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Motivation

Image collection summarization

Use submodular functions
N probabilistic models
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Foreground / background segmentation
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Equip existing models with
higher-order interactions

odular Models
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Probabillistic Submodular Models
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repulsive attractive
pairwise MRFs pairwise MRFs

log-submodular

Inference

Tractable only for [imited subclasses

#P-hard even for Ising models

Extensively studied model class

Complexity exponential in model order

Variational approach for general PSMs
[Djolonga and Krause, "1 4]

VWhat about sampling!

Gibbs Sampling
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Does the Markov chain converge!

Total variation distance
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How long does It take to converge!?

Mixing time

toic(€) = min {t | d(t) < e

Under mild assumptions (ergodicity),
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VWe establish sufficient

rast Mixing
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Theorem 2

For any submodular or supermodular set function F', if v¢ < 1, the mixing time of
the Gibbs sampler Is bounded by

G = n (Iogn + log e_l) .
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We call f decomposable if f(.S Z S
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For any decomposable submodular function f,
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conditions for sub-exponential
mixing of the Gibbs sampler

Polynomial-time Mixing

“Distance’” from modularity
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normalized monotone submodular

modular
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Theorem |

For any set function F', the mixing time of the Gibbs sampler is bounded by
tic(€) < 202 exp(2¢F) log (epmin) -

For any submodular or supermodular set function F', the mixing time of the Gibbs
sampler Is bounded by

trix(€) < 2n2 exp(Cy) log (€pmin) ™

@ @ @ @ Method of canonical paths [Sinclair, '92]
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capacity of edge e — transition probability
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congestion of edge e —  total flow / capacity

on PSMs

cvaluation

o2 Facility location (log-submodular)

o Compare against variational inference Variational (upper)

*®: Variational (lower)
Gibbs (100)

=®= Gibbs (500)

=®= Gibbs (2000)

[Djolonga and Krause, "1 4]

o Compute p(v | S)
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o |[V| =20 — exact marginals
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