The LSE algorithm

Determine the regions where the value of some unknown func- We propose the
tion lies above or below a given threshold level. * Input: - Samp
- Thres

Pose as a classification problem (into super- and sublevel sets)  « |dea: Iterative
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with sequential measurements, which are assumed to be ex- confidence bounds

pensive and noisy.

Example applications

Environmental monitoring

Estimate regions of (a vertical transect of) Lake Zurich where
chlorophyll/algal concentration is “abnormally high”.
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Geolocating internet latency

Estimate regions of the world with “acceptable” latency to our
PC, e.g. for trouble-free online gaming.
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_eve| Set Estimation (LSE) algorithm:
e space D (e.g. fine grid of function domain)
nold level h

y sample and classify based on GP-derived

CLASSIFY

select max. ambiguity (yet unclassified) point
obtain a noisy measurement at that point

* Enforce monotonically shrinking confidence intervals
* Relax classification by an accuracy parameter ¢
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Extension 1: Implicit threshold level

What if we do not have a predefined threshold level A? (E.g.

determine relative hotspots of algal concentration.)

Implicitly defined thr. level: i = wmax f(x), 0 <w < 1

We propose the LSE;,, extension of LSE:

* his now an estimated quantity with associated uncertainty,
which leads to slower classification.

Experimental results

* We need to accurately estimate the function maximum,

therefore we need to keep sampling at fEgiORSTWHErETthHE

* Similar theoretical guarantees to LSE.
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For each point, we use the GP-derived confidence intervals to
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Extra: Proof outline of LSE bound

Convergence of LSE
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Quantify by max. information gain (Srinivas et al.,

Yt = 1MaXy, [(ylzt; f)
For SE kernel v, ~ O ((log t)dH)

2010):




