Sampling from Probabilistic Submodular Models

C C S

Alkis Gotovos

Hamed Hassani

Andreas Krause

Motivation

Image collection summarization

Pairwise models

Higher-order models

Submodularity

Sampling summaries

Equip existing models with higher-order interactions

[Djolonga and Krause, '15]

Probabilistic Submodular Models

Probabilistic Submodular Models

$$p(S) = \frac{1}{Z} \exp(F(S))$$

PSMs

- Sub- or supermodular function $F:2^V \to \mathbb{R}$
- Distribution over subsets $p(S) \propto \exp(F(S))$

MRFs

- Binary random vector $X = (X_1, \dots, X_n)$
- Set of factors
- $\phi_i: \{0,1\}^{\mathcal{C}_i} \to \mathbb{R}$
- Distribution over binary vectors $p(X) \propto \exp\left(\sum_{i} \phi_{i}\left(X_{\mathcal{C}_{i}}\right)\right)$

Inference

- low-order MRFs
- Extensively studied model class

#P-hard even for Ising models

Tractable only for limited subclasses

Complexity exponential in model order

 Variational approach for general PSMs [Djolonga and Krause, '14]

What about sampling?

Gibbs Sampling

Start at S_0

For $t=1,2,\ldots$

- \circ Select random $v \in V$
- $\circ \Delta \leftarrow F(S_t \cup \{v\}) F(S_t \setminus \{v\})$
- Flip biased coin

Does the Markov chain converge?

- Total variation distance
- $d(t) = \max\{d_{\mathsf{tv}}\left(\mathbb{P}_{S_t}, \pi\right) \mid S_0 \in \Omega\}$

Under mild assumptions (ergodicity), $d(t) \xrightarrow{t \to \infty} 0$

How long does it take to converge?

- Mixing time
- $t_{\text{mix}}(\epsilon) = \min \{t \mid d(t) \le \epsilon\}$

Fast Mixing

Influence of $r \in V$ on $v \in V$

$$\gamma_F(v;r\mid S) \coloneqq \left|\Delta_F(v\mid S) - \Delta_F(v\mid S\cup\{r\})\right|$$

Maximum total influence

$$\gamma_F \coloneqq \max_{\substack{r \in V \\ S \subset V}} \sum_{v \in V} \tanh\left(\frac{1}{2}\gamma_F(v;r\mid S)\right)$$

For any submodular or supermodular set function F, if $\gamma_f < 1$, the mixing time of the Gibbs sampler is bounded by

$$t_{\text{mix}}(\epsilon) \le \frac{1}{1 - \gamma_f} n \left(\log n + \log \epsilon^{-1} \right).$$

We call
$$f$$
 decomposable if $f(S) = \sum_{i \in [L]} f_i(S)$

We establish sufficient

For any decomposable submodular function f,

$$\gamma_f \le \frac{1}{2}\theta_f \lambda_f.$$

 $\theta_f \coloneqq \max_{v \in V} \sum_{i \in [L]} \sqrt{f_i(v)}$

$$\lambda_f \coloneqq \max_{i \in [L]} \sum_{v \in V} \sqrt{f_i(v)}$$

conditions for sub-exponential mixing of the Gibbs sampler on PSMs

Polynomial-time Mixing

"Distance" from modularity

$$\zeta_F := \max_{A,B \subseteq V} \left| F(A) + F(B) - F(A \cup B) - F(A \cap B) \right|$$

submodular constant normalized monotone submodular $F(S) = c + \sum_{v \in S} m_v + f(S)$

Theorem I

For any set function F, the mixing time of the Gibbs sampler is bounded by $t_{\text{mix}}(\epsilon) \le 2n^2 \exp(2\zeta_F) \log(\epsilon p_{\text{min}})^{-1}$.

For any submodular or supermodular set function F, the mixing time of the Gibbs sampler is bounded by

 $t_{\text{mix}}(\epsilon) \le 2n^2 \exp(\zeta_f) \log(\epsilon p_{\text{min}})^{-1}$.

Evaluation

 Compare against variational inference [Djolonga and Krause, '14]

 \circ Compute $p(v \mid S)$

 \circ |V|=20 \longrightarrow exact marginals

[1] Josip Djolonga and Andreas Krause. From MAP to marginals: Variational inference in bayesian submodular models. In Neural Information Processing Systems, 2014. [2] Josip Djolonga and Andreas Krause. Scalable variational inference in log-supermodular models. In International Conference on Machine Learning, 2015. [3] Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. Matrix norms and rapid mixing for spin systems. Annals of Applied Probability, 2009. [4] Patrick Rebeschini and Amin Karbasi. Fast mixing for discrete point processes. In Conference on Learning Theory, 2015. [5] Alistair Sinclair. Improved bounds for mixing rates of markov chains and multicommodity flow. Combinatorics, Probability and Computing, 1992.