
Problem
Determine the regions where the value of some unknown func-
tion lies above or below a given threshold level.

Pose as a classification problem (into super- and sublevel sets) 
with sequential measurements, which are assumed to be ex-
pensive and noisy.
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Example applications
Environmental monitoring
Estimate regions of (a vertical transect of) Lake Zurich where 
chlorophyll/algal concentration is “abnormally high”.

Geolocating internet latency
Estimate regions of the world with “acceptable” latency to our 
PC, e.g. for trouble-free online gaming.
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Gaussian processes
Estimation
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Classification
For each point, we use the GP-derived confidence intervals to 
either classify it into the super- or sublevel sets, or leave it un-
classified.

Measurement selection
To obtain informative measurements, sample at the most am-
biguous point among the yet unclassified.

Ambiguity ≈ Difficulty in classifying a point w.r.t. the given 
threshold level.
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The LSE algorithm

while there exist unclassified points in 𝐷

for each unclassified point

if its confidence interval lies above ℎ then

	 classify into superlevel set

else if its confidence interval lies below ℎ then

	 classify into sublevel set

else

	 leave unclassified

select max. ambiguity (yet unclassified) point

obtain a noisy measurement at that point

perform GP inference and update conf. intervals
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Fine print
• Enforce monotonically shrinking confidence intervals

• Relax classification by an accuracy parameter 𝜖

Sample complexity bound
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Theorem
For any h ∈ R, δ ∈ (0, 1), and ϵ > 0, if βt = 2 log(|D|π2t2/(6δ)), LSE terminates
after at most T iterations, where T is the smallest positive integer satisfying

T
βTγT

≥ C1

4ϵ2
,

where C1 = 8/ log(1 + σ−2).
Furthermore, with probability at least 1− δ, the algorithm returns an ϵ-accurate
solution, that is

Pr
{
max
x∈D

ℓh(x) ≤ ϵ

}
≥ 1− δ.
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Experimental results
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Compare LSE to:

• State-of-the-art "straddle" 
heuristic (Bryan et al., 2005)

• Maximum variance sam-
pling
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Extension 1:  Implicit threshold level
What if we do not have a predefined threshold level ℎ? (E.g. 
determine relative hotspots of algal concentration.)

Implicitly defined thr. level: h = ω max f(x), 0 < ω < 1
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axExperimental results

Compare to LSE and to a naive extension of "straddle" 
for implicit threshold levels.
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Extension 2:  Batch sampling

We propose the LSEbatch ex-
tension of LSE for selecting a 
batch of B measurements at 
a time. 

Latency geolocation
Send multiple ping requests 
in parallel

Increase sampling throughput

Environmental monitoring
Reduce the total traveling dis-
tance by planning ahead:

• Select a batch of sampling 
locations

• Connect them using a Eu-
clidean TSP path

• Traverse path and collect 
measurements 0 2 4 6 8 10 12 140.4
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Why?
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• We need to accurately estimate the function maximum, 
therefore we need to keep sampling at regions where the 
maximum may lie.

• Similar theoretical guarantees to LSE.

We propose the LSEimp extension of LSE:

• ℎ is now an estimated quantity with associated uncertainty, 
which leads to slower classification.

Latency dataset
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We propose the Level Set Estimation (LSE) algorithm:
• Input:	 - Sample space 𝐷 (e.g. fine grid of function domain) 

	 - Threshold level ℎ
• Idea:  Iteratively sample and classify based on GP-derived 

confidence bounds

Convergence of LSE

All points in D have been classified

Conf. intervals (⇔ ambiguities)
get small enough (< 2ϵ):

at(xt) ∼ O
(√

βtγt

t

)Monotonicity

Samples (t) Kernel (k) Noise (σ) βt

Quantify by max. information gain (Srinivas et al., 2010):
γt = maxyt I(y1:t; f)

For SE kernel γt ∼ O
(
(log t)d+1)

Solution accuracy

maxx∈D ℓh(x) ≤ ϵ Class. rules

Correctly estimate f w.h.p. δ

Conf. intervals are large enough

ϵ

Extra:  Proof outline of LSE bound

Measurements

GP prior
GP posterior

(mean - variance)
Confidence

intervals

Active Learning for Level Set Estimation
Alkis Gotovos, Nathalie Casati, Gregory Hitz and Andreas Krause

Install the free iPhone/Android app via:
www.posterinmypocket.com

⇓


