
M.Sc. Thesis by Alkis Gotovos
Supervisor: Andreas Krause
 Assistant Professor, ETH Zurich

ETH Zurich
Department of Computer Science

Active Learning for Level Set Estimation

M.Sc. Thesis by Alkis Gkotovos
Supervisor: Andreas Krause
 Assistant Professor, ETH Zurich

ETH Zurich
Department of Computer Science

Zurich, March 2013

Active Learning for Level Set Estimation

Zurich, March 2013

Abstract

Many information gathering problems require determining the set of points, for
which an unknown function takes value above or below some given threshold level.
As a concrete example, in the context of environmental monitoring of Lake Zurich
we would like to estimate the regions of the lake where the concentration of chloro-
phyll or algae is greater than some critical value, which would serve as an indicator
of algal bloom phenomena. A critical factor in such applications is the high cost in
terms of time, baery power, etc. that is associated with each measurement, there-
fore it is important to be careful about selecting “informative” locations to sample,
in order to reduce the total sampling effort required.

We formalize the task of level set estimation as a classification problem with se-
quential measurements, where the unknown function is modeled as a sample from
a Gaussian process (GP). We propose LSE, an active learning algorithm that guides
both sampling and classification based on GP-derived confidence bounds, and pro-
vide theoretical guarantees about its sample complexity. Furthermore, we extend
LSE and its theory to two more natural seings: (1) where the threshold level is
implicitly defined as a percentage of the (unknown) maximum of the target func-
tion and (2) where samples are selected in batches. Based on the laer extension
we also propose a simple path planning algorithm. We evaluate the effectiveness of
our proposed methods on two problems of practical interest, namely the aforemen-
tioned autonomous monitoring of algal populations in Lake Zurich and geolocating
network latency.

i

Acknowledgements

I consider myself very lucky to have had such an excellent supervisor as Prof. An-
dreas Krause, who has the gi of making complex things simple and intuitive.

I would also like to thank Nathalie Casati and Gregory Hitz for our collaboration
on parts of this thesis.

Finally, thanks to the Limnological Station of University of Zurich and the Au-
tonomous Systems Lab of ETH for providing the environmental monitoring datasets
from Lake Zurich.

Contact

e best way to contact me is to search my name on the Web and retrieve my cur-
rent e-mail address from my homepage. Of course, any questions or comments are
welcome.

iii

Contents

1 Introduction 1

2 Related work 5

3 Preliminaries 7

4 e LSE Algorithm 9
4.1 Algorithm details . 9
4.2 eoretical analysis . 11

5 Extensions 15
5.1 Implicit threshold level . 15
5.2 Batch sample selection . 18
5.3 Path planning . 20

6 Experiments 23
6.1 Results I: Explicit threshold level . 25
6.2 Results II: Implicit threshold level . 28
6.3 Results III: Path planning . 31

7 Conclusion 33

A Detailed proofs 35
A.1 Proof of eorem 1 . 35
A.2 Proof of eorem 2 . 37
A.3 Proof of eorem 3 . 40

Bibliography 43

v

1 Introduction

Many information gathering problems require accurately determining the regions
where the value of some unknown function lies above or below a given threshold
level. Moreover, evaluating the function is usually a costly procedure and the mea-
surements returned are noisy.

As a concrete example of such an application, consider the task of monitoring
a lake environment (in our case Lake Zurich) for algal bloom, a phenomenon that
is potentially harmful to other organisms of the ecosystem. One way to accomplish
this is by determining the regions of the lake where the levels of algae-produced
chlorophyll (see Figure 1.1a) or the concentration of the algae themselves (see Figure
1.2a) lie above some threshold value determined by field experts. ese regions can
be estimated by sampling at various locations of the lake using a mobile sensing
device. However, each measurement is costly in terms of time and sensor baery
power, therefore the sampling locations have to be picked carefully, in order to reduce
the total number of measurements required.

Other example applications in the context of environmental monitoring (Rahimi
et al., 2004) include estimating level sets of quantities such as solar radiation, humid-
ity, etc., and determining the extent of hazardous phenomena, e.g. air pollution or
oil spills (Galland et al., 2004). In a different category are applications that consist in
determining the subset of a parameter space that represents “acceptable” hypothe-
ses (Bryan et al., 2005) or designs (Ramakrishnan et al., 2005).

We pose the problem of estimating some function level set as a classification
problem to be solved using active learning. In particular, we study the problem of
classifying points into a super- and a sublevel set with respect to some given thresh-
old level by making sequential decisions of the next sampling location at each time
step given all previous measurements. For solving this problem, we propose the
Level Set Estimation (LSE) algorithm, which utilizes Gaussian processes (Rasmussen
& Williams, 2006) to model the target function and exploits inferred variance esti-
mates to create confidence bounds and drive the selection process. We also provide
an information-theoretic bound on the number of measurements needed to achieve
a certain accuracy when the underlying function is sampled from a known Gaussian
process.

Figure 1.1b shows an example of estimated super- and sublevel sets resulting
from running LSE on the chlorophyll concentration dataset of Figure 1.1a for a spec-
ified threshold level. Intuitively, LSE works by progressively classifying points into
the super- and sublevel sets and, at the same time, sampling at regions of high “am-
biguity”, i.e. regions where there is high uncertainty about whether the value of the
function lies above or below the specified threshold level. As a consequence, the vast
majority of the sampled locations are concentrated near the level set to be estimated.

We also extend the LSE algorithm to two more seings that naturally arise in
practical applications. In the first seing, we do not a priori have a specific threshold
level at our disposal, but would still like to perform level set estimation with respect

1

2 Active Learning for Level Set Estimation

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Length (m)

.
D
ep
th

(m
)

.. ...

0.5

.

1

.

1.5

(a) Ground truth

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Length (m)

.

D
ep
th

(m
)

(b) Estimated level set

Figure 1.1: (a)Chlorophyll concentration in relative fluorescence units (RFU) inferred
from 2024measurements within a vertical transect plane of Lake Zurich (target level
set at 1.3 RFU shown dashed). (b) Estimated classification into superlevel (orange)
and sublevel (blue) sets aer 405 samples (white crosses) using our proposed LSE
algorithm.

to an implicit level that is expressed as a percentage of the function maximum. In the
environmental monitoring application outlined above, we might want to estimate
regions of relatively high algae concentration, where what is considered as “high”
concentrationmight depend on the season of the year or other environmental factors.
Using an implicit level gives us a way to obtain useful information without the need
to hardcode a prespecified threshold level of interest into the algorithm.

Figure 1.2b shows the estimated super- and sublevel sets resulting from running
LSE on the algae concentration dataset of Figure 1.2a using an implicit threshold
level of 75% of the maximum. e element of gradual classification of the explicit
threshold algorithm is also present in the implicit version, but there is an additional
complexity of estimating the functionmaximum in order to obtain accurate estimates
of the implicit level. erefore, while the algorithm still focuses on the “ambiguous”
regions of the input space, at the same time it also heavily samples near the regions
of the function maxima.

e second extension we propose applies to both the explicit and implicit ver-
sions of the algorithm and aims at selecting at each step a batch of next samples,
rather than just one sample at a time. A reason for doing so is that, in problems such
as the lake sensing example outlined above, apart from the cost of actually taking
each measurement, we also have to take into account the cost incurred by traveling

Introduction 3

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Length (m)

.

D
ep
th

(m
)

.. ...
2

.

4

.

6

.

8

(a) Ground truth

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Length (m)

.

D
ep
th

(m
)

(b) Estimated level set

Figure 1.2: (a) Algae concentration in relative fluorescence units (RFU) inferred from
2024measurements within a vertical transect plane of Lake Zurich (target level set at
75% of the maximum, i.e. ≈ 7 RFU, shown dashed). (b) Estimated classification into
superlevel (orange) and sublevel (blue) sets aer 440 samples (white crosses) using
the implicit version of the LSE algorithm.

from one sampling location to the next. Traveling costs can be dramatically reduced,
if we plan ahead by selecting multiple points at a time. Another reason is that some
problems allow for running multiple function evaluations in parallel, in which case
selecting batches of points can lead to a significant increase in sampling throughput.

Contributions. emain contributions of this thesis can be summarized as follows:

• We introduce the LSE algorithm for sequentially estimating level sets of un-
known functions.

• We extend LSE to select samples in batches and present a straightforward ap-
plication of batch sampling for path planning.

• We consider for the first time the problem of estimating level sets under implic-
itly defined threshold levels and propose an extension of LSE for this problem.

• We prove theoretical convergence bounds for LSE and its two extensions when
the target function is sampled from a known GP.

• We evaluate LSE and its extensions on three real-world datasets and show that
our proposed algorithms are competitive with the state-of-the-art.

2 Related work

As mentioned before, our work falls under the area of active learning. Traditional
“passive” supervised learning is generally concernedwith choosing a hypothesis (e.g.
a classifier) from a set of available hypotheses, given a set of labeled instances. In
many practical applications, obtaining instance labels is costly and, therefore, we
would like to come up with an interactive procedure that at the same time as evalu-
ating the candidate hypotheses also selects instances to be labeled. e hope is that
focusing the labeling effort on “informative” instances will in the end significantly
reduce the total sampling cost, i.e. the number of instances required to estimate an
accurate solution of the problem at hand.

e particular seing that we consider for performing level set estimation is
known as pool-based active learning (Seles, 2012). In this seing, we are given a
fixed set (pool) of unlabeled instances and at each iteration the algorithm has to se-
lect the next instance to be labeled, while given access to the whole set (e.g. for
evaluating some informativeness measure on each element).

For estimating level sets in this seing, Bryan et al. (2005) have proposed the
straddle heuristic, which selects where to sample by trading off uncertainty and prox-
imity to the desired threshold level. Similarly to our proposed algorithm they also use
GPs to model the underlying function and obtain uncertainty estimates through the
inferred variance. In addition, we show in Chapter 4 that our proposed ambiguity-
based selection rule bears a close similarity to the straddle score. However, as we will
also see, our algorithm’s behavior is primarily dictated by its classification rules and,
thus, does not experience the limited exploration from which straddle seems to suf-
fer in some cases (see Chapter 6). Furthermore, no theoretical justification has been
given for the use of straddle, neither for its extension to composite functions (Bryan
& Schneider, 2008).

Garne et al. (2012) consider the problem of active search, which is also about
sequential sampling from a domain of two (or more) classes. In our case the classes
would be the super- and sublevel sets with respect to the desired threshold level. In
contrast to our goal of detecting the class boundaries (i.e. level set), however, their
goal is to sample as many points as possible from one of the classes. e differ-
ence between our level set estimation seing and the above active search problem
resembles the more fundamental difference between active learning and online learn-
ing (Shalev-Shwartz, 2012), where the former aims to obtain an accuratemodel aer a
number of sampling steps, while the laer aims to make accurate predictions during
the sampling process.

In the context of mobile sensor networks, previous work on level set (Dantu &
Sukhatme, 2007; Srinivasan et al., 2008) and boundary (Singh et al., 2006) estimation
and tracking has primarily focused on controlling themovement and communication
of sensor nodes, without giving much aention to individual sampling locations and
the choice thereof.

A similar seing to ours in terms of sequential sampling, but different in terms of

5

6 Active Learning for Level Set Estimation

objectives, is that of multi-armed bandit optimization. e target there is to estimate
the maximum of an underlying function by again choosing to label (evaluate) one of
the bandit arms (sampling locations) at each time step. For this problem, GPs have
been used both for modeling, as well as for sample selection (Brochu et al., 2010). In
particular, the GP-UCB algorithm utilizes the GP-inferred mean and variance esti-
mates to construct upper confidence bounds for each arm and uses them for driv-
ing the selection process. Using an information-theoretic approach, parts of which
we utilize in the analysis of our proposed algorithms, GP-UCB has been shown to
achieve sublinear regret (Srinivas et al., 2010). An extension of GP-UCB to the multi-
objective optimization problem has been proposed by Zuluaga et al. (2013), who also
use a similar to ours GP-based classification scheme to gradually classify points as
being Pareto-optimal or not.

Existing approaches for performing multiple evaluations in parallel in the con-
text of GP optimization, include simulation matching (Azimi et al., 2010), which com-
bines GPmodeling withMonte-Carlo simulations, and theGP-BUCB (Desautels et al.,
2012) algorithm, which obtains similar regret bounds to GP-UCB, and from which we
borrow the main idea for performing batch sample selection.

To our knowledge, there has been no previous work on actively estimating level
sets with respect to implicitly defined threshold levels.

3 Preliminaries

Formalproblemstatement. Given a function f : D → R, whereD is a finite1 sub-
set of Rd, and a threshold level h ∈ R, we define the level set estimation problem as
the problem of classifying every point x ∈ D into a superlevel set H = {x ∈ D |
f(x) > h} and a sublevel set L = {x ∈ D | f(x) ≤ h}.

When an explicit level is not available, we can define an implicit threshold level
with respect to the function maximum in either absolute or relative terms. We use
the relative definition in our exposition with h = ωmaxx∈D f(x) and ω ∈ (0, 1).

In the strictly sequential seing, at each step t ≥ 1 we select a point xt ∈ D to
be evaluated and obtain a noisy measurement yt = f(xt) + nt. In the batch seing
we select B points at a time and only obtain the resulting measurements aer all
of the B points have been selected. is seing can be generalized by using the
notion of a feedback function introduced by Desautels et al. (2012). In particular, we
assume that there is a function fb : N→ N ∪ {0}, such that fb[t] ≤ t − 1 for all
t ≥ 1, and when selecting the next point at time step t, we have access to evaluated
measurements up to time step fb[t]. For selecting batches of size B we can define
fb[1] = . . . = fb[B] = 0, fb[B + 1] = . . . = fb[2B] = B, and so on, but the
feedback function also allows for defining more complex cases of delayed feedback.

Gaussian processes. Without any assumptions about the function f , aempting
to estimate level sets from few samples is a hopeless endeavor. Modeling f as a sam-
ple from a Gaussian process (GP) provides an elegant way for specifying properties
of the function in a nonparametric fashion. A GP is defined as a collection of ran-
dom variables, any finite subset of which is distributed according to a multivariate
Gaussian in a consistent way (Rasmussen & Williams, 2006). A GP is denoted as
GP(µ(x), k(x,x′)) and is completely specified by its mean function µ(x), which
can be assumed to be zero w.l.o.g., and its covariance function or kernel k(x,x′),
which encodes smoothness properties of functions sampled from the GP.

Assuming a GP prior GP(0, k(x,x′)) over f and given t noisy measurements
y1:t = [y1, . . . , yt]

T for points in At = {x1, . . . , xt}, where yi = f(xi) + ni and
ni ∼ N (0, σ2) (Gaussian i.i.d. noise) for i = 1, . . . , t, the posterior over f is also
a GP and its mean, covariance, and variance functions are given by the following
analytic formulae:

µt(x) = kt(x)
T
(
Kt + σ2I

)−1
yt (3.1)

kt(x,x
′) = k(x,x′)− kt(x)

T
(
Kt + σ2I

)−1
kt(x)

σ2
t (x) = kt(x,x), (3.2)

where kt(x) = [k(x1,x), . . . , k(xt,x)]
T and Kt is the kernel matrix of already

1e subsequent analysis only considers the finite domain case for simplicity, however our results
can be generalized to continuous spaces as well (cf. Srinivas et al., 2010).

7

8 Active Learning for Level Set Estimation

observed points, defined asKt = [k(x,x′)]x,x′∈At .

Informationgain. e information gain about a randomvariableX from observing
a random variable Y , also known as the mutual information of the two variables, is
defined as (Cover & omas, 2006)

I(X;Y) = H(X)−H(X | Y),

where H(X) is the entropy of X and H(X | Y) is the conditional entropy of X
given Y . e information gain is symmetric, i.e. I(X;Y) = I(Y ;X), and, as can be
seen from the above definition, quantifies the (average) reduction in our uncertainty
about X when observing the value of Y (and vice versa).

We will use the information gain to quantify the reduction in uncertainty about
f ∼ GP(0, k(x,x′)) when obtaining a set of noisy observations y1:t, which is

I(f ;y1:t) = I(y1:t; f) = H(y1:t)−H(y1:t | f).

If we define fi = f(xi), from the fact that y1:t = f1:t +n1:t is a sum of Gaussians it
follows that y1:t ∼ N

(
0,Kt + σ2I

)
, and the entropy of the noisy observations is

H(y1:t) =
1

2
log
(
(2πe)t|Kt + σ2I|

)
. (3.3)

Furthermore, note that the observations y1:t are conditionally independent of any-
thing else given the underlying GP values of f1:t and distributed as y1:t | f1:t ∼
N (f1:t, σ

2I). It follows that

H(y1:t | f) = H(y1:t | f1:t) =
1

2
log
(
(2πe)t|σ2I|

)
. (3.4)

Combining (3.3) and (3.4) we get

I(f ;y1:t) =
1

2
log
(
|I + σ−2Kt|

)
e notion of information gain can be generalized to the conditional information

gain or conditional mutual information, which quantifies the reduction in uncertainty
about a variableX from observing the value of a variable Y when already given the
value of variable Z . It is similarly defined as

I(X;Y | Z) = H(X | Z)−H(X | Y, Z).

Wewill use it to quantify the reduction in uncertainty about f when obtaining a set of
additional noisy observations yA given that we already have available observations
y1:t, which is

I(f ;yA | y1:t) = H(yA | y1:t)−H(yA | y1:t, f)

= H(yA | y1:t)−H(yA | f)
= . . .

=
1

2
log
(
|I + σ−2Kt

A|
)
,

using a similar derivation to above and definingKt
A = [kt(x,x

′)]x,x′∈A.

4 The LSE Algorithm

We now present our proposed Level Set Estimation (LSE) algorithm for the strictly
sequential seing with explicit thresholds. LSE is similar in spirit to the GP-UCB (Sri-
nivas et al., 2010) bandit optimization algorithm in that it uses a GP to model the un-
derlying function and facilitates the inferred mean and variance of the GP to guide
the selection of points to be evaluated.

More concretely, the inferred mean and variance of (3.1) and (3.2) can be used to
construct a confidence interval

Qt(x) =
[
µt−1(x)± β

1/2
t σt−1(x)

]
for any pointx ∈ D, which captures our uncertainty about f(x) aer having already
obtained noisy evaluations of f at points {x1, . . . ,xt}. e parameter βt acts as a
scaling factor and its choice is discussed later. e above-defined confidence intervals
serve two purposes in our algorithm: first, they allow us to judge whether a point
can be classified into the super- or sublevel sets or whether the decision should be
deferred until more information is available; second, they guide the sampling process
towards points that are likely to be informative with respect to the desired level set.

e pseudocode of Algorithm 1 depicts in detail the operation of LSE. Our al-
gorithm maintains a set of yet unclassified points Ut, as well as a superlevel set Ht

and a sublevel set Lt, which are updated at each iteration. Furthermore, the algo-
rithmmaintains for each unclassifiedx a monotonically decreasing confidence region
Ct(x), which results from intersecting successive confidence intervals, i.e.

Ct(x) =

t∩
i=1

Qi(x) = Ct−1(x) ∩Qt(x).

Initially, all points x ∈ D are unclassified and the confidence regions have infinite
range (lines 1–2). At each iteration, the confidence regions of all unclassified points
are updated (line 7) and each of these points is either classified into one ofHt or Lt,
or is le unclassified (lines 8–14). en, the next point is selected and evaluated (lines
17–29) and the newGP posterior is computed (line 30) taking into account the newest
measurement, according to equations (3.1) and (3.2). e algorithm terminates when
all points inD have been classified, at which point the estimated super- and sublevel
sets Ĥ and L̂ are returned (lines 21–22).

We now discuss in more detail the issues of how points are classified and how
the next point to be evaluated is selected at each step.

4.1 Algorithm details

Classiöcation. e classification of a point x intoHt or Lt depends on the position
of its confidence region with respect to the threshold level h. Intuitively, if all of

9

10 Active Learning for Level Set Estimation

Algorithm 1e LSE algorithm
Input: sample setD, GP prior (µ0 = 0, k, σ0),

threshold value h, accuracy parameter ϵ
Output: predicted sets Ĥ , L̂
1: H0 ← ∅, L0 ← ∅, U0 ← D
2: C0(x)← R, for all x ∈ D
3: t← 1
4: while Ut−1 ̸= ∅ do
5: Ht ← Ht−1, Lt ← Lt−1, Ut ← Ut−1

6: for all x ∈ Ut−1 do
7: Ct(x)← Ct−1(x) ∩Qt(x)
8: if min(Ct(x)) + ϵ > h then
9: Ut ← Ut \ {x}
10: Ht ← Ht ∪ {x}
11: else if max(Ct(x))− ϵ ≤ h then
12: Ut ← Ut \ {x}
13: Lt ← Lt ∪ {x}
14: end if
15: end for
16: xt ← argmax

x∈Ut
(at(x))

17: yt ← f(xt) + nt

18: Compute µt(x) and σt(x), for all x ∈ Ut

19: t← t+ 1
20: end while
21: Ĥ ← Ht−1

22: L̂← Lt−1

Ct(x) lies above h, then with high probability f(x) > h and x should be moved into
Ht. Similarly, if Ct(x) lies below h, then x should be moved into Lt. Otherwise, we
are still uncertain about the class of x, therefore it should, for the moment, remain
unclassified. As can be seen in the classification rules of lines 8 and 11, we relax these
conditions by introducing an accuracy parameter ϵ, which trades off classification
accuracy for sampling cost. e resulting classification scheme is illustrated by the
example of Figure 4.1a, in which point x would be classified into Ht and point x′′

into Lt, while point x′ would remain in Ut as unclassified. Note that LSE uses a
monotonic classification scheme, meaning that once a point has been classified, it
stays so until the algorithm terminates.

Sample selection. For selecting the next point to be evaluated at each iteration, we
define the following quantity

at(x) = min{max(Ct(x))− h, h−min(Ct(x))},

whichwe call classification ambiguity. As its name suggests, the ambiguity of a point
x quantifies our uncertainty about whether x belongs to Ht or Lt. e intuition of
sampling at areas of the sample space with large classification uncertainty, expecting
to gain more information about the problem at hand when sampling at those areas,
manifests itself in LSE by choosing to evaluate at each iteration the point with the
largest ambiguity amongst the yet unclassified.

Note that, if we define the confidence region width of a point x as

wt(x) = max(Ct(x))−min(Ct(x)),

The LSE Algorithm 11

ℎ

ℎ + �

ℎ − �

� �´ �˝

��(�´)
��(�)

��(�˝)

(a) Confidence regions

ℎ

ℎ + �

ℎ − �

� �´

��(�)

��(�´)

(b) Ambiguities

Figure 4.1: (a) Example of the three possible configurations of confidence regions:
x will be classified into Ht, x′′ into Lt, whereas x′ will remain unclassified. (b)
Ambiguities of two example points: x is a point of high ambiguity (close towt(x)/2),
while x′ has low ambiguity (close to ϵ).

it follows from the the classification rules of LSE that

ϵ ≤ at(x) ≤ wt(x)/2, for every x ∈ Ut.

Ambiguity values close to wt(x)/2 indicate that the confidence region of x extends
almost equally above and below the threshold level h, while values close to ϵ indicate
that x can almost unambiguously be classified intoHt or Lt (see Figure 4.1b).

We canmake an interesting observation at this point. If we use the confidence in-
tervalsQt(x) instead of the confidence regions Ct(x) in the definition of ambiguity,
we get the following quantity

a′t(x) = min{max(Qt(x))− h, h−min(Qt(x))}

= min{µt−1(x) + β
1/2
t σt−1(x)− h, h− µt−1(x) + β

1/2
t σt−1(x)}

= β
1/2
t σt−1(x)− |µt−1(x)− h|.

For β1/2
t = 1.96, this is identical to the straddle (Bryan et al., 2005) heuristic, which

can thus be intuitively explained in terms of classification ambiguity.
Figures 4.2a to 4.2d present an example of running the LSE algorithm on a fine

grid of points sampled from the inferred GP of the chlorophyll dataset shown in Fig-
ure 1.1a. Note how the sampling process focuses on the ambiguous regions around
the desired level set until all points inD have been successfully classified.

4.2 Theoretical analysis

e convergence analysis of LSE rests on quantifying the complexity of the GP prior
for f in information-theoretic terms. e information gain (cf. Chapter 3) about f
from observing t noisy measurements yt = (yi)1≤i≤t is

I(yt; f) = H(yt)−H(yt | f).

Srinivas et al. (2010) used the maximum information gain over all possible sets of t
observations

γt = max
yt

I(yt; f)

12 Active Learning for Level Set Estimation

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ht

.
Lt

.
Ut

.
Length (m)

.

D
ep
th

(m
)

(a) t = 50

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ht

.
Lt

.
Ut

.
Length (m)

.

D
ep
th

(m
)

(b) t = 100

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ht

.
Lt

.
Ut

.
Length (m)

.

D
ep
th

(m
)

(c) t = 200

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ĥ

.
L̂

.
Length (m)

.
D
ep
th

(m
)

(d) t = 405 (termination)

Figure 4.2: Running LSE with ϵ = 0.1 on a regular grid of 100× 100 points sampled
from the inferred chlorophyll concentration GP of Figure 1.1a. Regions of already
classified points are shown in orange (Ht) and blue (Lt), regions of yet unclassified
points (Ut) in black, and observed points ({xi}1≤i≤t) as white marks.

for bounding the regret of theGP-UCB algorithm. We use the same quantity to bound
the number of LSE iterations required to achieve a certain classification quality.

To quantify the quality of a solution (Ĥ, L̂)with respect to a single point x ∈ D
we use the misclassification loss

ℓh(x) =

{
max{0, f(x)− h} , if x ∈ L̂

max{0, h− f(x)} , if x ∈ Ĥ
.

e overall quality of a solution can then be judged by the largest misclassification
loss among all points in the sample space, i.e. maxx∈D ℓh(x). Intuitively, having
a solution with maxx∈D ℓh(x) ≤ ϵ means that every point x is correctly classified
with respect to a threshold level that deviates by at most ϵ from the true level h;
we call such a solution ϵ-accurate. e following theorem establishes a convergence
bound for LSE in terms of γt for any given accuracy ϵ.

eorem 1. For any h ∈ R, δ ∈ (0, 1), and ϵ > 0, if βt = 2 log(|D|π2t2/(6δ)), LSE
terminates aer at most T iterations, where T is the smallest positive integer satisfying

T

βTγT
≥ C1

4ϵ2
,

where C1 = 8/ log(1 + σ−2).

The LSE Algorithm 13

Furthermore, with probability at least 1 − δ, the algorithm returns an ϵ-accurate
solution, that is

Pr
{
max
x∈D

ℓh(x) ≤ ϵ

}
≥ 1− δ.

e detailed proof of eorem 1 can be found in Appendix A.1. We outline here
the main steps required (cf. Figure 4.3).

Decreasing ambiguities. We show that the ambiguities of the selected points, at(xt),
are decreasing in t due to themaximum ambiguity selection rule and themono-
tonic classification scheme. Furthermore, by employing the maximum infor-
mation gain γt, we show that at(xt) decreases as O((βtγt

t)
1
2).

Termination. We show that the classification rules guarantee that the algorithm ter-
minates when at(xt) is sufficiently small. e fact that this will eventually
happen is implied by the previous step.

“Valid” confidence regions. We guarantee that f(x) is included with high proba-
bility in the inferred interval Qt(x) and that this holds 1) for every x and 2)
for every t ≥ 1, which also implies that f(x) is included in each confidence
region Ct(x). By suitably choosing the scaling parameter βt, 1) follows from
the fact that, for everyx ∈ D and every t ≥ 1, f(x) is distributed according to
N(µt−1(x), σt−1(x)), since we are assuming that it is sampled from a known
GP that is also used by LSE, and 2) follows from a union bound over t.

..Convergence.

All points in D have been classified

.

Conf. intervals (⇔ ambiguities)
get small enough (< 2ϵ):

at(xt) ∼ O

(√
βtγt
t

)

..

Monotonicity

.

Samples (t)

.

Kernel (k)

.

Noise (σ)

.

βt

..

antify by max. information gain

γt = maxyt
I(y1:t; f)

. Solution accuracy.

maxx∈D ℓh(x) ≤ ϵ

.

Class. rules

.

Correctly estimate f w.h.p.

.

δ

.

Conf. intervals are large enough

.

ϵ

Figure 4.3: A high-level outline of the theoretical analysis of LSE. Note the two tuning
parameters in green that connect convergence and accuracy: βt is fixed given the
choice of δ, while ϵ is free and trades off sampling cost for accuracy.

14 Active Learning for Level Set Estimation

Solution accuracy. We show that an ϵ-accurate solution is obtained upon termina-
tion, due to the classification rules and the “validity” of the confidence regions
guaranteed in the previous step.

Note that bounds on γT have been established for commonly used kernels (Sri-
nivas et al., 2010) and can be plugged into eorem 1 to obtain concrete bounds on
T . For example, for a d-dimensional sample space and a squared exponential GP
kernel, γT = O((logT)d+1). Consequently, the expression in the bound ofeorem
1 becomes T/(logT)d+2 ≥ C/ϵ2, where, for any given sample space and kernel
hyperparameters, C depends only on the choice of δ.

5 Extensions

We now extend LSE to deal with the two problem variants introduced in Chapter
3, namely implicitly defined threshold levels and batch point selection. We high-
light the key differences in the extended versions of the algorithm and the resulting
implications about the convergence bound of eorem 1.

5.1 Implicit threshold level

esubstitution of the explicit threshold level by an implicit levelh = ωmaxx∈D f(x)
requires modifying the classification rules as well as the selection rule of LSE, which
results in what we call the LSEimp algorithm.

Since h is now an estimated quantity that depends on the function maximum,
we have to take into account the uncertainty associated with it when making classi-
fication decisions. Concretely, we can obtain an optimistic estimate of the function
maximum as fopt

t = maxx∈Ut
max(Ct(x)) and, analogously, a pessimistic estimate as

fpes
t = maxx∈Ut

min(Ct(x)). e corresponding estimates of the implicit level are
defined as hoptt = ωfopt

t and hpest = ωfpes
t , and can be used in a similar classification

scheme to that of LSE. However, for the above estimates to be correct, we have to
ensure thatUt always contains all points that could be maximizers of f , i.e. all points
that satisfy max(Ct(x)) ≥ fpes

t . For that purpose, points that should be classified,
but are still possible function maximizers according to the above inequality, are kept
in two sets MH

t and ML
t respectively, while a new set Zt = Ut ∪ MH

t ∪ ML
t is

used in place of Ut to obtain the optimistic and pessimistic estimates hoptt and hpest .
e resulting classification rules are shown in lines 11–25 of Algorithm 2, where the
conditions are, again, relaxed by an accuracy parameter ϵ.

In contrast to LSE, which solely focuses on sampling the most ambiguous points,
in LSEimp it is also of importance to have a more exploratory sampling policy in
order to obtain more accurate estimates fopt

t and fpes
t . To this end, we select at each

iteration the point with the largest confidence region width, defined as

wt(x) = max(Ct(x))−min(Ct(x)).

Note that, if confidence intervals were not intersected, this would be equivalent to
maximum variance sampling (within Zt).

Figures 5.1a to 5.1d present an example of running the LSEimp algorithm on a fine
grid of points sampled from the inferred GP of the algae concentration dataset shown
in Figure 1.2a. Note how, in contrast to the explicit threshold case, the sampling
process now also focuses on the regions of near-maximal function value in addition
to the ambiguous regions around the implied level set.

Theoretical analysis. e idea of using themaximum information gain can again be
used to provide a convergence bound for the LSEimp algorithm. Some modifications
to the analysis are required due to the difference in the classification rules, i.e. the

15

16 Active Learning for Level Set Estimation

Algorithm 2e LSEimp extension

Input: sample setD, GP prior (µ0 = 0, k, σ0),
threshold ratio ω, accuracy parameter ϵ

Output: predicted sets Ĥ , L̂
1: H0 ← ∅, L0 ← ∅, U0 ← D, Z0 ← D
2: C0(x)← R, for all x ∈ D
3: t← 1
4: while Ut−1 ̸= ∅ do
5: Ht ← Ht−1, Lt ← Lt−1, Ut ← Ut−1, Zt ← Zt−1

6: for all x ∈ Ut−1 do
7: Ct(x)← Ct−1(x) ∩Qt(x)
8: hopt

t ← ωmaxx∈Zt−1
max(Ct(x))

9: fpes
t ← maxx∈Zt−1

min(Ct(x))
10: hpes

t ← ωfpes
11: if min(Ct(x)) + ϵ ≥ hopt

t then
12: Ut ← Ut \ {x}
13: if max(Ct(x)) < fpes

t then
14: Ht← Ht ∪ {x}
15: else
16: MH

t ←MH
t ∪ {x}

17: end if
18: else if max(Ct(x))− ϵ ≤ hpes

t then
19: Ut ← Ut \ {x}
20: if max(Ct(x)) < fpes

t then
21: Lt ← Lt ∪ {x}
22: else
23: ML

t ←ML
t ∪ {x}

24: end if
25: end if
26: end for
27: Zt ← Ut ∪MH

t ∪ML
t

28: xt ← argmax
x∈Zt

(wt(x))

29: yt ← f(xt) + nt

30: Compute µt(x) and σt(x), for all x ∈ Ut

31: t← t+ 1
32: end while
33: Ĥ ← Ht−1 ∪MH

t−1

34: L̂← Lt−1 ∪ML
t−1

use of estimates hoptt and hpest instead of h and the use of the extended set Zt instead
of Ut. e following theorem expresses for the LSEimp algorithm a similar in form
bound to that of eorem 1.

eorem 2. For any ω ∈ (0, 1), δ ∈ (0, 1), and ϵ > 0, if βt = 2 log(|D|π2t2/(6δ)),
LSEimp terminates aer at most T iterations, where T is the smallest positive integer
satisfying

T

βTγT
≥ C1(1 + ω)2

4ϵ2
,

where C1 = 8/ log(1 + σ−2).
Furthermore, with probability at least 1 − δ, the algorithm returns an ϵ-accurate

Extensions 17

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Mt

.
Ht

.
Lt

.
Ut

.
Length (m)

.

D
ep
th

(m
)

(a) t = 50

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Mt

.
Ht

.
Lt

.
Ut

.
Length (m)

.

D
ep
th

(m
)

(b) t = 100

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Mt

.
Ht

.
Lt

.
Ut

.
Length (m)

.

D
ep
th

(m
)

(c) t = 200

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ĥ

.
L̂

.
Length (m)

.

D
ep
th

(m
)

(d) t = 440 (termination)

Figure 5.1: Running LSEimpwith ϵ = 0.7 on a regular grid of 100×100 points sampled
from the inferred algae concentration GP of Figure 1.2a. Regions of already classified
points are shown in orange (Ht) and blue (Lt), regions of yet unclassified points (Ut)
in black, regions of points that could be maximizers (Mt = ML

t ∪MH
t) in green, and

observed points ({xi}1≤i≤t) as white marks.

solution with respect to the implicit level h = ωmaxx∈D f(x), that is

Pr
{
max
x∈D

ℓh(x) ≤ ϵ

}
≥ 1− δ.

Note that the sample complexity bound of eorem 2 is a factor (1 + ω)2 ≤ 4
larger than that ofeorem 1, and thatω = 0 actually reduces to an explicit threshold
of 0.

e detailed proof of eorem 2 can be found in Appendix A.2. Here we outline
the main similarities and differences compared to the proof of eorem 1. As in the
explicit threshold case, using themaximum information gain γt, we show thatwt(xt)

decreases as O((βtγt
t)

1
2)1. Furthermore, as before, the “validity” of the confidence

regions is guaranteed by choosing βt appropriately. However, the steps of proving
termination and ϵ-accuracy need to be modified as follows.

Termination. Due to LSEimp’s classification rules, in order to prove that the algo-
rithm terminates (Lemma 12), we need to show that the gap between the op-
timistic hoptt and pessimistic hpest threshold level estimates gets small enough.

1In fact, we could have used LSEimp’s selection rule in LSE without any change in the convergence
bound of eorem 1. However, as we will see in the following chapter, the ambiguity-based selection
rule performs slightly beer in practice.

18 Active Learning for Level Set Estimation

is is accomplished by bounding hoptt −hpest by a constant multiple ofwt(xt)
(Lemma 11) and using the known decreasing bound on the laer (Lemma 10).

Solution accuracy. To prove ϵ-accuracy of the returned solution with respect to the
implicit threshold level, we prove that our optimistic and pessimistic estimates
are valid upper and lower bounds of the true implicit level at each iteration,
i.e. that hoptt ≥ h and hpest ≤ h, for all t ≥ 1 (Lemmas 15 and 16). is is the
point where keeping all possible maximizers as sampling candidates in LSEimp
is formally required (Lemmas 13 and 14).

5.2 Batch sample selection

In the batch seing, the algorithms are only allowed to use the observed values of
previous batches when selecting samples for the current batch. A naive way of ex-
tending LSE (resp. LSEimp) to this seing would be to modify the selection rule so
that, instead of picking the point with the largest ambiguity (resp. width), it chooses
the B highest ranked points. However, this approach tends to select “clusters” of
closely located samples with high ambiguities (resp. widths), ignoring the decrease
in the estimated variance of a point resulting from sampling another point nearby.

Fortunately, we can handle the above issue by exploiting a key property of GPs,
namely that the predictive variances (3.2) depend only on the selected points xt and
not on the observed values yt at those points. erefore, even if we do not have
available feedback for each selected point up to iteration t, we can still obtain the
following useful confidence intervals

Qb
t(x) =

[
µfb[t](x)± η

1/2
t σt−1(x)

]
,

which combine the most recent available mean estimate with the always up-to-date
variance estimate. Here fb[t] is the index of the last available observation expressed
using the feedback function fb introduced in Chapter 3. Confidence regions Cb

t (x)
are defined as before by intersecting successive confidence intervals and are used
without any further changes in the algorithms.

e pseudocode of Algorithm 3 highlights the way in which evaluation feedback
is obtained in LSEbatch. Variable tfb holds the latest step for which there is available
feedback at each iteration and the inferred mean is updated whenever new feedback
is available, as dictated by fb[t + 1]. However, note that the inferred variance is
updated at each iteration, irrespectively of available feedback. e batch extension
of LSEimp works in a completely analogous way.

Theoretical analysis. Intuitively, to extend the convergence guarantees of the se-
quential algorithms we have to compensate for using outdated mean estimates by
employing a more conservative (i.e. larger) scaling parameter ηt as compared to βt.
is ensures that the resulting confidence regionsCb

t (x) still contain f(x)with high
probability.

To appropriately adjust the confidence interval scaling parameter, in their anal-
ysis for extending the GP-UCB algorithm to the batch seing Desautels et al. (2012)
utilized the conditional information gain (cf. Chapter 3)

I(yA; f | y1:fb[t]) = H(yA | y1:fb[t])−H(yA | f),

Extensions 19

Algorithm 3e LSEbatch extension
Input: sample setD, GP prior (µ0 = 0, k, σ0),

threshold value h, accuracy parameter ϵ
Output: predicted sets Ĥ , L̂
1: H0 ← ∅, L0 ← ∅, U0 ← D
2: Cb

0(x)← R, for all x ∈ D
3: t← 1
4: tfb ← 0
5: while Ut−1 ̸= ∅ do
6: Ht ← Ht−1, Lt ← Lt−1, Ut ← Ut−1

7: for all x ∈ Ut−1 do
8: Cb

t (x)← Cb
t−1(x) ∩Qb

t(x)
9: if min(Cb

t (x)) + ϵ > h then
10: Ut ← Ut \ {x}
11: Ht ← Ht ∪ {x}
12: else if max(Cb

t (x))− ϵ ≤ h then
13: Ut ← Ut \ {x}
14: Lt ← Lt ∪ {x}
15: end if
16: end for
17: xt ← argmax

x∈Ut
(abt(x))

18: if fb[t+ 1] > tfb then
19: for i = tfb + 1, . . . , fb[t+ 1] do
20: yi← f(xi) + ni

21: end for
22: Compute µt(x) for all x ∈ Ut

23: tfb← fb[t+ 1]
24: end if
25: Compute σt(x) for all x ∈ Ut

26: t← t+ 1
27: end while
28: Ĥ ← Ht−1

29: L̂← Lt−1

which quantifies the reduction in uncertainty about f by obtaining a number of ob-
servations yA, given that we already have observations y1:fb[t] available. Following
a similar treatment, we extend the convergence bound of eorem 1 to the batch se-
lection seing of LSEbatch via bounding the maximum conditional information gain,
resulting in the following theorem.

eorem 3. Assume that the feedback delay t−fb[t] is at mostB for all t ≥ 1, whereB
is a known constant. Also, assume that for all t ≥ 1 the maximum conditional mutual
information acquired by any set of measurements since the last feedback is bounded by
a constant C ≥ 0, i.e.

max
A⊆D,|A|≤B−1

I(f ;yA | y1:fb[t]) ≤ C

en, for any h ∈ R, δ ∈ (0, 1), and ϵ ≥ 0, if ηt = eCβfb[t]+1, LSEbatch terminates
aer at most T iterations, where T is the smallest positive integer satisfying

T

ηTγT
≥ C1

4ϵ2
,

20 Active Learning for Level Set Estimation

where C1 = 8/ log(1 + σ−2).
Furthermore, with probability at least 1 − δ, the algorithm returns an ϵ-accurate

solution, that is

Pr
{
max
x∈D

ℓh(x) ≤ ϵ

}
≥ 1− δ.

e detailed proof of eorem 3 can be found in Appendix A.3 and a completely
analogous theorem can be formulated for extending LSEimp to the batch seing.

Note that, as intuitively described above, the scaling parameter ηt has to increase
by a factor of eC to compensate for the outdated mean estimates used in the confi-
dence regions Cb

t (x). e bound C on the maximum conditional information gain
depends on the GP kernel (“smoother” kernel implies a lower value of C , since few
measurements provide sufficient information to predict the values of f) and on the
batch size B (a larger batch size implies a higher value of C , because it allows for
sampling more points and gaining more information about f).

As a sidenote, Desautels et al. (2012) have shown that, initializing their GP-BUCB
algorithmwith a number of sequentially selectedmaximum variance samples, results
in a constant factor increase of ηt compared to βt, independently ofB. However, we
will not use initialization in our experiments.

5.3 Path planning

Up to this point, we have assumed that obtaining a sample incurs a fixed cost in-
dependent of its location in the input space D. However, in practical applications
like the environmental monitoring example of Chapter 1, obtaining a sample also
involves moving a mobile sensor to the desired location, which implies an additional
traveling cost that depends on that location. We present here a simple way for com-
puting appropriate sampling paths based on the batch sampling extension of the
previous section.

Concretely, to plan a path of length B, we use LSEbatch to select a batch of B
points, but, instead of sampling at those points in the order in which they were se-
lected (lines 19–21 of Algorithm 3), we first use a Euclidean TSP solver to create a
path connecting the last sampled point of the previous batch and all points of the
current batch.2

e above algorithm effectively allows us to trade off a small decrease in the
informativeness of acquired samples due to batch selection for a significant reduction
in required traveling distance. Furthermore, this trade-off is controlled by the batch
size. In the end, the choice of the batch size will depend on the time it takes to travel
from one location to the next versus the time it takes to obtain a measurement. In
cases where the actual measurement time is large, we would use a smaller batch
size, which would result in less samples that are more informative, while having
larger traveling paths between measurements. In contrast, if measurement time is
negligible (which is the case in our environmental monitoring application), then it

2An alternative would be to each time sample the first point in the TSP path and then replan using
a new batch. However, this fails because it does not give enough incentive to explore areas of the input
space that lie far away from the current position.

Extensions 21

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ht

.
Lt

.
Ut

.
Length (m)

.

D
ep
th

(m
)

(a) Aer previous batch

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ht

.
Lt

.
Ut

.
Length (m)

.

D
ep
th

(m
)

(b) Current batch

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ht

.
Lt

.
Ut

.
Length (m)

.

D
ep
th

(m
)

(c) TSP path

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ht

.
Lt

.
Ut

.
Length (m)

.

D
ep
th

(m
)

(d) Aer current batch

Figure 5.2: Path planning with LSEbatch using ϵ = 0.7 on a regular grid of 100× 100
points sampled from the inferred algae concentration GP of Figure 1.2a. (a) e
current position, i.e. the last point of the previous batch shown as a white circle. (b)
e current batch of B = 30 points shown as red circles. (c) TSP path connecting
the points of the current batch with the current position using a TSP path. (d) e
situation aer sampling along the TSP path.

pays off to use a larger batch size in order to reduce the traveling distances, even if
this results in a larger amount of total measurements.

Figure 5.2 shows an example of our path planning procedure on the algae con-
centration dataset for a batch size ofB = 30. Note that, despite the simplicity of our
algorithm, the computed path is reasonably spread across the ambiguous regions of
the transect, although some smoothingmight need to be applied if it is to be traversed
by a real robotic sensor.

6 Experiments

In this section, we present the results of evaluating our proposed algorithms on three
real-world datasets and compare them to the state-of-the-art in sequential level set
estimation. In more detail, the algorithms and their setup are as follows.

LSE/LSEimp: Since the bound ofeorem 1 is fairly conservative, in our experiments

we used a constant value of β1/2
t = 3, which is somewhat smaller than the values

suggested by the theorem.

LSEbatch/LSEimp-batch: We used somewhat larger value of η1/2t = 4 (compared to

β
1/2
t = 3 of the sequential case) and a batch size of B = 30.

STR: e state-of-the-art straddle heuristic, as proposed by Bryan et al. (2005), with
the selection rule xt = argmax

x∈D (1.96σt−1(x)− |µt−1(x)− h|).
STRimp: For the implicit threshold seing, we have defined a variant of the straddle
heuristic that uses at each step the implicitly defined threshold level with respect
to the maximum of the inferred mean, i.e. ht = ωmaxx∈D µt−1(x).

STRrank/STRbatch: Wehave defined two batch versions of the straddle heuristic: STRrank
selects the B = 30 points with the largest straddle score, while STRbatch follows a
similar approach to LSEbatch by using the following selection rule

xt = argmax
x∈D

(
1.96σt−1(x)− |µfb[t](x)− h|

)
.

VAR: e maximum variance rule xt = argmax
x∈D σt−1(x).

We implemented all algorithms in MATLAB and used an approximate TSP solver
based on genetic programming1 for the path planning evaluation.

Dataset 1: Network latency. Our first dataset consists of round-trip time (RTT)
measurements obtained by “pinging” 1768 servers spread around the world (see Fig-
ure 6.1). e sample space consists of the longitude and latitude coordinates of each
server, as determined by a commercial geolocation database2. Example applications
for geographic RTT level set estimation, include monitoring global networks and
improving quality of service for applications such as internet telephony or online
games. Furthermore, selecting samples in batches results in significant time savings,
since sending out and receiving multiple ICMP packets can be virtually performed
in parallel.

We used 200 randomly selected measurements to fit suitable hyperparameters
for an anisotropic Matérn-5 (Rasmussen & Williams, 2006) kernel by maximum like-
lihood and the remaining 1568 for evaluation. e threshold level we chose for the
experiments was h = 200 ms.

1http://www.mathworks.com/matlabcentral/fileexchange/21198
2http://www.maxmind.com

23

http://www.mathworks.com/matlabcentral/fileexchange/21198
http://www.maxmind.com

24 Active Learning for Level Set Estimation

.....
−150

.
−100

.
−50

.
50

.
100

.
150

.

−50

.

50

.
Longitude (deg)

.

La
ti
tu
de

(d
eg

)

.. ... 0.

200

.

400

Figure 6.1: Round-trip times in milliseconds obtained by pinging from Zurich 1768
servers around the world.

Datasets 2 & 3: Environmental monitoring. Our second and third datasets come
from the domain of environmental monitoring of inland waters and consist of 2024
in situ measurements of chlorophyll and Planktothrix rubescens3 concentration re-
spectively, which were collected by an autonomous surface vessel within a vertical
transect plane of Lake Zurich (Hitz et al., 2012). As mentioned in the introduction,
monitoring chlorophyll and algae concentration is useful in analyzing limnological
phenomena such as algal bloom. Since the concentration levels can vary throughout
the year, in addition to having a fixed threshold concentration, it can also be useful
to be able to detect relative “hotspots” of chlorophyll or algae, i.e. regions of high
concentration with respect to the current maximum. Furthermore, selecting batches
of points can be used to plan sampling paths and reduce the required traveling dis-
tances.

In our evaluation, we used 10, 000 points sampled in a 100 × 100 grid from the
GP posteriors that were derived using the 2024 original measurements (see Figures
1.1a and 1.2a). Again, anisotropic Matérn-5 kernels were used and suitable hyperpa-
rameters were fied by maximizing the likelihood of two different chlorophyll and
algae concentration datasets from the same lake. As illustrated in Figures 1.1a and
1.2a, we used explicit threshold levels of h = 1.3 RFU (relative fluorescence units)
for the chlorophyll dataset and h = 7 RFU for the algae concentration dataset. For
the implicit threshold experiments, we chose the values of ω so that the resulting
implicit levels are identical to the explicit ones, which enables us to compare the two
seings on equal ground.

Evaluation methodology. We assess the classification accuracy for all algorithms
using the F1-score, i.e. the harmonic mean of precision and recall, by considering
points in the super- and sublevel sets as positives and negatives respectively.

Note that the execution of the algorithms is not deterministic, because ties in
the next point selection rules are resolved uniformly at random. Additionally, in the
case of the environmental monitoring datasets, sampling from the GP posterior in-
herently involves randomness because of the noise included in the GP model. For
these reasons, in our evaluation we repeated multiple executions of each algorithm.
In particular, STR and its extensions as well as VAR were executed 50 times on each

3Planktothrix rubescens is a genus of blue-green algae that can produce toxins.

Experiments 25

dataset and the F1-score at each iteration of each execution was computed by classi-
fying points according to the posteriormean of the GP trained on the already selected
points, i.e.

Ht = {x ∈ D | µt(x) ≥ h}
Lt = {x ∈ D | µt(x) < h}.

On the other hand, unless explicitly stated differently, LSE and its extensions were
evaluated by repeatedly executing each algorithm for a range of values of the ac-
curacy parameter ϵ and recording the total number of samples and the F1-score af-
ter each execution’s termination (in total about 2000 executions per algorithm per
dataset). e parameter ϵ was chosen to increase exponentially within a suitable
range depending on the experiment (roughly between 1% and 20% of the respective
threshold level).

6.1 Results I: Explicit threshold level

Sequential sampling. Figures 6.2a–6.2c compare the performance of the strictly
sequential algorithms on the three datasets. On the first two datasets LSE and STR
are comparable in performance, with LSE doing slightly worse on the latency dataset.
However, the situation is different on the third dataset, where STR performs ex-
tremely poorly. e reason is that the algorithm can get stuck in situations where,
according to the straddle score, it is favorable to continue sampling points near the
currently inferred level set, instead of sampling points of high variance at yet unex-
plored regions that lie far away from that level set.

Figure 6.2d shows an example of such an execution, where STR has heavily sam-
pled the le region of the level set, but has completely missed the part that lies on
the right of the transect (cf. Figure 1.2a). In Figure 6.2g we depict as a scaer plot the
detailed results of the 50 STR executions. Note that about a third of the executions
do not manage to achieve an F1-score of 0.4, even aer 400 iterations, i.e. they miss
the right part of the level set as explained above, and another third only achieve an
F1-score of 0.8, i.e. they miss the le part of the level set. On the other hand, as
shown in Figure 6.2h, this problem never occurs in LSE, because of its classification
regime, which implicitly forces exploration by excluding points that have already
been classified from being sampled.

Although VAR is commonly used for estimating functions over their entire do-
main, it is clearly outperformed in our experiments, because it does not sufficiently
focus on accurately estimating the desired level set, but rather samples almost uni-
formly over the sample space.

The effect of ϵ. To illustrate how the choice of ϵ affects the results of LSE, we
present in Figure 6.3 two scaer plots, similar to the one in Figure 6.2h, that de-
pict the results of running LSE on the two environmental monitoring datasets for
different values of ϵ. As before, each point in the plot corresponds to the result of
one execution of LSE, but in the new figures we have colored the points according
to the value of ϵ used for each execution. In our theoretical analysis we have seen
that ϵ represents a tradeoff parameter between classification accuracy and sampling
cost. e two scaer plots give experimental evidence that this is indeed the case
and, moreover, that the transition when varying ϵ is fairly smooth.

26 Active Learning for Level Set Estimation

.....
0

.
50

.
100

.
150

.
200

.
250

.0.6 .

0.65

.

0.7

.

0.75

.

0.8

.
Samples

.

F
1
-s
co

re

.

. ..STR

. ..VAR

. ..LSE

(a) [N]Mean performance

.....
0

.
100

.
200

.
300

.
400

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.

. ..STR

. ..VAR

. ..LSE

(b) [C]Mean performance

.....
0

.
100

.
200

.
300

.
400

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.

. ..STR

. ..VAR

. ..LSE

(c) [A]Mean performance

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ĥ

.
L̂

.
Length (m)

.
D
ep
th

(m
)

(d) [A] STR aer t = 400 iterations

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ĥ

.
L̂

.
Length (m)

.

D
ep
th

(m
)

(e) [A] LSE aer t = 374 iterations

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ĥ

.
L̂

.
Length (m)

.

D
ep
th

(m
)

() [A] VAR aer t = 400 iterations

.....
0

.
100

.
200

.
300

.
400

.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

(g) [A] STR scaer plot

.....
0

.
100

.
200

.
300

.
400

.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

(h) [A] LSE scaer plot

Figure 6.2: Performance of explicit threshold sequential algorithms on the network
latency [N], chlorophyll concentration [C], and algae concentration [A] datasets. (a),
(b) LSE and STR are comparable and both clearly outperform VAR. (c) STR performs
poorly due to limited exploration. (d) An example of a STR execution geing stuck:
even aer 400 iterations it has only achieved an F1-score of 0.37. (e) An example of
a LSE execution without any issues. (f) An example of a VAR execution: the sample
space is sampled rather uniformly. (g), (h) e results of (c) in more detail: about
a third of STR’s executions achieve an F1-score of less than 0.4, while LSE always
achieves an F1-score of at least 0.95.

Experiments 27

.....
0

.
100

.
200

.
300

.
400

.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.. ... 0.

0.2

.

0.4

.

0.6

.

0.8

.

1

(a) [C] LSE scaer plot

.....
0

.
100

.
200

.
300

.
400

.0 .

0.2

.

0.4

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.. ... 0.

0.5

.

1

.

1.5

.

2

(b) [A] LSE scaer plot

Figure 6.3: e effect of ϵ on the sampling cost and classification accuracy of LSE on
the two environmental monitoring datasets.

.....
0

.
50

.
100

.
150

.
200

.
250

.0.6 .

0.65

.

0.7

.

0.75

.

0.8

.
Samples

.

F
1
-s
co

re

.

. ..LSE (max. ambiguity)

. ..LSE (max. variance)

. ..LSE (random)

. ..VAR

(a) [N] Varying ϵ

.....
0

.
50

.
100

.
150

.
200

.
250

.0.6 .

0.65

.

0.7

.

0.75

.

0.8

.
Samples

.

F
1
-s
co

re

.

. ..LSE (max. ambiguity)

. ..LSE (max. variance)

. ..LSE (random)

. ..VAR

(b) [N] Fixed ϵ

.....
0

.
100

.
200

.
300

.
400

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.

. ..LSE (max. ambiguity)

. ..LSE (max. variance)

. ..LSE (random)

. ..VAR

(c) [C] Varying ϵ

.....
0

.
100

.
200

.
300

.
400

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.

. ..LSE (max. ambiguity)

. ..LSE (max. variance)

. ..LSE (random)

. ..VAR

(d) [C] Fixed ϵ

.....
0

.
100

.
200

.
300

.
400

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.

. ..LSE (max. ambiguity)

. ..LSE (max. variance)

. ..LSE (random)

. ..VAR

(e) [A] Varying ϵ

.....
0

.
100

.
200

.
300

.
400

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.

. ..LSE (max. ambiguity)

. ..LSE (max. variance)

. ..LSE (random)

. ..VAR

() [A] Fixed ϵ

Figure 6.4: Performance of different LSE selection rules on the three datasets. (a), (c),
(e) For varying ϵ there is no notable difference between the three selection rules. (b),
(d), (f)When using a small fixed value of ϵ and evaluating during each LSE execution,
the maximum ambiguity selection rule has an advantage over the other two rules.

28 Active Learning for Level Set Estimation

Sample selection rules. In Figures 6.4a, 6.4c, and 6.4e we compare the performance
of LSE using different sample selection rules (line 17 of Algorithm 1). In particular, we
compare the maximum ambiguity rule (as presented in LSE), the maximum variance
rule (whichwe also use in LSEimp), and the rule of randomly choosing the next sample
fromUt. According to the above figures, all three rules seem to be performing almost
equally well on all three datasets.

To further investigate the potential effect of the sampling rules, we also ran a
different set of experiments, where, instead of varying ϵ and evaluating the F1-score
aer termination, we fixed ϵ to a small value (h/50) and evaluated the different LSE
variants during their execution using the GP posterior mean to classify points into
the super- and sublevel sets (as explained before for STR and VAR). In other words, we
evaluated the performance obtained when the tuning of ϵ for controlling the required
number of samples is ignored.

e results are presented in Figures 6.4b, 6.4d, and 6.4f. In this case, themaximum
ambiguity rule outperforms the other two rules on all three datasets. However, note
that in the two environmental monitoring datasets the difference is fairly small and
the other two rules still perform considerably beer than VAR.

To connect the above observations with the operation of LSE, recall that the al-
gorithm is largely based on the progressive classification of points into Ht and Lt,
a process that focuses the selection of the next sample at each step on a set of “in-
teresting” (w.r.t. to the sought aer level set), yet unclassified points Ut. On the
other hand, the way in which the sample is selected from Ut seems to be of sec-
ondary importance and selecting using maximum ambiguity might provide a small
performance benefit in some cases.

Batch sampling. In Figures 6.5a–6.5c we show the performance of the explicit
threshold batch algorithms on the three datasets. e LSEbatch and STRbatch algo-
rithms, which use the always up-to-date variance estimates for selecting batches,
achieve similar performance. Furthermore, there is only a slight performance penalty
when compared to the strictly sequential LSE, which can easily be outweighed by the
benefits of batch point selection (e.g. in the network latency application, the batch
algorithms would have about B = 30 times higher throughput). On the other hand,
as expected, the STRrank algorithm performs significantly worse than the other two
batch algorithms, since it selects a lot of redundant samples in areas of high straddle
score, as depicted in Figure 6.5d (cf. Section 5.2).

6.2 Results II: Implicit threshold level

In Figures 6.6a and 6.6b we present the results of executing the implicit threshold
algorithms on the two environmental monitoring datasets. e difficulty of esti-
mating the function maximum at the same time as performing classification with
respect to the implicit threshold level is manifested in the notably larger sampling
cost of LSEimp required to achieve high accuracy compared to the explicit threshold
experiments. As before, the batch version of LSEimp is only slightly worse that its
sequential counterpart.

More importantly, the naive STRimp algorithm fails to achieve high accuracy, as
it mostly infers wrong estimates of the function maximum and never recovers, since
the (modified) straddle rule gives no incentive for sampling near the maximum. is

Experiments 29

.....
0

.
50

.
100

.
150

.
200

.0.6 .

0.65

.

0.7

.

0.75

.

0.8

.
Samples

.

F
1
-s
co

re

.

. ..LSE

. ..STRrank. ..STRbatch. ..LSEbatch

(a) [N]Mean performance

.....
0

.
100

.
200

.
300

.
400

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.

. ..LSE

. ..STRrank. ..STRbatch. ..LSEbatch

(b) [C]Mean performance

.....
0

.
100

.
200

.
300

.
400

.0.4 .

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.

. ..LSE

. ..STRrank. ..STRbatch. ..LSEbatch

(c) [A]Mean performance

.....
0

.
400

.
1,000

.
1,400

.

0

.

−4

.

−14

.−18 .
Ĥ

.
L̂

.
Length (m)

.

D
ep
th

(m
)

(d) [C] STRrank aer t = 400 iterations

Figure 6.5: Performance of explicit threshold batch algorithms on the three datasets.
(a)–(c) LSEbatch and STRbatch achieve comparable performance, which is slightly
worse than that of their sequential counterparts, but significantly beer than that
of the naive STRrank algorithm. (d) e redundant sampling behavior of STRrank re-
sulting from not using up-to-date variance estimates.

is not very clear in the case of the chlorophyll dataset, because the function is fairly
smooth in the vicinity of its maxima and, thus, STRimp is usually lucky enough to
obtain a rather accurate estimate of the function maximum. However, as can be
seen in Figure 6.6c, in the case of the algae dataset most of the executions of STRimp
achieve anF1-score of only about 0.8, even aer 400 samples. e inability of STRimp
to recover from awrong threshold estimate is illustrated by the fact that most of these
executions have already achieved this F1-score aer less than 100 samples, but show
no tendency for improvement thereaer. e behavior of LSEimp depicted in more
detail in Figure 6.6c is very different in that it starts considerably slower, but always
achieves F1-scores of at least 0.9 aer 400 samples.

Figure 6.7c shows the estimated implicit threshold level for an example execu-
tion of STRimp on the algae concentration dataset. Note that the inferred level is
smaller than the true level h = 7 and, even worse, seems to deviate further away
from the true level over time. In contrast, as shown in Figure 6.7d, the optimistic
and pessimistic estimates used by LSEimp correctly bound the true level from above
and below respectively and get more accurate over time (as predicted by theory; cf.
Lemma 11 and Lemmas 15–16), thus allowing for beer classification results.

30 Active Learning for Level Set Estimation

.....
0

.
200

.
400

.
600

.
800

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.

. ..LSE

. ..STRimp. ..LSEimp. ..LSEimp-batch

(a) [C]Mean performance

.....
0

.
100

.
200

.
300

.
400

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

.

. ..LSE

. ..STRimp. ..LSEimp. ..LSEimp-batch

(b) [A]Mean performance

.....
0

.
100

.
200

.
300

.
400

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

(c) [A] STRimp scaer

.....
0

.
100

.
200

.
300

.
400

.

0.6

.

0.8

.

1

.
Samples

.

F
1
-s
co

re

(d) [A] LSEimp scaer

.....
0

.
100

.
200

.
300

.
400

.3 .

6

.

7

.

9

.
Samples

.

F
1
-s
co

re

.
. ..ω maxx∈D µt−1(x)
. ..h

(e) [A] STRimp threshold level estimate

.....
0

.
100

.
200

.
300

.
400

.3 .

6

.

7

.

9

.
Samples

.

F
1
-s
co

re

.

. ..hopt. ..h

. ..hpes

() [A] LSEimp threshold level estimates

Figure 6.6: Performance of implicit threshold algorithms on the environmental mon-
itoring datasets. (a), (b) LSEimp and LSEimp-batch perform somewhat worse than their
explicit threshold counterparts, while STRimp performs notably worse. (c) Most of
STRimp executions fail to achieve high F1-scores and top off at about 0.8. (d) LSEimp
always achieves an F1-score of at least 0.9 aer 400 iterations. (e) STRimp’s implicit
threshold level estimate is lower than the true level and becomes worse over time.
(f) LSEimp’s implicit threshold level estimates correctly bound the true level and con-
verge towards it over time.

Experiments 31

6.3 Results III: Path planning

We now present the results from applying our batch-based path planning algorithm
on the two environmental monitoring datasets. Since path planning executions are
costly, we used a fixed small value of ϵ for each dataset and executed the algorithm
30 times for each of five different batch sizes, while measuring total traveled path
length and F1-score aer each path planning iteration (similarly to what we did in
Figure 6.4).

Figure 6.7 displays the dramatically reduced travel lengths by using batches of
samples for path planning. As an example, in Figure 6.7b we can see that planning
with B = 30 samples at a time achieves an F1-score of 0.9 aer a travel length of
about 4 transect lengths, while planning with B = 5 (or even worse sequentially)
does not achieve that accuracy even aer 15 transect lengths. Also note that the effect
of the batch size on the travel lengths seems to have a diminishing returns property:
for example, increasing from B = 5 to B = 15 makes in all cases a notably larger
difference than increasing from B = 15 to B = 60.

.....
0

.
5

.
10

.
15

.
0.4

.

0.6

.

0.8

.

1

.
Normalized travel length

.

F
1
-s
co

re

.

. ..B = 1

. ..B = 5

. ..B = 15

. ..B = 30

. ..B = 60

(a) [C] Explicit threshold

.....
0

.
5

.
10

.
15

.0.4 .

0.6

.

0.8

.

1

.
Normalized travel length

.

F
1
-s
co

re

.

. ..B = 1

. ..B = 5

. ..B = 15

. ..B = 30

. ..B = 60

(b) [A] Explicit threshold

.....
0

.
5

.
10

.
15

.0.4 .

0.6

.

0.8

.

1

.
Normalized travel length

.

F
1
-s
co

re

.

. ..B = 1

. ..B = 5

. ..B = 15

. ..B = 30

. ..B = 60

(c) [C] Implicit threshold

.....
0

.
5

.
10

.
15

.0.2 .

0.4

.

0.6

.

0.8

.

1

.
Normalized travel length

.

F
1
-s
co

re

.

. ..B = 1

. ..B = 5

. ..B = 15

. ..B = 30

. ..B = 60

(d) [A] Implicit threshold

Figure 6.7: Performance of the path planning algorithm for different batch sizes on
the two environmental monitoring datasets. e total lengths of the sampling paths
are normalized by the lake transect length (1478 m). Note the dramatically reduced
travel lengths as the batch size is increased (B = 1 corresponds to strictly sequential
sampling).

7 Conclusion

Summary. We presented LSE, an algorithm for estimating level sets, which oper-
ates based on confidence bounds derived bymodeling the target function as a GP.We
considered for the first time the challenge of implicitly defined threshold levels and
extended LSE to this more complex seing. We also showed how both algorithms
can be extended to select samples in batches and applied this to a simple yet effec-
tive path-planning algorithm. In addition, we provided theoretical bounds on the
number of iterations required to obtain an ϵ-accurate solution when the target func-
tion is sampled from a known GP. e experiments on two real-world applications
showed that LSE is competitive with the state-of-the-art and in some cases shows
improved performance. Furthermore, the extensions we presented are successful in
handling the corresponding problem variants and perform significantly beer than
naive baselines. We believe our results provide an important step towards addressing
complex real-world information gathering problems.

Future work. As we have seen in the analysis of LSEimp, its convergence to an ac-
curate solution is largely dictated by the gap hoptt −hpest and its rate of decrease. e
algorithm as presented gives in a sense “equal weight” to sampling from ambiguous
regions near the estimated level set and to sampling near potential maximizers by
using maximum variance sampling among the points inZt. However, we expect that
biasing the search early toward maximizers would result in faster accurate estimates
of the maximum, leading to a more rapid decrease of the above gap and, therefore,
faster overall convergence. Some preliminary experiments with using GP-UCB’s se-
lection rule every kt iterations, where kt starts with a small value and increases over
time, justify the above claims and lead to improved performance. It would be inter-
esting to theoretically explore such a scheme and see if any improved convergence
guarantees can be proven.

e presented method for path planning via batch point selection has a number
of shortcomings when applied in practice. First, since the selection of each batch is
decoupled from its evaluation, there is no way to adjust the path according to the
measurements obtained during its traversal. Second, while in practice we could ob-
tain additional samples during the traversal of an edge of the path (assuming that
measurements are not very costly), there is no easy way to incorporate this into our
batch-based algorithm. In particular, one would have to take into account the esti-
mated information gained from the additional samples when computing each path.
Last, as can be seen in the example of Figure 5.2, the resulting TSP path may con-
tain several abrupt changes of direction that are not achievable in practice due to
kinematic constraints of the mobile sensor equipment. To deal with the above issues
we are working on a graph-based path-planning algorithm, which (1) explicitly in-
corporates kinematic constraints into its graph structure, (2) takes into account the
additional samples acquired during edge traversal when computing the path, and (3)
replans aer each step of the path using the newly obtained measurements.

33

A Detailed proofs

A.1 Proof of Theorem 1

Lemma 1. For any δ ∈ (0, 1), if βt = 2 log(|D|πt/δ), where
∑

t≥1 π
−1
t = 1 and

πt > 0, then the following holds with probability at least 1− δ

|f(x)− µt−1(x)| ≤ β
1/2
t σt−1(x), ∀x ∈ D ∀t ≥ 1.

In particular, we can choose πt = π2t2/6.

Proof. See Lemma 5.1 in (Srinivas et al., 2010).

Corollary 1. For any δ ∈ (0, 1) and βt as above, the following holds with probability
at least 1− δ

f(x) ∈ Ct(x), ∀x ∈ D ∀t ≥ 1.

Lemma 2. e following holds for any t ≥ 1

at(xt) ≤ β
1/2
t σt−1(xt).

Proof. By the definition of ambiguity

at(xt) = min{max(Ct(xt))− h, h−min(Ct(xt))}
≤ (max(Ct(xt))−min(Ct(xt)))/2

≤ (max(Qt(xt))−min(Qt(xt)))/2

= β
1/2
t σt−1(xt).

Lemma 3. While running LSE, at(xt) is nonincreasing in t.

Proof. From the definition of the confidence region of xt via successive intersections
Ct(xt) = Ct−1(xt) ∩Qt(xt), it follows that

max(Ct(xt)) ≤ max(Ct−1(xt))
min(Ct(xt)) ≥ min(Ct−1(xt))

}
⇒ at(xt) ≤ at−1(xt)

Furthermore, from the selection rule used in LSE xt = argmax
x∈Ut

(at(x)) and the
monotonicity of Ut (Ut ⊆ Ut−1), it follows that at−1(xt) ≤ at−1(xt−1).

Lemma 4. Denoting yt = (yi)1≤i≤t and ft = (f(xi))1≤i≤t, the information gain for
the selected points up to iteration t can be expressed in terms of the predictive variances
as follows

I(yt;ft) =
1

2

t∑
i=1

log(1 + σ−2σ2
i−1(xi)).

35

36 Active Learning for Level Set Estimation

Proof. See Lemma 5.3 in (Srinivas et al., 2010).

Lemma 5. While running LSE with βt as in Lemma 1, it holds that

at(xt) ≤
√

C1βtγt
4t

, ∀t ≥ 1,

where C1 = 8/ log(1 + σ−2).

Proof. Similarly to Lemma 5.4 in (Srinivas et al., 2010), from Lemma 2 it follows that
for any i ≥ 1

a2i (xi) ≤ βiσ
2
i−1(xi)

≤ βiσ
2(σ−2σ2

i−1(xi))

≤ βiσ
2C2 log(1 + σ−2σ2

i−1(xi)),

where C2 = σ−2/ log(1 + σ−2). Using Lemma 4 in the above expression, the fact
that βi is nondecreasing in i, and defining C1 = 8σ2C2, we get for any t ≥ 1

C1βtγt ≥ C1βtI(yt;ft)

≥ 4

t∑
i=1

a2i (xi)

≥ 4

t

(
t∑

i=1

ai(xi)

)2

(by Cauchy-Schwarz)

= 4t

(
1

t

t∑
i=1

ai(xi)

)2

≥ 4ta2t (xt) (by Lemma 3)

Lemma 6. While running LSE, if for some t ≥ 1, at(xt) ≤ ϵ, then Ut+1 = ∅.

Proof. Assume that Ut+1 ̸= ∅, i.e. there exists a point x ∈ Ut, which does not meet
the classification conditions (lines 12 and 15) of Algorithm 1. Consequently, that
point satisfies max(Ct+1(x)) > h+ ϵ and min(Ct+1(x)) < h− ϵ. It follows that

ϵ < min{max(Ct+1(xt))− h, h−min(Ct+1(xt))}
= at+1(x)

≤ at(x)

≤ at(xt), (by LSE’s selection rule)

which contradicts the lemma’s assumption.

Corollary 2. e LSE algorithm terminates aer at most T iterations, where T is the
smallest positive integer satisfying

T

βTγT
≥ C1

4ϵ2
.

Detailed proofs 37

Lemma 7. For any h ∈ R and δ ∈ (0, 1), and ϵ > 0, aer running LSE with βt as in
Lemma 1, with probability at least 1− δ the returned solution is ϵ-accurate, that is

Pr
{
max
x∈D

ℓh(x) ≤ ϵ

}
≥ 1− δ.

Proof. e lemma follows directly from Corollary 1 and the classification conditions
(lines 12 and 15) of Algorithm 1.

eorem 1 follows by combining Corollary 2 and Lemma 7.

A.2 Proof of Theorem 2

Definition 1. We label the inequalities that take part in LSEimp’s classification rules as
follows

min(Ct(x)) + ϵ ≥ hoptt (Q1)

max(Ct(x))− ϵ ≤ hpest (Q2)

max(Ct(x)) < fpes
t . (Q3)

Furthermore, we redefine here for convenience the following quantities from the main
text

Zt = Ut ∪HM
t ∪HL

t

h = ωmax
x∈D

f(x)

fopt
t = max

Zt−1

max(Ct(x))

hoptt = ωfopt
t

fpes
t = max

Zt−1

min(Ct(x))

hpest = ωfpes
t .

Lemma 8. e following holds for any t ≥ 1

wt(xt) ≤ β
1/2
t σt−1(xt).

Proof. By the definition of the confidence region width

wt(xt) = max(Ct(xt))−min(Ct(xt))

≤ max(Qt(xt))−min(Qt(xt))

= 2β
1/2
t σt−1(xt).

Lemma 9. While running LSEimp, wt(xt) is nonincreasing in t.

Proof. Completely analogous to the proof of Lemma 3.

38 Active Learning for Level Set Estimation

Lemma 10. While running LSEimp with βt as in Lemma 1, it holds that

wt(xt) ≤
√

C1βtγt
t

, ∀t ≥ 1,

where C1 = 8/ log(1 + σ−2).

Proof. Completely analogous to the proof of Lemma 5, with the only difference being
a factor of 2 in the bound of Lemma 8 compared to Lemma 2.

Lemma 11. While running LSEimp

hoptt − hpest ≤ ωwt(xt), ∀t ≥ 1.

Proof. If we define

x̂ = argmax
x∈Zt−1

max(Ct(x)), (A.1)

then by (Q3) it follows that x̂ ∈ Zt. Consequently, we get

fopt
t − fpes

t

= max
x∈Zt−1

max(Ct(x))− max
x∈Zt−1

min(Ct(x))

= max(Ct(x̂))− max
x∈Zt−1

min(Ct(x)) (by (A.1))

≤ max(Ct(x̂))−min(Ct(x̂))

= wt(x̂)

≤ wt(xt), (by x̂ ∈ Zt)

and, therefore, hoptt − hpest = ω
(
fopt
t − fpes

t

)
≤ ωwt(xt).

Lemma 12. While running LSEimp, if for some t ≥ 1, wt(xt) ≤ 2ϵ/(1 + ω), then
Ut+1 = ∅.

Proof. Assume that Ut+1 ̸= ∅, i.e. there exists a point x ∈ Ut ⊆ Zt, which does not
meet (Q1) or (Q2). Consequently, that point satisfies min(Ct+1(x)) < hoptt+1 − ϵ and
max(Ct+1(x)) > hpest+1 + ϵ. It follows that

2ϵ < hoptt+1 − hpest+1 +max(Ct+1(x))−min(Ct+1(x))

≤ hoptt+1 − hpest+1 + wt+1(x)

≤ hoptt+1 − hpest+1 + wt(x)

≤ hoptt+1 − hpest+1 + wt(xt) (by LSEimp’s selection rule)

≤ ωwt+1(xt+1) + wt(xt) (by Lemma 11)

≤ ωwt(xt) + wt(xt) (by Lemma 9)

≤ (1 + ω)wt(xt),

which contradicts the lemma’s assumption.

Detailed proofs 39

Corollary 3. e LSEimp algorithm terminates aer at most T iterations, where T is the
smallest positive integer satisfying

T

βTγT
≥ C1(1 + ω)2

4ϵ
.

Lemma 13. While running LSEimp, f
pes
t is nondecreasing in t.

Proof. Assume that at some iteration t

x = argmax
x∈Zt−1

min(Ct(x)). (A.2)

Since min(Ct(x)) is nondecreasing in t, to have fpes
t+1 < fpes

t would mean that x /∈
Zt. at, in turn, implies that x was moved toHt or Lt, therefore (Q3) was satisfied

max
x∈Zt−1

min(Ct(x)) > max(Ct(x))

≥ min(Ct(x))

= max
x∈Zt−1

min(Ct(x)), (by (A.2))

which is a contradiction and proves our lemma.

Lemma 14. While running LSEimp

fopt
t = max

x∈D
max(Ct(x)), ∀t ≥ 1.

Proof. e “≤” follows fromZt−1 ⊆ D. Now, assume that “<” holds, i.e. there exists
an x ∈ D \ Zt−1, such that

max
x∈Zt−1

max(Ct(x)) < maxCt(x). (A.3)

e fact that x ∈ D \Zt−1 implies that x was moved during some iteration i ≤ t to
Hi or Li, therefore x satisfied (Q3) at that iteration. Puing everything together, we
get

max
x∈Zt−1

max(Ct(x)) < maxCt(x) (by (A.3))

≤ maxCi(x)

≤ max
x∈Zi−1

min(Ci(x)) (by (Q3))

≤ max
x∈Zt−1

min(Ct(x)) (by Lemma 13)

≤ max
x∈Zt−1

max(Ct(x)),

which is a contradiction and proves the lemma.

Lemma 15. While running LSEimp, the following holds with probability at least 1− δ

hoptt ≥ h, ∀t ≥ 1.

40 Active Learning for Level Set Estimation

Proof. e following (in)equalities hold with probability at least 1− δ

hoptt = ω max
x∈Zt−1

max(Ct(x))

= ωmax
x∈D

max(Ct(x)) (by Lemma 14)

≥ ωmax
x∈D

f(x) (by Corollary 1)

= h.

Lemma 16. While running LSEimp, the following holds with probability at least 1− δ

hpest ≤ h, ∀t ≥ 1.

Proof. e following (in)equalities hold with probability at least 1− δ

hpest = ω max
x∈Zt−1

min(Ct(x))

≤ ω max
x∈Zt−1

f(x) (by Corollary 1)

≤ ωmax
x∈D

f(x) (by Zt−1 ⊆ D)

= h.

Lemma 17. For any ω ∈ (0, 1), δ ∈ (0, 1), and ϵ > 0, aer running LSEimp with βt as
in Lemma 1, with probability at least 1− δ the returned solution is ϵ-accurate, that is

Pr
{
max
x∈D

ℓh(x) ≤ ϵ

}
≥ 1− δ.

Proof. From Lemma 15 and Lemma 16 it follows that, with probability at least 1− δ,
(Q1) and (Q2) are stricter conditions than the following

min(Ct(x)) + ϵ ≥ h

max(Ct(x))− ϵ ≤ h,

which are identical to the ones used by LSE.erefore, the solution of LSEimp achieves
at least as high accuracy as the one provided for LSE by Lemma 7.

eorem 2 follows by combining Corollary 3 and Lemma 17.

A.3 Proof of Theorem 3

Lemma 18. For any x ∈ D and t ≥ 1 the ratio of σfb[t](x) to σt−1(x) is bounded as
follows

σfb[t](x)

σt−1(x)
≤ exp

{
I(f ;yfb[t]+1:t−1 | y1:fb[t]

}
.

Proof. See Lemma 1 in (Desautels et al., 2012).

Detailed proofs 41

Lemma 19. Assume that for all t ≥ 1 the maximum conditional mutual information
acquired by any set of measurements since the last feedback is bounded by a constant
C ≥ 0, i.e.

max
A⊆D,|A|≤B−1

I(f ;yA | y1:fb[t]) ≤ C. (A.4)

en, if ηt = e2Cβfb[t]+1, the following holds with probability at least 1− δ

f(x) ∈ Qb
t(x), ∀x ∈ D ∀t ≥ 1.

Proof. From Lemma 18 and (A.4), it follows that for any x ∈ D and t ≥ 1

σfb[t](x)

σt−1(x)
≤ exp

{
I(f ;yfb[t]+1:t−1 | y1:fb[t]

}
≤ eC

⇒ eCσt−1(x) ≥ σfb[t](x).

Using this, the range of Qb
t(x) can be related to the range of Qfb[t]+1(x) as follows

2η
1/2
t σt−1(x) = 2eCβ

1/2
fb[t]+1σt−1(x) ≥ 2β

1/2
fb[t]+1σfb[t](x).

Furthermore,Qb
t(x) andQfb[t]+1(x) have the samemidpoint, namelyµfb[t](x), there-

fore the above range inequality implies that

Qb
t(x) ⊇ Qfb[t]+1(x), ∀x ∈ D ∀t ≥ 1. (A.5)

Finally, from Lemma 1 we have that

Pr{f(x) ∈ Qfb[t]+1(x)} ≥ 1− δ, ∀x ∈ D ∀t ≥ 1

(A.5)⇒ Pr{f(x) ∈ Qb
t(x)} ≥ 1− δ, ∀x ∈ D ∀t ≥ 1.

Corollary 4. Given the assumptions of Lemma 19, the following holds with probability
at least 1− δ

f(x) ∈ Cb
t (x), ∀x ∈ D ∀t ≥ 1.

Note that Corollary 4 is completely analogous to Corollary 1. us, the results of
Lemmas Lemma 2–7 also hold for the case of LSEbatch, provided that ηt, as defined
in Lemma 19, is used in place of βt, which proves eorem 3.

Bibliography

Azimi, Javad, Fern, Alan, and Fern, Xiaoli. Batch bayesian optimization via simula-
tion matching. In Neural Information Processing Systems (NIPS), 2010.

Brochu, Eric, Cora, Vlad M., and de Freitas, Nando. A tutorial on bayesian opti-
mization of expensive cost functions, with application to active user modeling and
hierarchical reinforcement learning. arXiv:1012.2599, 2010.

Bryan, Brent and Schneider, Jeff. Actively learning level-sets of composite functions.
In International Conference on Machine Learning (ICML), 2008.

Bryan, Brent, Schneider, Jeff, Nichol, Robert, Miller, Christopher, Genovese, Christo-
pher, and Wasserman, Larry. Active learning for identifying function threshold
boundaries. In Neural Information Processing Systems (NIPS), 2005.

Cover, omas M. and omas, Joy A. Elements of Information eory. Wiley-
Interscience, 2006.

Dantu, Karthik and Sukhatme, Gaurav S. Detecting and tracking level sets of scalar
fields using a robotic sensor network. In International Conference on Robotics and
Automation (ICRA), 2007.

Desautels, omas, Krause, Andreas, and Burdick, Joel. Parallelizing exploration-
exploitation tradeoffs with gaussian process bandit optimization. In International
Conference on Machine Learning (ICML), 2012.

Galland, Frédéric, Rófrógier, Philippe, and Germain, Olivier. Synthetic aperture radar
oil spill segmentation by stochastic complexity minimization. IEEE Geoscience and
Remote Sensing Leers (GRSL), 2004.

Garne, Roman, Krishnamurthy, Yamuna, Xiong, Xuehan, Schneider, Jeff, andMann,
Richard. Bayesian optimal active search and surveying. In International Conference
on Machine Learning (ICML), 2012.

Hitz, Gregory, Pomerleau, François, Garneau, Marie-Eve, Pradalier, Cédric, Posch,
omas, Pernthaler, Jakob, and Siegwart, Roland Y. Autonomous inland water
monitoring: Design and application of a surface vessel. Robotics & Automation
Magazine (RAM), 2012.

Rahimi, Mohammad, Pon, Richard, Kaiser, William J., Sukhatme, Gaurav S., Estrin,
Deborah, and Srivastava, Mani. Adaptive sampling for environmental robotics. In
International Conference on Robotics and Automation (ICRA), 2004.

Ramakrishnan, Naren, Bailey-Kellogg, Chris, Tadepalli, Satish, and Pandey, Varun N.
Gaussian processes for active data mining of spatial aggregates. In SIAM Interna-
tional Conference on Data Mining (SDM), 2005.

43

Rasmussen, Carl Edward and Williams, Christopher K. I. Gaussian Processes for Ma-
chine Learning. MIT Press, 2006.

Seles, Burr. Active Learning (Synthesis Lectures on Artificial Intelligence andMachine
Learning). Morgan & Claypool Publishers, 2012.

Shalev-Shwartz, Shai. Online learning and online convex optimization. 2012.

Singh, Aarti, Nowak, Robert, and Ramanathan, Parmesh. Active learning for adaptive
mobile sensing networks. In International Conference on Information Processing in
Sensor Networks (IPSN), 2006.

Srinivas, Niranjan, Krause, Andreas, Kakade, Sham, and Seeger, Mahias. Gaussian
process optimization in the bandit seing: No regret and experimental design. In
International Conference on Machine Learning (ICML), 2010.

Srinivasan, Sumana, Ramamritham, Krithi, and Kulkarni, Purushoam. Ace in the
hole: Adaptive contour estimation using collaborating mobile sensors. In Interna-
tional Conference on Information Processing in Sensor Networks (IPSN), 2008.

Zuluaga, Marcela, Krause, Andreas, Sergent, Guillaume, and Püschel, Markus. Active
learning for multi-criterion optimization. In International Conference on Machine
Learning (ICML), 2013.

44

	Introduction
	Related work
	Preliminaries
	The LSE Algorithm
	Algorithm details
	Theoretical analysis

	Extensions
	Implicit threshold level
	Batch sample selection
	Path planning

	Experiments
	Results I: Explicit threshold level
	Results II: Implicit threshold level
	Results III: Path planning

	Conclusion
	Detailed proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3

	Bibliography

