 [foo|Tail] = List ->
 bar;
 {baz, 42} ->
 gazonk(),
 its_a_talking_dog()
end

38� Chapter 5

of the original receive expression. Function rep_receive_notify is called with an
unknown argument to indicate that no information is available about the sender of the
message.

This is the final version of Concuerror's receive expression instrumentation. It
works well with both instrumented and uninstrumented messages and does not change
the original expressions' semantics.

Listing 5.12:  Instrumented receive expression without a catchall pattern (Version 3)

wrapper:rep_receive(
 fun(Fresh1) ->
 case Fresh1 of
 {?UNIQUE, _Fresh2, [foo|Tail] = List} -> match;
 {?UNIQUE, _Fresh3, {baz, 42}} -> match;
 {?UNIQUE, _Fresh4, _Fresh5} -> nomatch
 end
 end),
receive
 {?UNIQUE, Fresh6, [foo|Tail] = List} ->
 wrapper:rep_receive_notify(Fresh6, [foo|Tail]),
 bar;
 {?UNIQUE, Fresh7, {baz, 42}} ->
 wrapper:rep_receive_notify(Fresh7, {baz, 42}),
 gazonk(),
 its_a_talking_dog()
end

Listing 5.13:  Instrumented receive expression (Version 4)

wrapper:rep_receive(
 fun(Fresh1) ->
 case Fresh1 of
 {?UNIQUE, Fresh2, [foo|Tail] = List} -> match;
 [foo|Tail] = List -> match;
 {?UNIQUE, Fresh3, Other} -> match;
 Other -> match
 end
 end),
receive
 {?UNIQUE, Fresh4, [foo|Tail] = List} ->
 wrapper:rep_receive_notify(Fresh4, [foo|Tail]),
 bar;
 [foo|Tail] = List ->
 wrapper:rep_receive_notify(unknown, [foo|Tail]),
 bar;
 {?UNIQUE, Fresh5, Other} ->
 wrapper:rep_receive_notify(Fresh5, Other),
 baz(),
 gazonk();
 Other ->
 wrapper:rep_receive_notify(unknown, Other),
 baz(),
 gazonk()
end

The Instrumenter� 39

Timeouts
User-introduced delays or timeouts are outside the
scope of tools like Concuerror. We did not attempt
to model or simulate the effect of delays on a pro-
gram's execution. Delaying a process is equivalent
to running an interleaving sequence in which that
process is executed after some other processes' ac-
tions have been executed. Therefore, all delays can
be set to zero and, still, Concuerror will not miss
any interleaving sequence.

That said, we have to note that in the presence
of delays Concuerror may produce interleaving
sequences that are not likely to occur in practice.
For the program shown in Listing 5.14, the pro-
cess running bar would have to spend more than
one second in the send (!) operation, in order to
produce the event sequence of Figure 5.1 in prac-
tice. Concuerror will nevertheless report an erroneous interleaving for this
program. Although extremely rare, sequences like this are semantically valid
according to the Erlang specification.

To instrument receive expressions with an after clause, we differentiate between
a timeout value of infinity, which is equivalent to an expression without an after
clause and is instrumented as before, and any integer timeout value, which is set to
zero. The differentiation has to happen at runtime using a case clause, because a vari-
able may be used to specify the timeout value. In the second case, there is no need
to check for a block, because the after clause will be entered any time there is no
matching message available. The instrumented expression of Listing 5.15 is shown in

Listing 5.14:  Program containing a delay

foo() ->
 register(foo, self()),
 spawn(fun bar/0),
 receive
 bar -> ok
 after 1000 -> exit(timeout)
 end.

bar() ->
 foo ! bar.

Listing 5.15:  Original receive expression with an after clause

foo(Timeout) ->
 receive
 [foo|Tail] = List -> bar;
 Other ->
 baz(),
 gazonk()
 after Timeout -> its_a_talking_dog()
 end.

register(foo, self())

spawn(fun bar/0)

foo ! bar

receive ... after 1000

exit(timeout)

1 sec

Figure 5.1:  An extremely rare in-
terleaving scenario to occur in
practice

40� Chapter 5

Listing 5.16. Similarly to rep_receive_notify, function rep_after_notify informs
the scheduler about the entering of the after clause and then pauses the process.

Finally, using the same reasoning as above, the receive expression of Listing 5.17
with an after clause and no patterns, is instrumented as shown in Listing 5.18.

Listing 5.16:  Instrumented receive expression with an after clause

foo(Timeout) ->
 case Timeout of
 infinity ->
 wrapper:rep_receive(
 fun(Fresh1) ->
 case Fresh1 of
 {?UNIQUE, Fresh2, [foo|Tail] = List} -> match;
 [foo|Tail] = List -> match;
 {?UNIQUE, Fresh3, Other} -> match;
 Other -> match
 end
 end),
 receive
 {?UNIQUE, Fresh4, [foo|Tail] = List} ->
 wrapper:rep_receive_notify(Fresh4, [foo|Tail]),
 bar;
 [foo|Tail] = List ->
 wrapper:rep_receive_notify(unknown, [foo|Tail]),
 bar;
 {?UNIQUE, Fresh5, Other} ->
 wrapper:rep_receive_notify(Fresh5, Other),
 baz(),
 gazonk();
 Other ->
 wrapper:rep_receive_notify(unknown, Other),
 baz(),
 gazonk()
 end;
 _Fresh7 ->
 receive
 {?UNIQUE, Fresh4, [foo|Tail] = List} ->
 wrapper:rep_receive_notify(Fresh4, [foo|Tail]),
 bar;
 [foo|Tail] = List ->
 wrapper:rep_receive_notify(unknown, [foo|Tail]),
 bar;
 {?UNIQUE, Fresh5, Other} ->
 wrapper:rep_receive_notify(Fresh5, Other),
 baz(),
 gazonk();
 Other ->
 wrapper:rep_receive_notify(unknown, Other),
 baz(),
 gazonk()
 after 0 ->
 wrapper:rep_after_notify(),
 its_a_talking_dog()
 end
 end.

The Instrumenter� 41

What's next?
The more theoretical part of our presentation is over. We have seen the parse transforms
used to instrument the user code and the algorithms used to search the program's state-
space. Now it is time to see Concuerror in action. In the next chapter we will develop a
simple—though not trivial—concurrent registration server and test it using Concuer-
ror and its GUI.

Listing 5.17:  Original receive expression with an after clause and no patterns

receive
after Timeout -> its_a_talking_dog()
end

Listing 5.18:  Instrumented receive expression with an after clause and no patterns

case Timeout of
 infinity -> wrapper:block_for_ever();
 _Fresh1 -> its_a_talking_dog()
end

Concuerror by Example6
In this chapter we will see how Concuerror can be used in practice as a testing and
debugging aid. The presentation of the Concuerror user interface will be done through
a fairly simple example program that we will write and test step by step in a loosely
test-driven fashion.

We intend to create a generic registration server, that can, for example, be used
to manage limited system resources. The desired functionality includes starting and
stopping the server, as well as attaching and detaching processes to and from the server.
However, only a limited number of processes are allowed to be attached to the server
at any moment.

Getting started
First, we will create two Erlang modules, one to contain the server code (reg_server),
the other to contain the tests (reg_server_tests). Let us start by writing a start/0
function for starting the server and a trivial test that checks that the function returns ok.

The Erlang/OTP distribution comes with a unit testing framework named EUnit,
which provides several macros pertaining to the creation and execution of tests and test
suites. Concuerror is not yet fully compatible with EUnit, but some assertion macros
can be readily used in Concuerror tests. One of the compatible macros is ?assertEqual,
which tests two expressions for equality. The convention behind its use is that the first
argument declares the expected value to which the second argument is to be compared.
The reg_server_tests module, shown in Listing 6.1, uses an include_lib statement
to make the above macro available.

Our first test uses ?assertEqual to check that start/0 returns ok. Note that func-
tions with a “_test” suffix are auto-exported by EUnit, thus no export attribute is
needed. The first version of the server module is shown in Listing 6.2.The module
exports the start/0 function, which just returns ok for now.

¾¾ Starting with SUnit, an au-
tomated unit testing framework
for Smalltalk, and JUnit, its Java
equivalent, similar frameworks
have been created for most lan-
guages and are collectively re-
ferred to as xUnit.

Listing 6.1:  The initial testing module

-module(reg_server_tests).

-include_lib("eunit/include/eunit.hrl").

start_test() ->
 ?assertEqual(ok, reg_server:start()).

¾¾ Newly added code at each step
will be non syntax-highlighted and
in bold red.

44� Chapter 6

It is time to run our test using Concuerror. After opening the Concuerror GUI we
are faced with several panels. The Modules panel in the upper left side displays a list of
imported Erlang modules in Concuerror. These are the modules that will be instru-
mented when Concuerror begins its analysis. The Functions panel in the lower left side
displays a list of exported functions from the selected module. The Log panel in the
lower right side displays information about Concuerror actions. Additionally, selecting
the Source tab next to Main we can display the source code of the selected module in the
Modules panel.

Let us run our test before explaining the rest of the GUI functionality. To import
our modules we click the Add button or select FileAdd. Through the browse dialog
we locate our two modules on the filesystem, select them, and click Open. Our mod-
ules have now been imported and added to the Modules panel. By selecting module
reg_server_tests from this panel, the testing function start_test/0 appears in the
Functions panel. For the time being, we will disable preemption bounding by unchecking
the Enable preemption bounding option under EditPreferences. We can now select the test

Figure 6.1:  Running our first test successfully in the Concuerror GUI

Listing 6.2:  The initial registration server module

-module(reg_server).

-export([start/0]).

start() ->
 ok.

Concuerror by Example� 45

function and click Analyze to execute the test
under Concuerror. The Log panel informs us
about the successful instrumentation and
compilation of our modules as well as about
the complete execution of one interleaving
sequence without any errors (see Figure 6.1).

Let us now change the return value of
start/0 from ok to error and run the analy-
sis again. This time an error appears in the
Errors panel, namely an assertion violation in
line 6 of our testing module. Furthermore,
in the Process interleaving panel we can see
the corresponding erroneous interleaving se-
quence. It consists of only one side-effecting
action—that of our initial process' abnormal
exit (see Figure 6.2). We can also select the
Problems tab next to Log and switch to the cor-
responding panel, which displays additional
information about the specific error: The expected value was ok but start/0 returned
error. We change the return value back to ok before proceeding.

These are the basics about importing modules and running tests using the Con-
cuerror GUI. In the next section we will begin to implement the server's functionality.
To keep track of our implementation and testing tasks, we will use a simple TODO list,
like the one shown on the right. The current task will be in bold and the finished tasks
will be striked out. We will be adding additional tasks or subtasks as they come along.

Starting and stopping the server: The basics
To start the server, we want to create a server process and register it under the name
reg_server. To test that the server is spawned and registered as expected, we will create
an auxiliary ping/0 function that returns pong if the server responds. In case the server
is down, the ping function should probably timeout after a while, but we leave this task
for later. We also leave for later the case of start/0 being called more than once—by
either one or more processes. For now we want to spawn the server process, register
it, and make it respond to a ping call. To this end we create ping_test/0 shown in
Listing 6.3. We call ping/0 twice to make sure that the server loop is correct.

To make the test pass, we spawn a new process to start the server, register it under

Figure 6.2:  Information about an erroneous interleaving

Listing 6.3:  Add a ping test

-module(reg_server_tests).

-include_lib("eunit/include/eunit.hrl").

start_test() ->
 ?assertEqual(ok, reg_server:start()).

ping_test() ->
 reg_server:start(),
 ?assertEqual(pong, reg_server:ping()),
 ?assertEqual(pong, reg_server:ping()).

46� Chapter 6

the name reg_server, and make it run function loop/0, as shown in Listing 6.4. Inside
its loop, the server receives ping requests and replies with pong messages. Function
ping/0 sends a ping request to the server and waits for a pong response. The macros
REG_REQUEST and REG_REPLY are just used to avoid confusion with messages sent by
other processes.

Running our tests in Concuerror results in both of them reporting a deadlock.
We should expect this, because the server runs in a loop and is blocked waiting for
a request, even after the client process, i.e. the process running the test function, has
exited. To avoid this behavior, we have to implement the functionality of stopping the
server and use it at the end of our tests. Again, we leave the handling of multiple stop
calls for later.

To stop the server we create function stop/0. Listing 6.5 shows the modified tests
and Listing 6.6 shows the implementation of stop/0. Similarly to ping/0, a message is
sent to the server and the latter replies with ok. However, in this case, the server termi-
nates instead of returning to the loop.

Now both tests pass when run in Concuerror. Note that even these small tests
produce more than one interleaving sequences—in this case three—due to the differ-
ent exit orders of the two processes participating in the tests. Before we continue, let us
refactor the code of Listing 6.6 to remove some of the duplication that was introduced
during our last step. In Listing 6.7 we introduce functions request/1 and reply/2 to
handle the sending and receiving of messages between client and server. The tests still
pass after the refactoring, so at this point we are able to perform the basic operations of
starting, pinging and stopping our server.

¾¾ When the name of some ex-
ported function has changed, a
refresh might be necessary so as
to update the name in Concuer-
ror. This can be done by selecting
ModuleRefresh.

Listing 6.4:  Add spawn, register and ping to the server

-module(reg_server).

-export([ping/0, start/0]).

-define(REG_NAME, reg_server).
-define(REG_REQUEST, reg_request).
-define(REG_REPLY, reg_reply).

start() ->
 Pid = spawn(fun() -> loop() end),
 register(?REG_NAME, Pid),
 ok.

ping() ->
 ?REG_NAME ! {?REG_REQUEST, self(), ping},
 receive
 {?REG_REPLY, Reply} -> Reply
 end.

loop() ->
 receive
 {?REG_REQUEST, Target, ping} ->
 Target ! {?REG_REPLY, pong},
 loop()
 end.

Concuerror by Example� 47

Starting and stopping the server: Advanced issues
Let us now handle the case of multiple stop calls. We will first test the case of two
consecutive stop calls by one process and then that of two concurrent stop calls by two
processes. As shown in Listing 6.8, when a process calls stop/0 and the server is not
running, the return value should be server_down. Running this test in Concuerror
results in three erroneous interleaving sequences, two due to an exception and one due
to a deadlock. Looking at the Process interleaving panel we notice that the first exception
happens when the client process attempts to send a message to the already exited server
process using its registered name. To fix this error, we can use the whereis/1 BIF to
check whether the server name is registered, i.e. whether the server is running, before
sending the stop message. In fact, we can do this inside request/1, so that the check is
done before any message is sent to the server, as shown in Listing 6.9.

Running the test again, we see that the first error is fixed, but the two others
are still there. Now is a good point to try running the tests using EUnit, rather than
Concuerror. This can be done by first compiling the two modules and then calling
eunit:test(reg_server_tests). EUnit reports that all three tests pass! We can try it

Listing 6.5:  Stop the server at the end of our tests

start_stop_test() ->
 ?assertEqual(ok, reg_server:start()),
 ?assertEqual(ok, reg_server:stop()).

ping_test() ->
 reg_server:start(),
 ?assertEqual(pong, reg_server:ping()),
 ?assertEqual(pong, reg_server:ping()),
 reg_server:stop().

Listing 6.6:  Add stop/0 to the server

-module(reg_server).

-export([ping/0, start/0, stop/0]).

[...]

stop() ->
 ?REG_NAME ! {?REG_REQUEST, self(), stop},
 receive
 {?REG_REPLY, Reply} -> Reply
 end.

loop() ->
 receive
 {?REG_REQUEST, Target, ping} ->
 Target ! {?REG_REPLY, pong},
 loop();
 {?REG_REQUEST, Target, stop} ->
 Target ! {?REG_REPLY, ok}
 end.

48� Chapter 6

again and again; the result is the same. The reason is that the errors displayed in Con-
cuerror are caused by interleaving sequences that are extremely unlikely to occur in
practice. As we mentioned in previous chapters, Heisenbugs are often caused by inter-
leaving scenarios that are almost impossible to reveal with traditional testing tools, like
EUnit, but are still probable to unexpectedly occur in practice.

Back to Concuerror and in the Process interleaving panel, we can see that both errors
have the same cause: Between the server's reply and its actual exit, the client process
manages to squeeze in and call whereis/1—it even manages to additionally send its

Listing 6.8:  Test for two stop calls by one process

multiple_stops_test() ->
 reg_server:start(),
 ?assertEqual(ok, reg_server:stop()),
 ?assertEqual(server_down, reg_server:stop()).

Listing 6.9:  Use whereis/1 before sending a message to the server

request(Request) ->
 case whereis(?REG_NAME) of
 undefined -> server_down;
 _Pid ->
 ?REG_NAME ! {?REG_REQUEST, self(), Request},
 receive
 {?REG_REPLY, Reply} -> Reply
 end
 end.

Listing 6.7:  The refactored code of Listing 6.6

stop() ->
 request(stop).

ping() ->
 request(ping).

loop() ->
 receive
 {?REG_REQUEST, Target, ping} ->
 reply(Target, pong),
 loop();
 {?REG_REQUEST, Target, stop} ->
 reply(Target, ok)
 end.

request(Request) ->
 ?REG_NAME ! {?REG_REQUEST, self(), Request},
 receive
 {?REG_REPLY, Reply} -> Reply
 end.

reply(Target, Reply) ->
 Target ! {?REG_REPLY, Reply}.

Concuerror by Example� 49

second stop request in one of the two interleaving sequences. Because the server has not
exited yet, the call to whereis/1 does not return undefined. Subsequently, the server
exits and, as a consequence, the client either fails with an exception, in case it tries to
send a stop request to a process that is not registered anymore, or blocks, in case it has
already sent the request and is waiting for an answer from the non-existing server. The
detailed sequence for the second case, as viewed in the Concuerror GUI, is shown in
Figure 6.3.

The error described above can be solved by making the server unregister itself be-
fore replying to the client's stop request. The fixed code is shown in Listing 6.10, which
makes all three of our tests pass in Concuerror.

Next, we have to test the case where multiple processes try to stop the server concur-
rently. We wiil test this scenario by spawning two processes, making them call stop/0

Figure 6.3:  Concuerror's detailed interleaving information helps understand and fix the error

Listing 6.10:  Unregister the server before replying to a stop request

loop() ->
 receive
 {?REG_REQUEST, Target, ping} ->
 reply(Target, pong),
 loop();
 {?REG_REQUEST, Target, stop} ->
 unregister(?REG_NAME),
 reply(Target, ok)
 end.

50� Chapter 6

on the server, and collecting the return values of their calls. We expect that one call will
return ok and the other server_down, as shown in Listing 6.11.

Running this test in Concuerror results in a large number of erroneous interleaving
sequences. Looking at the first one, we notice that both processes call whereis/1, before
the server stops. The problem is similar to the one we had in our previous step. If the
server has exited before the process sends its request, then the requesting process will
fail with an exception. Alternatively, if the server exits after the request has been sent,
the requesting process will block waiting for a server reply that will never come.

We have to provide a way for a process to be informed whether the server has been
stopped by another process after the execution of the first process' whereis/1 call. To
avoid the exceptions caused by the server not being registered after having exited, we
can use the PID returned by whereis/1, instead of the server's registered name to ad-
dress the server inside request/1. Doing this will result in the transformation of the
exception errors into deadlocks due to processes blocking on the receive expression of
request/1. The “trick” to avoid these deadlocks is to use a monitor/2 call to the server
process before sending the request message to the server. If the latter has already exited
or exits after the monitor call, the process will receive a 'DOWN' message from the Erlang
runtime and can return server_down. Otherwise, the process will receive a normal reply
from the server. In any case, a message will be received and, therefore, the process will
never block. The changes made in the server code are shown in Listing 6.12. A call to
demonitor/2 with the flush option is used to stop monitoring the server and discard
the 'DOWN' message in case the server has already exited.

After making the above changes, all tests pass. Note that our latest test produces a
huge number of interleaving sequences (more than 800,000) and takes several minutes
to complete. At this point, we can turn on preemption bounding by selecting the Enable
preemption bounding option from the EditPreferences dialog and use the default value of
two for the preemption bound parameter. Running the test again, a considerably lower
number of interleaving sequences (about 1,700) are produced in a matter of seconds.

However, we would also like to know if the previous defect would have been de-
tected if a preemption bound of two were used. Temporarily reverting the changes of
Listing 6.12 and running the test again, we can see that the defect is indeed detected—
in this case the defect is even detected with a preemption bound of zero! This is a valida-
tion of the claim we made in Chapter 4 about preemption bounding, i.e. that even
a low preemption bound is usually enough to reveal many common concurrency errors.

Listing 6.11:  Test for two concurrent stop calls by two processes

multiple_concurrent_stops_test() ->
 Self = self(),
 reg_server:start(),
 spawn(fun() -> Self ! reg_server:stop() end),
 spawn(fun() -> Self ! reg_server:stop() end),
 ?assertEqual([ok, server_down],
 lists:sort(receive_two())).

receive_two() ->
 receive
 Result1 ->
 receive
 Result2 -> [Result1, Result2]
 end
 end.

Concuerror by Example� 51

Our next task is dealing with the case of pinging the server when it is not running.
The current version of request/1 should readily handle this case, without the need to
use a timeout after all. To check this, we employ the tests shown in Listing 6.13. The
first test checks that a call to ping/0 returns server_down before starting the server for
the first time as well as after starting and stopping the server. The second test checks
that when a process is trying to ping the server at the same time another process is try-
ing to stop it, the ping/0 call will return either pong or server_down. Both tests pass
successfully and we can proceed to our next task that involves multiple calls to start/0.

As we did with multiple stop calls, we will test multiple start calls by first us-
ing one process and then two. A call to start/0 should return already_started in
case the server is already running. The corresponding single process test is shown in
Listing 6.14. To make this test work we can call whereis/1 inside start/0 before start-
ing the server. If whereis/1 returns undefined, the server is spawned and registered as

Listing 6.12:  Monitor the server to deal with multiple concurrent stop calls

request(Request) ->
 case whereis(?REG_NAME) of
 undefined -> server_down;
 Pid ->
 Ref = monitor(process, Pid),
 Pid ! {?REG_REQUEST, self(), Request},
 receive
 {?REG_REPLY, Reply} ->
 demonitor(Ref, [flush]),
 Reply;
 {'DOWN', Ref, process, Pid, _Reason} -> server_down
 end
 end.

Listing 6.13:  Test calling ping/0 when the server is not running

ping_failure_test() ->
 ?assertEqual(server_down, reg_server:ping()),
 reg_server:start(),
 reg_server:stop(),
 ?assertEqual(server_down, reg_server:ping()).

ping_failure_2_test() ->
 reg_server:start(),
 spawn(fun() ->
 Result = reg_server:ping(),
 ?assertEqual(true,
 lists:member(Result, [pong, server_down]))
 end),
 reg_server:stop().

Listing 6.14:  Test for two start calls by one process

multiple_starts_test() ->
 reg_server:start(),
 ?assertEqual(already_started, reg_server:start()),
 reg_server:stop().

52� Chapter 6

before, otherwise the server is already running so already_started is returned. The
newly added server code is shown in Listing 6.15. The test passes with the new version
of start/0 and we are ready to write the two-process version of the test.

The test for two concurrent start/0 calls is shown in Listing 6.16 and is similar to
the one we used in Listing 6.11 to test for two concurrent stop/0 calls. Two processes
are spawned and concurrently attempt to start the server. One of them should observe
a return value of ok and the other a return value of already_started. The new test fails
when run in Concuerror. As seen from the detailed interleaving information, when the
two processes call whereis/1 before the server is started, they both try to spawn and
register the server, which results in one of them failing with an exception. Ideally, we
would like the block of code containing whereis, spawn and register to be executed
atomically, but this is not possible in Erlang.

Instead, we may use the solution of allowing multiple processes to get spawned,
but only one of them to get properly registered as the server process. Subsequently,
processes that fail to get registered have to be killed. To accomplish the above, we use
a try...catch expression around the register/2 call and a message to the spurious
process forcing it to exit, as shown in Listing 6.17. Note that we cannot use a call to
request/1 to kill a spurious process, because that process has not been registered as the
server.

Again, our latest test produces a large number of interleaving sequences, thus it
is preferable to start with a small preemption bound and gradually increase it, while
finding and correcting any errors encountered. At this point all of our tests pass with or
without preemption bounding, so we have successfully completed the implementation
of the functions for starting and stopping our server.

Attaching processes
Any process should be able to get attached to our server. A unique integer, that for
our purposes will be called a registration number, is assigned to each attached process.
The server allows for a limited number of attached processes. We will define the maxi-

Listing 6.15:  Check if the server is already running before starting it

start() ->
 case whereis(?REG_NAME) of
 undefined ->
 Pid = spawn(fun() -> loop() end),
 register(?REG_NAME, Pid),
 ok;
 _Pid -> already_started
 end.

Listing 6.16:  Test for two concurrent start calls by two processes

multiple_concurrent_starts_test() ->
 Self = self(),
 spawn(fun() -> Self ! reg_server:start() end),
 spawn(fun() -> Self ! reg_server:start() end),
 ?assertEqual([already_started, ok],
 lists:sort(receive_two())),
 reg_server:stop().

Concuerror by Example� 53

mum number of attached processes in the MAX_ATTACHED_PROC macro of an external
reg_server.hrl file, so that it can be included in both the server code and the tests.

To be able to check if a process is attached, we will extend the ping/0 function
to return the calling process' registration number in case it is attached to the server.
The attachment of two processes can be checked using the test of Listing 6.18. We use
attach/0 to attach the calling processes to the server. Function attach/0 returns the
registration number that was assigned to the calling process. The test also checks that
the registration numbers given to the two processes are not equal. What happens when
a process calls attach/0, while it is already attached, or when the maximum number of

Listing 6.17:  Use try…catch to avoid spurious server processes

start() ->
 case whereis(?REG_NAME) of
 undefined ->
 Pid = spawn(fun() -> loop() end),
 try register(?REG_NAME, Pid) of
 true -> ok
 catch
 error:badarg ->
 Pid ! {?REG_REQUEST, kill},
 already_started
 end;
 _Pid -> already_started
 end.

[...]

loop() ->
 receive
 {?REG_REQUEST, Target, ping} ->
 reply(Target, pong),
 loop();
 {?REG_REQUEST, Target, stop} ->
 unregister(?REG_NAME),
 reply(Target, ok);
 {?REG_REQUEST, kill} -> killed
 end.

Listing 6.18:  Test for attaching two processes to server

attach_test() ->
 Self = self(),
 reg_server:start(),
 RegNum1 = reg_server:attach(),
 spawn(fun() ->
 RegNum2 = reg_server:attach(),
 ?assertEqual(RegNum2, reg_server:ping()),
 ?assertEqual(false, RegNum1 =:= RegNum2),
 Self ! done
 end),
 ?assertEqual(RegNum1, reg_server:ping()),
 receive done -> reg_server:stop() end.

54� Chapter 6

attached processes has been reached? Shouldn't a process get detached when it exits? All
these matters will be handled later.

For now, let us try to make our latest test pass. The server can use an ordered set to
keep track of the free registration numbers. Initially, this set will contain the numbers
from 1 to MAX_ATTACHED_PROC. Additionally, the server can use a dictionary to store
mappings from registered processes' PIDs to their corresponding registration numbers.
Both structures can be packed into a record that will represent the state of the registra-
tion server and will be passed as an argument to its loop. Other than that, the request-
reply infrastructure that we created in the previous section can also be used here, so

Listing 6.19:  Add attach/0 to the server

-module(reg_server).

-export([attach/0, ping/0, start/0, stop/0]).

-include("reg_server.hrl").

[...]

-record(state, {free, reg}).

attach() ->
 request(attach).

start() ->
 case whereis(?REG_NAME) of
 undefined ->
 Pid = spawn(fun() -> loop(initState()) end),
 [...]
 end.

initState() ->
 FreeList = lists:seq(1, ?MAX_ATTACHED_PROC),
 #state{free = ordsets:from_list(FreeList), reg = dict:new()}.

[...]

loop(#state{free = Free, reg = Reg} = State) ->
 receive
 {?REG_REQUEST, Target, attach} ->
 [RegNum|NewFreeList] = ordsets:to_list(Free),
 NewReg = dict:store(Target, RegNum, Reg),
 reply(Target, RegNum),
 NewFree = ordsets:from_list(NewFreeList),
 NewState = State#state{free = NewFree, reg = NewReg},
 loop(NewState);
 {?REG_REQUEST, Target, ping} ->
 case dict:find(Target, Reg) of
 {ok, RegNum} -> reply(Target, RegNum);
 error -> reply(Target, pong)
 end,
 loop(State);
 [...]
 end.

Concuerror by Example� 55

that the case of calling attach/0 when the server is down is handled automatically. The
implementation of all the above is shown in Listing 6.19.

Every time a process requests to become attached, the server removes a regis-
tration number from its set and adds a ‘pid to registration number’ mapping to the
dictionary. Note that the header file reg_server.hrl contains only the attribute
-define(MAX_ATTACHED_PROC, 2). (A small number is used here to simplify our test-
ing.) We do not need to import this header file in Concuerror; it is automatically rec-
ognized since it resides in the same directory as the .erl files. With the above additions
the test passes successfully.

We will work on our next two tasks in one step because they are fairly simple.
The first one is to handle an attach/0 call from an already attached process.The server
can either ignore the call and return the already allocated registration number or, al-
ternatively, return a special value indicating an error. We will choose the first option
here and check it with the first test shown in Listing 6.20 to check this. The second
task is to handle the case of a process requesting to become attached when the server
is already full of attached processes, as determined by MAX_ATTACHED_PROC. In this case
we would like the attach/0 call to return server_full, as shown in the second test of
Listing 6.20.

For the tests to pass, before attaching the requesting process, we need to check
whether it is already attached and, if not, whether there are any free registration num-
bers. This is easily done inside the server loop as shown in Listing 6.21.

Listing 6.20:  Test already attached processes and full server

-module(reg_server_tests).

-include_lib("eunit/include/eunit.hrl").
-include("reg_server.hrl").

[...]

already_attached_test() ->
 reg_server:start(),
 RegNum = reg_server:attach(),
 ?assertEqual(RegNum, reg_server:attach()),
 reg_server:stop().

max_attached_proc_test() ->
 reg_server:start(),
 L = lists:seq(1, ?MAX_ATTACHED_PROC),
 Ps = [spawn_attach() || _ <- L],
 ?assertEqual(server_full, reg_server:attach()),
 lists:foreach(fun(Pid) -> Pid ! ok end, Ps),
 reg_server:stop().

attach_and_wait(Target) ->
 reg_server:attach(),
 Target ! done,
 receive ok -> ok end.

spawn_attach() ->
 Self = self(),
 Pid = spawn(fun() -> attach_and_wait(Self) end),
 receive done -> Pid end.

56� Chapter 6

Our new tests passe successfully in Concuerror. The second test produces 822 in-
terleaving sequences for a preemption bound of two. The current execution of our test
contains a total of four processes—the initial process, the server process and two addi-
tional spawned processes. Let us change the value of MAX_ATTACHED_PROC to one, so that
our test contains three processes. Leaving the preemption bound at two, there are now
only 65 interleaving sequences produced. Trying the same with a MAX_ATTACHED_PROC
equal to three and four 9,789 and 118,038 interleaving sequences are produced, re-
spectively. This is a clear indication of the exponential dependence of the number of
interleaving sequences on the number of interleaved processes.

Detaching processes
We have finished with our tasks concerning the attachment of processes and proceed
to handling the detachment of processes from the server. When a process is detached
from the server using a detach/0 call, it should no longer have an assigned registration
number, thus a ping/0 call after its detachment should return pong. This is checked
by the test of Listing 6.22. Moreover, the server should make the registration number
available to be obtained by other processes in the future. To check this, we can extend

Listing 6.21:  Handle already registered processes and full server

loop(#state{free = Free, reg = Reg} = State) ->
 receive
 {?REG_REQUEST, Target, attach} ->
 case dict:find(Target, Reg) of
 {ok, RegNum} ->
 reply(Target, RegNum),
 loop(State);
 error ->
 case ordsets:to_list(Free) of
 [] ->
 reply(Target, server_full)
 loop(State);
 [RegNum|NewFreeList] ->
 NewReg = dict:store(Target, RegNum, Reg),
 reply(Target, RegNum),
 NewFree = ordsets:from_list(NewFreeList),
 NewState = State#state{free = NewFree, reg = NewReg},
 loop(NewState)
 end
 end;
 [...]
 end.

Listing 6.22:  Test detaching a process from the server

detach_test() ->
 reg_server:start(),
 reg_server:attach(),
 reg_server:detach(),
 ?assertEqual(pong, reg_server:ping()),
 reg_server:stop().

Concuerror by Example� 57

the second test of Listing 6.20, so that when one of the processes is detached, another
process becomes attached with the same registration number, which is the only one
available at the time, as shown in the test of Listing 6.23. To make the tests pass, the
server needs to remove the existing mapping from the dictionary and add the freed
registration number back to the free set, as shown in Listing 6.24.

After having successfully run our latest tests and before proceeding to our final
task, we have to deal with one more issue, namely handling the case of a process calling
detach/0 without being attached. Similarly to the case of the double attach/0 call that
we encountered previously, we can either ignore it and return ok, or consider it an er-
ror. Again, we choose the silent approach, as shown in the test of Listing 6.25. The fix
is pretty obvious and is shown in Listing 6.26.

Listing 6.23:  Test reattaching after detaching

detach_attach_test() ->
 Self = self(),
 reg_server:start(),
 L = lists:seq(1, ?MAX_ATTACHED_PROC),
 Ps = [spawn_attach() || _ <- L],
 LastProc = spawn(fun() ->
 RegNum = reg_server:attach(),
 reg_server:detach(),
 Self ! RegNum,
 receive ok -> ok end
 end),
 receive RegNum -> ok end,
 ?assertEqual(RegNum, reg_server:attach()),
 lists:foreach(fun(Pid) -> Pid ! ok end, [LastProc|Ps]),
 reg_server:stop().

Listing 6.24:  Add detach/0 to server

-module(reg_server).

-export([attach/0, detach/0, ping/0, start/0, stop/0]).

[...]

detach() ->
 request(detach).

[...]

loop(#state{free = Free, reg = Reg} = State) ->
 receive
 {?REG_REQUEST, Target, detach} ->
 RegNum = dict:fetch(Target, Reg),
 NewReg = dict:erase(Target, Reg),
 NewFree = ordsets:add_element(RegNum, Free),
 reply(Target, ok),
 NewState = State#state{free = NewFree, reg = NewReg},
 loop(NewState);
 [...]
 end.

58� Chapter 6

Currently an attached process is detached only when it calls detach/0. If an at-
tached process exits without having been detached on its own, its registration number
will remain occupied for ever. Consequently, our last task is to detach a process as
soon as it exits. To check this we can modify the test in Listing 6.22 so that the last
process being spawned, instead of explicitly detaching itself, simply terminates its ex-
ecution. The main testing process tries to attach itself after receiving the 'EXIT' mes-
sage from this previously attached process. For the 'EXIT' message to be received, a
process_flag/2 call is used to activate the trap_exit flag of the main process. The test
is shown in Listing 6.27.

The server needs to know when a process exits, so as to take action and detach
it. This means that we have to either use links or monitors to keep track of attached

Listing 6.25:  Test trying to detach an unattached process

detach_non_attached_test() ->
 reg_server:start(),
 ?assertEqual(ok, reg:server:detach()),
 reg_server:stop().

Listing 6.26:  Deal with trying to detach an unattached process

-module(reg_server).

[...]

loop(#state{free = Free, reg = Reg} = State) ->
 receive
 {?REG_REQUEST, Target, detach} ->
 case dict:is_key(Target, Reg) of
 false ->
 reply(Target, ok),
 loop(State);
 true ->
 [...]
 end;
 [...]
 end.

Listing 6.27:  Test for detaching a process as soon as it exits

detach_on_exit() ->
 Self = self(),
 reg_server:start(),
 L = lists:seq(1, ?MAX_ATTACHED_PROC - 1),
 Ps = [spawn_attach() || _ <- L],
 process_flag(trap_exit, true),
 LastProc = spawn_link(fun() -> Self ! reg_server:attach() end),
 receive RegNum -> ok end,
 receive {'EXIT', LastProc, normal} -> ok end,
 ?assertEqual(RegNum, reg_server:attach()),
 lists:foreach(fun(Pid) -> Pid ! ok end, [LastProc|Ps]),
 reg_server:stop().

Concuerror by Example� 59

processes. There is no reason to use two-sided links here, thus we will have the server
create a monitor for every process that gets attached. Also, as soon as the server re-
ceives a 'DOWN' message about an attached process, this process will be detached. In
Listing 6.28 we implement the above and move the detachment operation into a sepa-
rate function to avoid code duplication.

At this point, our final test passes successfully in Concuerror, as do all of our previ-
ous tests. We do not claim that our code is completely free of bugs. However, the tests
that we have written check the basic functionality of our server and make us confident
that any scenario that may occur in practice and is covered by our tests will actually
work as expected.

Summing up this chapter, we can stress some important points that came up dur-
ing the presentation of our example. First, for all of our tasks a preemption bound
of two was enough to uncover concurrency related errors. It is usually convenient to

Listing 6.28:  Detach a process as soon as it exits

-module(reg_server).

[...]

loop(#state{free = Free, reg = Reg} = State) ->
 receive
 {?REG_REQUEST, Target, attach} ->
 [...]
 [RegNum|NewFreeList] ->
 NewReg = dict:store(Target, RegNum, Reg),
 monitor(process, Target),
 reply(Target, RegNum),
 [...]
 {?REG_REQUEST, Target, detach} ->
 {Reply, NewFree, NewReg} = detach_proc(Target, Free, Reg),
 reply(Target, Reply),
 NewState = State#state{free = NewFree, reg = NewReg},
 loop(NewState);
 {'DOWN', _Ref, process, Target, _Info} ->
 NewState =
 case dict:is_key(Target, Reg) of
 true ->
 {ok, NewFree, NewReg} = detach_proc(Target, Free, Reg),
 State#state{free = NewFree, reg = NewReg};
 false -> State
 end,
 loop(NewState)
 end.

detach_proc(Target, Free, Reg) ->
 case dict:is_key(Target, Reg) of
 false -> {ok, Free, Reg};
 true ->
 RegNum = dict:fetch(Target, Reg),
 NewReg = dict:erase(Target, Reg),
 NewFree = ordsets:add_element(RegNum, Free),
 {ok, NewFree, NewReg}
 end.

60� Chapter 6

start with a low preemption bound and gradually increase it for more thorough test-
ing. Second, we saw the exponential increase in the number of interleaving sequences
with respect to the number of processes. This suggests writing our tests to use only a
few processes and generalize their results for an arbitrary number of them. Third, we
saw that conventional testing using EUnit was not able to expose some of the errors
we encountered. Given that our server was destined to be used in a highly concurrent
environment, Concuerror not only allowed us to verify that our tests pass under some
random interleaving, but gave us the significantly stronger guarantee that under any
interleaving our program is still robust and correct with respect to our test suite. Last,
besides revealing errors, Concuerror also helped us understand their cause by display-
ing detailed interleaving information. By walking through the erroneous interleaving
sequences we were able to quickly understand and correct the source of each problem.

What's next?
The presentation of Concuerror has come to its end. The following chapter concludes
this thesis with an overview of related work and a listing of ideas for future additions
and enhancements.

Epilogue7
Related work
Model checking techniques have been used for years to verify concurrent and distrib-
uted systems. More “traditional” model checkers require describing the system to be
verified in a special modeling language. An example of this is the SPIN model checker
[21], which verifies models expressed in the Promela language [20]. Automatic code
translation to the modeling language has been proposed and used in tools like Bandera
[12], which translates Java code into one of three modeling languages. Starting with the
Verisoft model checker [18], several others, like Java PathFinder [35], CMC [31] and
CHESS [30], have been designed to directly verify code written in the original language.

Of the aforementioned model checkers, SPIN, Java PathFinder and CMC deal with
capturing the program state and caching visited states. On the other hand, Verisoft and
CHESS use a stateless approach and enumerate process or thread interleaving sequences,
much like Concuerror does.

Among the techniques used to ameliorate the state explosion problem are par-
tial-order techniques [14, 17, 28], iterative context bounding [27] and even genetic
programming [19]. The recent GAMBIT [11] extension to CHESS introduces best-first
search based on heuristics that can be customized by the user.

Although Erlang is a concurrency-oriented language, there has not been much ef-
fort towards concurrency testing and verification. According to a recent survey [32],
Dialyzer [25] and EUnit [5] are the mostly used Erlang testing tools. EUnit provides
no means of detecting concurrency errors, while Dialyzer has been recently extended
to detect some kinds of data races [7] and message passing errors [8] via static analysis.
QuickCheck [2], a property-based testing tool for Erlang, has introduced a user-level
scheduler named PULSE [9], which is able to detect some concurrency errors via ran-
dom process interleaving. Besides the random nature of the testing procedure, whic
provides no correctness guarantees, the user is required to write down desired properties
using a special semi-formal notation, which is by itself not a trivial task and, addition-
ally, excludes the use of existing unit tests.

Verification tools for Erlang programs include Huch's abstract interpretation mod-
el checker [22] and the McErlang model checker [15, 16]. McErlang uses a stateful
exploration approach and allows the parametrization of the algorithms and structures
used inside the tool. However, by default processes are only allowed to be preempted at
receive expressions, thus the resulting search is very coarse-grained compared to Concu-
error. The introduction of finer-grained preemption points requires the manual place-
ment of commands, which is a strenuous task and, at the same time, alters the original
code.

62� Chapter 7

Conclusion and future work
In this thesis we have presented Concuerror, a testing tool for Erlang programs that uses
stateless model checking techniques for systematically producing process interleaving
sequences of a program, after having instrumented its code. The first indications of
using Concuerror in practice look promising. Existing tests can be readily executed in
Concuerror and the program under test does not need to be modified at all. Further-
more, Concuerror can be used with a low preemption bound during test-driven devel-
opment to quickly discover concurrency-related errors, but it can also be used with a
higher preemption bound for more thorough program validation, for example as part
of overnight testing.

The development of Concuerror is far from over and our tool has a lot of room for
improvement. Our tasks for the future include:

•  Further redundancy reduction

We have somewhat reduced the number of redundant interleaving sequences, but
the actual program state-space is usually still significantly smaller than the num-
ber of interleaving sequences that are produced by Concuerror. Partial-order tech-
niques are very common in the model checking literature, and we would like to
see the results of using some of them to further reduce redundancy in Concuerror.

•  Full compatibility with EUnit

Some of EUnit's assertion macros can already be used with Concuerror. We in-
tend to make Concuerror fully compatible with EUnit, so that users can execute
any EUnit test suite in Concuerror with no changes required.

•  Selective instrumentation and layered testing

Currently, preemption points are only placed at a number of BIFs. Commonly
used Erlang/OTP libraries have to be manually imported so that they get instru-
mented. To avoid this we can add pre-instrumented library modules to the Con-
cuerror distribution and redirect user code calls to these modules. However, as
we noted in p.32, this is not always the best choice. We would like to let users
control the “interleaving granularity” by allowing them to choose between plac-
ing preemption points at library calls or using a (pre-)instrumented version of the
library.

•  Fair scheduling

As we have seen, the Concuerror scheduler is currently unfair, meaning that it
could be running a single process for ever, as long as that process never blocks. Us-
ing fair scheduling will avoid these situations, and will additionally enable Con-
cuerror to detect livelocks.

•  Extention for multi-node programs

Currently, Concuerror is not able to test programs that extend to more than one
node. Handling the case of multi-node programs will allow the testing of distrib-
uted systems, which are fairly common in Erlang. Additionally, Concuerror could
eventually be extended to drop its closed-world hypothesis and test programs that
communicate with the ouside world (e.g. ports).

•  GUI improvement and visualization

The Concuerror GUI can be improved in many ways to become more usable.
Some directions are project creation and management, test automation, and vi-

Epilogue� 63

sualization of process interaction to further simplify the grasping and debugging
of concurrency errors.

•  Memory overhead optimization

The way states are stored and retrieved has a large impact on Concuerror's memo-
ry overhead. Erlang ETS tables are currently used for storing states. More efficient
state storage and compression schemes could result in a greatly reduced memory
consumption.

ibliographyB
1.  Armstrong, J. Programming Erlang: Software for a Concurrent World. Pragmatic

Bookshelf, 2007.

2.  Arts, T., Hughes, J., Johansson, J., and Wiger, U. Testing telecoms software
with Quviq QuickCheck. In Proceedings of the 5th ACM SIGPLAN Workshop on
Erlang (New York, NY, USA, 2006), ACM, pp. 2–10.

3.  Beck, K. Test-Driven Development: By Example. Addison-Wesley Professional,
2002.

4.  Beck, K., and Andres, C. Extreme Programming Explained: Embrace Change
(2nd Edition). Addison-Wesley Professional, 2004.

5.  Carlsson, R., and Remond, M. EUnit: A lightweight unit testing framework
for Erlang. In Proceedings of the 5th ACM SIGPLAN Workshop on Erlang (New
York, NY, USA, 2006), ACM, pp. 1–1.

6.  Cesarini, F., and Thompson, S. Erlang Programming. O’Reilly Media, 2009.

7.  Christakis, M., and Sagonas, K. Static detection of race conditions in Erlang.
In Practical Aspects of Declarative Languages: Proceedings of the PADL Symposium
(Berlin, Germany, Jan. 2010), M. Carro and R. Peña, Eds., vol. 5937 of LNCS,
Springer, pp. 119–133.

8.  Christakis, M., and Sagonas, K. Detection of asynchronous message pass-
ing errors using static analysis. In Practical Aspects of Declarative Languages: Pro-
ceedings of the PADL Symposium (Berlin, Germany, Jan. 2011), R. Rocha and J.
Launchbury, Eds., vol 6539 of LNCS, Springer, pp. 5–18.

9.  Claessen, K., Palka, M., Smallbone, N., Hughes, J., Svensson, H., Arts, T.,
and Wiger, U. Finding race conditions in Erlang with QuickCheck and PULSE.
In Proceedings of the 14th ACM SIGPLAN Internation Conference on Functional
Programming (New York, NY, USA, 2009), ACM, pp. 149–160.

10.  Clarke, E. M., Emerson, E. A., and Sifakis, J. Model checking: Algorithmic
verification and debugging. Commun. ACM 52 (November 2009), 74–84.

11.  Coons, K. E., Burckhardt, S., and Musuvathi, M. Gambit: Effective unit
testing for concurrency libraries. In Proceedings of the ACM SIGPLAN symposium
on Principles and Practice of Parallel Programming (New York, NY, USA, 2010),
ACM, pp. 15–24.

66� Bibliography

12.  Corbett, J., Dwyer, M., Hatcliff, J., Laubach, S., PĂsĂreanu, C., and
Zheng, R. Bandera: Extracting finite-state models from Java source code. In Pro-
ceedings of the 22nd International Conference on Software Engineering (New York,
NY, USA, 2000), ACM, pp. 439–448.

13.  Engler, D., and Ashcraft, K. RacerX: Effective, static detection of race condi-
tions and deadlocks. In Proceedings of the nineteenth ACM symposium on Operat-
ing Systems Principles (New York, NY, USA, 2003), ACM, pp. 237–252.

14.  Flanagan, C., and Godefroid, P. Dynamic partial-order reduction for model
checking software. In Proceedings of the 32nd ACM SIGPLAN-SIGACT sympo-
sium on Principles of Programming Languages (New York, NY, USA, 2005), ACM,
pp. 110–121.

15.  Fredlund, L.-A., and Earle, C. B. Model checking Erlang programs: The func-
tional approach. In Proceedings of the 5th ACM SIGPLAN Workshop on Erlang
(New York, NY, USA, 2006), ACM, pp.11–19.

16.  Fredlund, L.-A., and Svensson, H. McErlang: A model checker for a distrib-
uted functional programming language. In Proceedings of the 12th ACM SIG-
PLAN International Conference on Functional Programming (New York, NY, USA,
2007), ACM, pp. 125–136.

17.  Godefroid, P. Partial-Order Methods for the Verification of Concurrent Systems - An
Approach to the State-Explosion Problem, vol. 1032 of Lecture Notes in Computer
Science. Springer, 1996.

18.  Godefroid, P. Model checking for programming languages using Verisoft. In
Proceedings of the 24th ACM SIGPLAN-SIGACT symposium on Principles of Pro-
gramming Languages (New York, NY, USA, 1997), ACM, pp. 174–186.

19.  Godefroid, P., and Khurshid, S. Exploring very large state spaces using genetic
algorithms. International Journal on Software Tools for Technology Transfer (STTT)
6, (2004), pp. 117–127.

20.  Holzmann, G. J. Design and Validation of Computer Protocols. Prentice Hall,
1990.

21.  Holzmann, G. J. The model checker SPIN. IEEE Transactions on Software Engi-
neering 23, 5 (May 1997), pp. 279–295.

22.  Huch, F. Verification of erlang programs using abstract interpretation and model
checking. In Proceedings of the 4th ACM SIGPLAN International Conference on
Functional Programming (New York, NY, USA, 1999), ACM, pp. 261–272.

23.  Johansson, E., Pettersson, M., and Sagonas, K. A high performance Erlang
system. In Proceedings of the 2nd ACM SIGPLAN international conference on Prin-
ciples and Practice of Declarative Programming (New York, NY, USA, 2000), pp.
32–43.

24.  Lamport, L. Time, clocks, and the ordering of events in a distributed system. Com-
mun. ACM 21 (July 1978), pp. 558–565.

25.  Lindahl, T., and Sagonas, K. Detecting software defects in telecom applica-
tions through lightweight static analysis: A war story. In Programming Languages
and Systems: Proceedings of the 2nd Asian Symposium (Berlin, Germany, 2004), C.
Wei-Ngan, Ed., vol. 3302 of LNCS, Springer, pp. 91–106.

Bibliography� 67

26.  Lindahl, T., and Sagonas, K. Typer: A type annotator of Erlang code. In Pro-
ceedings of the 4th ACM SIGPLAN Workshop on Erlang (New York, NY, USA,
2005), ACM, pp.17–25.

27.  Musuvathi, M., and Qadeer, S. Iterative context bounding for systematic test-
ing of multithreaded programs. In Proceedings of the 2007 ACM SIGPLAN confer-
ence on Programming Language Design and Implementation (New York, NY, USA,
2007), ACM, pp. 446–455.

28.  Musuvathi, M., and Qadeer, S. Partial-order reduction for context-bounded
state exploration. Tech. Rep. MSR-TR-2007-12, Microsoft Research, 2007.

29.  Musuvathi, M., and Qadeer, S. Fair stateless model checking. In Proceedings of
the 2008 ACM SIGPLAN conference on Programming Language Design and Imple-
mentation (New York, NY, USA, 2008), ACM, pp. 362–371.

30.  Musuvathi, M., Qadeer, S., Ball, T., Basler, G., Nainar, P. A., and Neamtiu,
I. Finding and reproducing heisenbugs in concurrent programs. In Proceedings
of the 8th USENIX conference on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2008), USENIX Association, pp. 267–280.

31.  Musuvathi, M., Park, D. Y. W., Chou., A., Engler, D. R., and Dill, D.
L. CMC: A pragmatic approach to model checking real code. In Proceedings of
the 5th symposium on Operating Systems Design and Implementation (2002), pp.
75–88.

32.  Nagy, T., and Vig, A. N. Erlang testing and tools survey. In Proceedings of the
7th ACM SIGPLAN Workshop on Erlang (New York, NY, USA, 2008), ACM, pp.
21–28.

33.  Shore, J., and Chromatic. The Art of Agile Development. O’Reilly Media, 2007.

34.  Spolsky, J. The Best Software Writing I: Selected and Introduced by Joel Spolsky (v.
1). Apress, 2005.

35.  Visser, W., Havelund, K., Brat, G., Park, S., and Lerda, F. Model checking
programs. Automated Software Engineering 10 (2003), pp. 203–232.

	Introduction
	“If it’s not tested, it’s broken.”
	Oh, the horror!
	Introducing Concuerror
	Contributions

	Erlang: A Short Tour
	Basic features
	Concurrency

	Concuerror Overview
	What's the idea?
	Goals
	Scheduler
	Instrumenter
	User Interface
	Putting everything together

	The Scheduler
	State or no state?
	Context and handlers
	Getting to the core
	Avoiding blocks
	The battle for efficiency
	Detecting and replaying errors

	The Instrumenter
	Instrument what?
	General considerations
	The simple case …
	… and the hard one!
	Timeouts

	Concuerror by Example
	Getting started
	Starting and stopping the server: The basics
	Starting and stopping the server: Advanced issues
	Attaching processes
	Detaching processes

	Epilogue
	Related work
	Conclusion and future work

	Bibliography

