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Abstract
A wide range of AI problems, such as sensor place-
ment, active learning, and network influence max-
imization, require sequentially selecting elements
from a large set with the goal of optimizing the util-
ity of the selected subset. Moreover, each element
that is picked may provide stochastic feedback,
which can be used to make smarter decisions about
future selections. Finding efficient policies for this
general class of adaptive optimization problems can
be extremely hard. However, when the objective
function is adaptive monotone and adaptive sub-
modular, a simple greedy policy attains a 1 − 1/e
approximation ratio in terms of expected utility.
Unfortunately, many practical objective functions
are naturally non-monotone; to our knowledge, no
existing policy has provable performance guaran-
tees when the assumption of adaptive monotonicity
is lifted. We propose the adaptive random greedy
policy for maximizing adaptive submodular func-
tions, and prove that it retains the aforementioned
1 − 1/e approximation ratio for functions that are
also adaptive monotone, while it additionally pro-
vides a 1/e approximation ratio for non-monotone
adaptive submodular functions. We showcase the
benefits of adaptivity on three real-world network
data sets using two non-monotone functions, repre-
sentative of two classes of commonly encountered
non-monotone objectives.

1 Introduction
Many practical problems in artificial intelligence boil down
to selecting a number of elements from a large set of options
in an initially unknown environment, so as to maximize some
utility function defined over subsets of selected elements. Ex-
ample problems include sensor placement (selecting sensor
locations), active learning (selecting examples to label), and
network influence maximization (selecting seed nodes). In
contrast to the non-adaptive setting, where we commit to the
selected elements all at once, in the adaptive setting the se-
lection process is performed in a sequential manner, and each
element that is picked provides some form of stochastic feed-
back, or, in other words, reveals part of the environment. Nat-
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Figure 1: Birdwatching maximum cover example.

urally, we would like to leverage the acquired feedback to
make smarter future selections.

As a running example, consider the toy instance of a
stochastic maximum coverage problem shown in Figure 1.
Suppose that square nodes represent birdwatching locations;
by visiting each of them we observe a random number of bird
species among those that are known to exist in that location.1
We would like to plan a birdwatching trip to visit a num-
ber of these locations and maximize the number of observed
species. It is intuitive that taking into account the already ob-
served species in deciding which place to visit next can be
greatly beneficial compared to committing to the full trip in
advance.

Since the general class of adaptive optimization problems
in partially observable enviroments does not admit efficient
policies, previous work has focused on characterizing sub-
classes of problems that can be solved efficiently. Most no-
tably, Golovin and Krause [2011] showed that, when the ob-
jective function under consideration is adaptive monotone
and adaptive submodular, then a simple greedy policy attains
a 1− 1/e approximation ratio in terms of expected utility.

Adaptive submodularity and its intuitive meaning of “di-
minishing returns” is fundamental to a number of objective
functions of interest in the adaptive setting. However, the ad-
ditional assumption of adaptive monotonicity, i.e., that adding
an element to our selection always leads to an increase in ex-
pected utility, is often not satisfied in practice. In our bird-
watching example, the original objective is adaptive mono-
tone submodular; however, if each subset of locations has
an associated cost, e.g., the total required travel distance to
visit all of them, our new objective will naturally be non-

1http://www.allaboutbirds.org/



monotone. More broadly, as we will see, a common way
of obtaining adaptive submodular objectives is by generaliz-
ing non-adaptive submodular functions under certain assump-
tions about the form of stochastic feedback. Despite the de-
sire to generalize problems with non-monotone submodular
objectives to the adaptive setting, no existing policies provide
guarantees about non-monotone objectives in this setting.

To resolve this, we propose a new policy for maximizing
non-monotone adaptive submodular functions, called adap-
tive random greedy. We prove that this policy retains the
1 − 1/e approximation ratio, if the function at hand is ad-
ditionally adaptive monotone, while it also provides a 1/e-
approximation for non-monotone functions. Our proposed
policy generalizes the random greedy algorithm proposed by
Buchbinder et al. [2014] for non-monotone submodular op-
timization to the adaptive setting. We further discuss two
common ways in which non-monotone adaptive submodular
objectives come about, and present a representative example
objective for each of them. Finally, we evaluate our policy on
these two objectives on some real-world network data sets,
and, thereby, showcase the potential benefits of adaptivity.

2 Problem Statement and Background
Assume we are given a finite ground set E and a set O of
observable states. Each item e ∈ E is associated with a
state o ∈ O through a function φ : E → O, which is
called a realization of the set of states. We also assume that
the realization Φ is a random variable with known distribu-
tion p(φ). Furthermore, we are given an objective function
f : 2E × OE → R≥0. For a set A ⊆ E and a realization φ,
the quantity f(A, φ) represents the utility of selecting subset
A when the true realization is φ. In our birdwatching exam-
ple, the ground set E consists of the three possible locations
{`1, `2, `3} we may visit, and the state of each location is the
(random) subset of bird species that we actually observe if
we travel to that location; each realization maps all locations
to subsets of actually observed species. Our objective func-
tion is the total number of observed species given a subset of
visited locations.

Our goal is to come up with a sequential policy that—
initially unaware of φ—builds up a set A ⊆ E, such that our
utility f(A, φ) is maximized. That is, we iteratively select an
item e ∈ E to add to A and observe its state φ(e). In this set-
ting, there are two factors that complicate matters compared
to its non-adaptive counterpart. First, since utility depends on
the random realization, the quantity of focus is the expected
utility under the distribution of realizations p(φ). Second,
the chosen set A itself is a random variable that depends on
the realization, since the choices of our policy will change
according to each observation φ(e), which is, of course, the
whole point of adaptivity. In addition, the policy itself might
make random decisions, which is an additional source of ran-
domness for A.

To address the above complications, we define a partial
realization as a set ψ ⊆ E × O, which represents the item-
observation pairs over a subset of E. In particular, we call
this subset the domain of ψ, which is formally defined as
D(ψ) := {e ∈ E | ∃o ∈ O : (e, o) ∈ ψ}. Additionally, we

write ψ(e) = o, if (e, o) ∈ ψ, and call ψ consistent with
realization φ (denoted by φ ∼ ψ), if ψ(e) = φ(e), for all
e ∈ D(ψ), which means that the observations of a subset
according to ψ agree with the assignments over the whole
ground set according to φ.

We can now define a policy π as a function from partial
realizations to a distribution P(E) over items that specifies
which item to pick next, formally, π : 2E×O → P(E).
For birdwatching, our policy would specify which location
to visit next (or, more generally, a distribution of next loca-
tions), given the already visited locations and the already ob-
served species at each of them. The policy terminates when
the current partial realization is not in its domain denoted by
D(π) ⊆ 2E×O. We also use the shorthand notation π(e |ψ)
for the probability of picking item e given partial realization
ψ. We call E(π, φ) ⊆ E the set of items that have been se-
lected upon termination of policy π under realization φ (our
final set of visited birdwatching locations). Note thatE(π,Φ)
is a random variable that depends on both the randomness of
the policy, as well as the randomness of realizations.

Finally, we can formally assess the performance of a policy
π via its expected utility,

favg(π) := EΦ,Π[f(E(π,Φ),Φ)].

Then, our goal is to come up with a policy that maximizes
the expected utility, subject to a cardinality constraint on the
number of items to be picked, |E(π,Φ)| ≤ k. In birdwatch-
ing terms, find a policy that maximizes the expected number
of observed bird species, if we can visit at most k locations.

2.1 Monotonicity and Submodularity
Non-adaptive. Even in the non-adaptive setting, where we
have to commit to a subset in advance, the problem of maxi-
mizing a set function f : 2E → R≥0, subject to a cardinality
constraint |A| ≤ k, is NP-hard in general. In this setting,
the marginal gain of an element e ∈ E given set B ⊆ E
is defined as f(B ∪ {e}) − f(B). Intuitively, the marginal
gain quantifies the increase in utility if we add e to our se-
lection, given that we have already picked the elements in B.
Function f is called monotone if, for any B ⊆ C ⊆ E, it
holds that f(B) ≤ f(C), which is equivalent to saying that
the marginal gain is always non-negative. Furthermore, f is
called submodular, if, for anyB ⊆ C ⊆ E and any e ∈ E\C,
it holds that f(C ∪{e})− f(C) ≤ f(B ∪{e})− f(B). This
means that the marginal gain of any element decreases as the
given set increases (C ⊇ B); in other words, submodular-
ity expresses a property of “diminishing returns” as more and
more elements are added to our selection.

In their seminal work, Nemhauser et al. [1978] showed
that, if f is non-negative, monotone, and submodular, then
constructing a subsetA of size k by greedily picking elements
according to their marginal gains, guarantees that f(A) is a
(1− 1/e)-approximation of the optimal value.
Adaptive. In the significantly more complex adaptive set-
ting, the problem of computing an optimal policy is hard
to approximate even for seemingly simple classes of ob-
jective functions (e.g., linear), as shown by Golovin and
Krause [2011]. However, they also showed that the notions of



monotonicity and submodularity can be naturally generalized
to this setting, and lead to similar performance guarantees to
the non-adaptive setting.

More concretely, the expected marginal gain of an element
e ∈ E given partial realization ψ can be defined as

∆(e |ψ) := EΦ

[
f
(
D(ψ) ∪ {e},Φ

)
− f

(
D(ψ),Φ

) ∣∣ Φ ∼ ψ
]
.

The above expression is a conditional expectation, which
only considers realizations that are consistent with ψ. In bird-
watching terms, it quantifies how many new species we ex-
pect to observe if we visit a new location e given the already
visited locations and already observed species in ψ. Then,
the following properties can be defined analogously to their
non-adaptive counterparts:

• f is called adaptive monotone, if ∆(e |ψ) ≥ 0, for all
e ∈ E, and all ψ of positive probability,

• f is called adaptive submodular, if ∆(e |ψ′) ≤
∆(e |ψ), for all e ∈ E \ D(ψ′), and all ψ′ ⊇ ψ.

Given a number of previously selected elements and their
corresponding observed states encoded in partial realiza-
tion ψ, the adaptive greedy policy selects the element e ∈
E \ D(ψ) of highest marginal gain ∆(e |ψ), and contin-
ues to do so iteratively until k elements have been selected.
Golovin and Krause [2011] showed that, if f is adaptive
monotone submodular, then adaptive greedy is a (1 − 1/e)-
approximation in terms of expected utility favg.

3 Adaptive Random Greedy
While adaptive monotonicity is satisfied by many functions
of interest, it is often the case that modeling practical prob-
lems naturally results in non-monotone objectives (see Sec-
tion 4); no existing policy provides provable performance gu-
rantees in this case. We now present our proposed adaptive
random greedy policy (πrg) for maximizing adaptive submod-
ular functions, and prove approximation ratios irrespective of
whether adaptive monotonicity is satisfied or not.

For technical reasons that will become apparent below, let
us assume that we always add a set D of 2k − 1 dummy
elements to the ground set, such that, for any d ∈ D, and any
partial realization ψ, it holds that ∆(d |ψ) = 0. Obviously,
these elements do not affect the optimal policy, and may be
removed from the solution of any policy, without affecting its
expected utility.

The detailed pseudocode of running the adaptive random
greedy policy is presented in Algorithm 1. As discussed be-
fore, the algorithm is given a ground set and an objective
function, as well as a known distribution over realizations Φ.
At each iteration, the first step is to compute the expected
marginal gain of each remaining element (line 4). The key
difference compared to the original adaptive greedy policy is
shown in lines 5–6; rather than selecting the element with
the largest expected marginal gain, πrg randomly selects an
element from the set Mk(ψ), which contains the elements
with the k largest gains. The dummy elements added to the
ground set ensure that the policy never picks an element with
negative expected marginal gain. Also, note that, although in
Algorithm 1 the returned set A contains exactly k elements,

Algorithm 1 Adaptive random greedy

Input: ground set E, function f , distribution p(φ), cardinal-
ity constraint k

1: A← ∅
2: ψ← ∅
3: for i = 1 to k do
4: Compute ∆(e |ψ), for all e ∈ E \A

5: Mk(ψ)← argmax
S⊆E\A, |S|=k

{∑
e∈S

∆(e |ψ)

}
6: Sample m uniformly at random fromMk(ψ)
7: A← A ∪ {m}
8: Observe Φ(m)
9: ψ← ψ ∪

{(
m,Φ(m)

)}
10: end for
11: Return A

the actual selected set may very well contain less than k ele-
ments, since we implicitly assume that any dummy elements
are removed from it after the policy terminates.

When running the original adaptive greedy policy, non-
monotonicity can lead to situations, where selecting the el-
ement of maximum marginal gain leads to traps of low utility
that cannot be escaped. In contrast, the randomization in the
process of selecting each element that is introduced by adap-
tive random greedy helps dealing with such traps (on average)
and, thus, leads to provable approximation guarantees for the
expected utility, even for non-monotone objectives.
Theoretical analysis. More concretely, in this paper we
show that the adaptive random greedy policy retains the
1− 1/e approximation ratio for adaptive monotone submod-
ular objectives, while, at the same time, it achieves a 1/e
approximation ratio for non-monotone objectives, under the
additional condition of submodularity for each realization.
As we will see in Section 4, for the vast majority of non-
monotone objectives used in practice this condition holds by
way of construction. We, therefore, do not consider it a major
restriction in the choice of objectives. Our proofs generalize
the results of Buchbinder et al. [2014] for the random greedy
algorithm, and are presented in detail in the long version of
this paper; in what follows, we provide an outline of our anal-
ysis.

First, let us define the expected gain of running policy π
after having obtained a partial realization ψ, as

∆(π |ψ) :=

EΦ,Π[f(D(ψ) ∪ E(π,Φ),Φ)− f(D(ψ),Φ) | Φ ∼ ψ].

Also, for any policy π and any positive integer k, we de-
fine the truncated policy π[k], which runs identically to π for
k steps and then terminates. Finally, given any two policies
π1, π2, we denote by π1@π2 the policy that first runs π1 un-
til it terminates and then runs π2, discarding all observations
made by π1. After π1@π2 terminates, the subset selected by
it consists of the union of the subsets selected by each policy
individually.

The following is a key lemma for both monotone and non-
monotone objectives.



Lemma 1. If f is adaptive submodular, then, for any policy
π, and any partial realization ψ, it holds that

∆(π[k] |ψ) ≤
∑

e∈Mk(ψ)

∆(e |ψ).

It states the intuitive fact that, at any point, no k-step policy
can give us a larger expected gain than the sum of the k cur-
rently largest expected marginal gains. This is a consequence
of adaptive submodularity, which guaratees that the expected
marginal gains of any element decrease as our selection grows
larger.

Based on Lemma 1 and the fact that πrg selects at each
step one of the k elements in Mk uniformly at random, we
can show the following lemma, which also applies to both
monotone and non-monotone objectives.
Lemma 2. For any policy π, and any non-negative integer
i < k, if f is adaptive submodular, then

favg(πrg
[i+1])− favg(πrg

[i]) ≥
1

k

(
favg(πrg

[i]@π)− favg(πrg
[i])
)
.

The lemma compares the expected gain at the i-th step of πrg

to the total gain of running any other policy (e.g., the opti-
mal one) after the i-th step and, thereby, provides a means
for obtaining approximation guarantees for πrg, as long as we
can bound the term favg(πrg

[i]@π). The dichotomy between
adaptive monotone and non-monotone objectives in terms of
theoretical guarantees stems from the different approaches in
bounding this term.

If f is adaptive monotone, we may use the trivial bound
favg(πrg

[i]@π) ≥ favg(π), which immediately follows from
the definition of adaptive monotonicity, to obtain the follow-
ing theorem.
Theorem 1. If f is adaptive monotone submodular, then for
any policy π, and all integers i, k > 0 it holds that

favg(πrg
[i]) ≥

(
1− e−i/k

)
favg(π[k]).

In particular, by setting i = k we get the familiar 1 − 1/e
approximation ratio for πrg

[k].
For the non-monotone case, we need to leverage the

randomness of the selection process of πrg to bound
favg(πrg

[i]@π). For that purpose, we generalize to the adap-
tive setting the following lemma shown by Buchbinder et
al. [2014], which itself is based on a lemma by Feige et
al. [2007] for the expected value of a submodular function
under a randomly selected subset.
Lemma 3 ([Buchbinder et al., 2014]). If f : 2E → R≥0 is
submodular and A is a random subset of E, such that each
element e ∈ E is contained in A with probability at most p,
that is, PA[e ∈ A] ≤ p, ∀e ∈ E, then

EA[f(A)] ≥ (1− p)f(∅).

Roughly speaking, the lemma states that a “random enough”
subsetA cannot have much worse value than that of the empty
set. Note that f is not assumed to be monotone here.

The following lemma extends the above claim to the adap-
tive setting.

Lemma 4. If f is adaptive submodular, and, additionally,
f(· , φ) : 2E → R≥0 is submodular for all φ ∈ OE , then
for any policy π such that each element of e ∈ E is selected
by it with probability at most p, that is, PΠ[e ∈ E(π, φ)] ≤
p, ∀φ ∈ OE , ∀e ∈ E, the expected value of running π can
be bounded as follows:

favg(π) ≥ (1− p) favg(π[0]).

As a consequence of the above lemma, we get that
favg(πrg

[i]@π) = favg(π@πrg
[i]) ≥ (1 − p)favg(π), meaning

that the elements added by adaptive random greedy cannot
dramatically reduce the average value obtained by any other
policy π. The probability p in this case can be bounded by
using the fact that πrg randomly selects one of k elements at
each step, hence at the i-step we have p ≤ (1−1/k)i. Putting
it all together, we obtain our main theorem for non-monotone
objectives.
Theorem 2. If f is adaptive submodular, and f(· , φ) : 2E →
R≥0 is submodular for all φ ∈ OE , then, for any policy π,
and all integers i, k > 0, it holds that

favg(πrg
[i]) ≥

i

k

(
1− 1

k

)i−1

favg(π[k]).

By setting i = k, we get a 1/e approximation ratio for πrg
[k].

4 Examples of Non-Monotone Objectives
To underline the importance of non-monotonicity, we now
present two different ways, in which non-monotone adaptive
submodular functions commonly arise in practice. Both of
the resulting classes of functions satisfy the assumptions of
Theorem 2, and are, therefore, suitable to be maximized us-
ing adaptive random greedy. We also introduce two repre-
sentative example objectives, one for each class, which are
themselves of practical interest.

4.1 Objectives with a Modular Cost Term
Assume we are given an adaptive monotone submodular
function futility(A, φ). In practice, apart from benefit, there
might also be some associated cost with the selection of each
element, which can be directly incorporated into the objective
function via a modular cost term fcost(A) =

∑
a∈A ca. In this

case, the resulting objective is of the form

f(A, φ) = futility(A, φ)− fcost(A), (1)

which is also adaptive submodular, but non-monotone.
A common alternative to the above is to introduce a knap-

sack constraint fcost(A) ≤ C, while retaining a monotone ob-
jective. Choosing a budget C, in this case, might not be obvi-
ous, whereas the formulation of equation (1) is often more
straightforward, particularly when fcost is expressed in the
same units as futility.
Influence maximization. The concept of influence max-
imization in a social network was posed by Kempe et
al. [2003], and has direct applications to problems such as
viral marketing. Given a graph and a model of influence prop-
agation, the goal is to select a subset of nodes that are initially
active, in order to maximize the spread of influence measured



by the expected number of nodes that will ultimately be active
according to the propagation model. We focus here on the in-
dependent cascade model, according to which, each edge of
the graph is randomly set to be “live” or “blocked”, indepen-
dently of any other edge in the network, and influence can
only flow along “live” edges.

For this problem, the ground set E consists of network
nodes, and each realization φ corresponds to a full outcome
of the independent cascade model, that is, an assignment to
each network edge of being either “live” or “blocked”. The
objective finf(A, φ) is the number of ultimately active nodes
under realization φ, if the nodes in the selected subset A are
initially active. In the adaptive version of the problem, when
a node v is selected, it reveals the status (“live” or “blocked”)
of all outgoing edges of v and of any other node that can be
reached from v through “live” edges. Kempe et al. [2003]
showed that finf is non-negative, monotone, and submodular,
for any realization φ; Golovin and Krause [2011] showed that
it is also adaptive monotone submodular.

Now, assume that each selected node incurs a unit cost, that
is, we have a cost term fcost(A) = |A|, which results in the
following objective:

f̃inf(A,Φ) := finf(A,Φ)− |A|.
Since our cost term is modular, f̃inf has the form of equation
(1), and, therefore, is non-monotone adaptive submodular. It
is also non-negative, since finf(A,Φ) ≥ |A|.

4.2 Objectives with Factorial Realizations
Assume we are given a utility function f(A, φ), whose de-
pendence of φ is constrained to the outcomes of the selected
elements. More formally, there exists a function g : 2E×O →
R≥0, such that f(A, φ) = g({(e, φ(e)) | e ∈ A}). Further-
more, assume that f is submodular in its first argument, for
any realization φ, and that the distribution of realizations
factorizes over the elements of the ground set E, that is,
PΦ[φ] =

∏
e∈E PΦ(e)[φ(e)]. Given the above assumptions,

it follows that f is adaptive submodular (see Theorem 6.1 of
Golovin and Krause [2011]).
Maximum graph cut. The problem of finding the maxi-
mum cut in a graph (V, E) can be posed using the following
objective:

fcut(A) =
∑

(v,w)∈E

1{v∈A,w∈V\A or v∈V\A,w∈A},

which is non-negative and submodular. Furthermore, it is
symmetric, i.e., f(A) = f(V \ A), which implies that it is
also non-monotone. We consider here an adaptive version of
the maximum cut problem, where the selection of a node trig-
gers either cutting that node itself, or a random neighbor of it
with some prespecified probability.

Again, the ground set E consists of network nodes, and
each realization φ corresponds to a function σφ that maps
each node v ∈ V to the node that would actually be cut, were
v to be selected. Our adaptive max-cut objective can then be
written as follows:

f̃cut(A,Φ) := fcut

(⋃
v∈A

σΦ(v)

)
.

We can directly see that, in terms of the realization Φ, f̃cut
only depends on the outcomes of the selected elements. Fur-
thermore, the distribution of realizations is factorial, since the
outcome of each node cut is independent of all the others,
i.e., σφ(v) = σ̂φ(v)(v). Finally, since fcut is submodular, it
follows that f̃cut is submodular in its first argument for any
realization. We conclude that f̃cut satisfies the properties de-
scribed above, hence it is (non-monotone) adaptive submod-
ular. It is also non-negative, because fcut is non-negative.

5 Experiments
We have evaluated our proposed algorithm on the two objec-
tive functions described in the previous section, namely in-
fluence maximization and maximum cut, on a few real-world
data sets. Since we have no competitor policy for the adap-
tive non-monotone submodular setting, we rather focus here
on showcasing the potential benefits of adaptivity by com-
paring adaptive to non-adaptive random greedy on these two
objectives.

5.1 Data Sets and Experimental Setup
For our experiments, we used networks from the KONECT2

database, which accumulates network data sets from various
other sources. The network sizes range from a few thousands
to tens of thousands nodes.

Computing the (expected) marginal gains is at the heart of
both the non-adaptive random greedy algorithm and our pro-
posed adaptive random greedy policy. In terms of computa-
tional complexity, these computations may range from being
completely straightforward to extremely demanding, depend-
ing on the specific objective at hand. For the influence op-
timization objective, the exact computation of the expected
influence of a subset of nodes has been shown to be NP-hard
[Kempe et al., 2003]. To obtain an estimate we use Monte
Carlo sampling over the outcomes of the independent cas-
cades. Note that within adaptive random greedy we have
to perform this simulation at every step, while conditioning
on the observations obtained up to that step. For the maxi-
mum cut objective, it is very simple to compute the marginal
gains in the adaptive case, since we already know at each step
the outcomes of the previously selected nodes. In the non-
adaptive setting, however, this is considerably harder, since
we have to average over every possible outcome of the cur-
rent selection; we again resort to sampling from the space of
possible realizations to obtain estimates. To make the afore-
mentioned computations more efficient, we subsample each
network down to 2000 nodes, using a technique based on ran-
dom walks proposed by Leskovec and Faloutsos [2006].

For both objectives, we select uniformly at random a subset
of 100 nodes as the ground set E, and repeat the experiments
for 50 such random ground sets. For each ground set instance,
we evaluate the algorithms on 100 random realizations.

5.2 Results
We present here results for three data sets that represent ego
networks from Facebook, Google+, and Twitter respectively

2http://konect.uni-koblenz.de/
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Figure 2: Improvement in expected utiliy of using adaptive compared to non-adaptive random greedy for varying node budget
k. (a)–(c) influence maximization; (d)–(f) maximum cut.

[McAuley and Leskovec, 2012]. Figure 2 shows the % rel-
ative improvement of adaptive random greedy over its non-
adaptive counterpart in terms of expected utility for influ-
ence maximization (top) and maximum cut (bottom); each
plot shows the improvement for varying values of the cardi-
nality constraint k. For the influence maximization objective,
the influence propagation probability of each edge is chosen
to be p = 0.1, and for the maximum cut objective, select-
ing a node cuts that node or one of its neighbors with equal
probability.

We can see that adaptivity is beneficial in general, while
the improvement it provides varies substantially depending
on the properties of each network. As an example, for net-
works containing a few nodes of very high degree, like the
Google+ network in plots (b) and (e), adaptivity provides lit-
tle benefit for influence maximization, since these nodes are
the main source of influence, hence are almost always se-
lected by the non-adaptive algorithm as well. On the other
hand, adaptivity is much more beneficial for the maximum
cut objective in such networks, since the feedback of whether
such high degree nodes have already been cut by some of their
neighbors helps making future selections more efficient.

Furthermore, if our goal is to reach a specific level of ob-
jective value using as few nodes as possible, then our gains
due to adaptivity can be even more substantial in terms of the
number of required nodes. For example, as shown in Fig-
ure 3(a), if we want to attain a maximum cut objective value
of 1900 for the FACEBOOK network, a budget k of about 13
nodes is enough for adaptive random greedy, while a bud-
get of almost 30 nodes is required for non-adaptive random
greedy.

For the other two plots of Figure 3 we fix k = 20. In

plot (b) we show the improvement on FACEBOOK for vary-
ing edge probabilities p of the independent cascade model. At
the extreme values of p, adaptivity provides no benefit, since
the network is either disconnected (p = 0), or fully connected
(p = 1). In plot (c) we show the improvement on TWITTER
for varying cut distributions. The parameter β quantifies the
probability of a node being cut when it is selected. A value of
β = 0 corresponds to the setting we used in Figure 2, where
the cutting probability is uniformly distributed among the se-
lected node and each of its neighbors; β = 1 corresponds to
deterministically cutting the selected node. We can see that,
as the cutting distribution gets close to deterministic (β → 1),
the benefit of adaptivity diminishes.

Finally, we would like to comment on the behavior of the
simple adaptive greedy algorithm with the additional modifi-
cation to stop when the largest marginal gain becomes nega-
tive. In particular, for the specific objectives considered here,
we have observed that its performance is very close to that
of adaptive random greedy. This is presumably because both
these objectives are approximately monotone for small values
of k, and also fairly benign in the sense that they do not create
traps that would severely diminish the performance of adap-
tive greedy. Intuitively, choosing one element cannot reduce
the marginal gain of many other elements by a lot. How-
ever, even in the non-adaptive setting it is easy to come up
with much harder non-monotone objectives for which simple
greedy exhibits arbitrarily bad performance. The takeaway is
that adaptive random greedy is comparable to adaptive greedy
for the easier objectives that we have used here, while it also
provides performance guarantees for the harder ones, a be-
havior that is completely analogous to how greedy vs. ran-
dom greedy work in the non-adaptive setting.
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Figure 3: (a) The budget k required by adaptive random greedy to reach a certain objective value (here 1900) is considerably
smaller compared to its non-adaptive counterpart; (b) Improvement vs. independent cascade edge probability p; (c) improve-
ment vs. cut distribution parameter β.

6 Related Work
Compared to monotone submodular maximization, for which
the (1 − 1/e)-approximation of the greedy algorithm was
shown by Nemhauser et al. [1978], constant-factor approx-
imations for non-monotone submodular functions have been
much more recent, for both the unconstrained case [Feige et
al., 2007], as well as under matroid and knapsack constraints
[Lee et al., 2009; Chekuri et al., 2011]. Even more recently,
Buchbinder et al. [2014] introduced the random greedy al-
gorithm for maximizing non-monotone submodular functions
under a cardinality constraint, from which we drew inspira-
tion for our proposed adaptive random greedy policy.

The concepts of adaptive monotonicity and adaptive sub-
modularity were introduced by Golovin and Krause [2011],
who also showed that the greedy policy provides a (1−1/e)-
approximation under these assumptions. Example applica-
tion domains, apart from those we present in this paper, in-
clude active learning [Chen et al., 2014; 2015], interactive set
coverage [Guillory and Bilmes, 2010], and incentive mecha-
nism design [Singla and Krause, 2013].

The problem of influence maximization was originally
proposed by Kempe et al. [2003] and was extended to the
adaptive setting by Golovin and Krause [2011]. Various
techniques have been proposed to make the computation of
marginal gains feasible for large-scale networks using, for
instance, more efficient sampling methods [Ohsaka et al.,
2014], and sketching-based approximations [Cohen et al.,
2014]. In this paper we chose to run experiments on smaller-
scale networks, but these techniques could be applied to scale
up adaptive random greedy as well. He and Kempe [2014] re-

cently considered the problem of assessing the robustness of
influence maximization algorithms under network parameter
misspecification, which interestingly leads to maximizing a
non-monotone submodular objective.

Maximum graph cut has been a much-studied NP-complete
problem with constant-factor SDP-based approximation algo-
rithms for both the unconstrained [Goemans and Williamson,
1995] and cardinality-constrained [Feige and Langberg,
2001] cases. An interesting application of maximum cut ob-
jectives has been proposed by Lin and Bilmes [2010] and Lin
and Bilmes [2011] for text summarization.

7 Conclusion
We proposed the adaptive random greedy policy for adap-
tive submodular maximization, the first policy with prov-
able approximation guarantees for non-monotone objectives.
We also presented two simple ways of constructing non-
monotone objectives in practice, and observed the advantage
of adaptivity by evaluating our policy on two network-related
functions obtained this way. We believe that our work is a
step towards understanding the class of functions amenable
to adaptive optimization, and hope that it will encourage
the broader use of non-monotone objectives in modeling and
solving practical AI problems.
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