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_ Metiaton The Adaptive Setting

* Many Al problems boil down to selecting a number of elements |
a C
8 4

from a large set of options
b d
N X

* In practice, the number of observed bird species wil
cording to some distribution per location

* Sequentially make “smart” choices based on past observations

* Fundamental goal: Find classes of objective functions that are
amenable to efficient sequential optimization with theoretical
approximation guarantees

Example applications

* Active learning for medical diagnosis

vary ac-

* Viral marketing in social networks

e Two-argument objective: f(A, ¢)

Running Example: Birdwatching / \

Set of visited

Random realization
of the environment

Visit locations and observe different « locations

bird species (max cover problem)

* Non-adaptive: Commit to set A before observing any outcomes
(e.g., take expectation over ¢)

e Groundset: V' = {a, b, ¢, d}

* Adaptive: Take past outcomes into account to make better deci-

* Objective: f:2" = R_| c @ ‘ ‘ sions at each step
Monotonicit Submodularit Greed
e Example: f({d}) =4 l Y l Y l y
f(de, df) =5 d

Adaptive
monotonicity

Adaptive
greedy (policy)

Adaptive
submodularity

Monotonicity and Submodularity

Theorem [Golovin and Krause, 2011]

* fis monotone
If { is adaptive monotone submodular, then adaptive greedy

Visiting a location provides non-negative benefit . T ,
givesa (1 - 1/e)-approximation (in expectation).

* fissubmodular

Locations have “diminishing returns”; the more of them we have
already visited, the less benefit we get from visiting a new one

Adaptive Random Greedy

Non-adaptive Adaptive
e Example: f({c}) = 3 .
fle | {d) = ffe. dy) - ) =5-4=1 £ Greedy Adaptive greedy
Monotone Submodular Maximization %
Want to maximize f—observe as many bird species as possible g Random greedy ?
* Unconstrained problem —> Trivial OPT = f(V) E’

* No known algorithm with theoretical guarantees for non-mono-
tone adaptive submodular objectives

* Cardinality-constrained problem

. . —> NP-hard
(visit up to k locations)

* We propose the adaptive random greedy policy to fill this gap

input: V/ £, p(@), k

Greedy algorithm

* Start with empty set of locations

* Keep adding the location that provides the largest benefit—the A &
most new bird species)
Y — &
* Stop as soon as we have visited k locations
fori = 1to k

Theorem [Nemhauser et al., 1978]

Compute marginal gains A(v | ¥),forallv € V\ A
If f is monotone submodular, then greedy gives a (1 - 1/e)-

approximation. M < set of k elements with the largest marginal gains

Sample element m from M, uniformly at random
A+ AU {m}

Observe outcome ¢(m)

Non-monotone Objectives

* Assume each set A of locations has an associated cost ¢(A)

Update history v
* New objective: g(A) = f(A) - c(A)

return A

* For example, uniform cost term: c(A) = A\|A

* Visiting a location may cost more than the benefit it provides

:

g is non-monotone

Theoretical Guarantees

* We require a slightly stronger condition than adaptive submod-

* Greedy has no guarantees for non-monotone functions ularity, which holds for the majority of practical objectives

Random greedy algorithm * The expectation here is taken over both the randomization of

the algorithm, as well as the randomness of the environment

dea: At each step, uniformly at random add one of the £ most
peneficial locations

Theorem [Our contribution]

Theorem [Buchbinder et al., 2014] If f is adaptive submodular, and, additionally, f(-, ¢) is sub-

modular for any realization ¢, then adaptive random greedy
gives a (1/e)-approximation (in expectation).

If fis submodular, then random greedy gives a (1/e)-
approximation (in expectation).

If f is also adaptive monotone, then adaptive random greedy
givesa (1 - 1/e)-approximation (in expectation).

If f is also monotone, then random greedy gives a (1 - 1/e)-
approximation (in expectation).

Andreas Krause
ETH Zurich

Non-monotone Objectives

We present two classes of objective functions that naturally arise
in practice, and are adaptive submodular but not monotone.

1. Objectives with a modular cost term

g(Av ¢) — f<A7 gb) B C<A)
/ \

Monotone adaptive
submodular function ~ Medular costterm, c(A) = Z;Ca

Example: Network influence maximization

* Select a subset of nodes to maximize spread of influence

* Ground set: Nodes of the graph

* f(A, ¢): classic network influence objective (¢ captures the
random outcomes of the independent cascade model)

* ¢ : cost of choosing node a (e.g., proportional to its degree)

2. Objectives with factorial realizations

* The dependence of f(A, ¢)on ¢ is constrained to the outcomes
of the selected elements

* f(-, @) is submodular, for any realization ¢

* The distribution of realizations ¢ factorizes over V'

Example: Maximum graph cut

* Select asubset of nodes to maximize the weight of the edges cut

* When picking a node, either that node or a random neighbor
theoreof is added to the cut

* Ground set: Nodes of the graph

* Easy to check that the above properties hold

* Three network data sets from the KONECT database, represent-
ing ego networks of Facebook, Google+, and Twitter

* Subsample each of them down to 2000 nodes

* Ground set: 100 randomly sampled nodes

* Repeat experiments over random ground sets and realizations
* Compare adaptive random greedy to non-adaptive version

Influence maximization Maximum cut
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Improvement can be even more pro-

nounced when focusing on “coverage”.
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