Sampling from Probabilistic Submodular Models

Alkis Gotovos

Hamed Hassani

Andreas Krause

Image Collection Summarization

• Facility location objective [Lin and Bilmes, '12] [Tschiatschek et al., '14]

- Facility location objective [Lin and Bilmes, '12] [Tschiatschek et al., '14]
- Encourage coverage and diversity of the summary

- Facility location objective [Lin and Bilmes, '12] [Tschiatschek et al., '14]
- Encourage coverage and diversity of the summary
- $\circ~$ Set of all images V

- Facility location objective [Lin and Bilmes, '12] [Tschiatschek et al., '14]
- Encourage coverage and diversity of the summary
- $\circ~$ Set of all images V
- $\circ \ \, \text{For any summary } S \subseteq V \ \longrightarrow \ F(S) \in \mathbb{R}$

- Facility location objective [Lin and Bilmes, '12] [Tschiatschek et al., '14]
- Encourage coverage and diversity of the summary
- $\circ~$ Set of all images V
- $\circ \ \, \text{For any summary } S \subseteq V \ \longrightarrow \ F(S) \in \mathbb{R}$

- Facility location objective [Lin and Bilmes, '12] [Tschiatschek et al., '14]
- Encourage coverage and diversity of the summary
- $\circ~$ Set of all images V
- $\circ \ \, \text{For any summary } S \subseteq V \ \longrightarrow \ F(S) \in \mathbb{R}$

- Facility location objective [Lin and Bilmes, '12] [Tschiatschek et al., '14]
- Encourage coverage and diversity of the summary
- \circ Set of all images V
- $\circ \ \, \text{For any summary } S \subseteq V \ \longrightarrow \ F(S) \in \mathbb{R}$

• Submodular optimization is well-studied

- Submodular optimization is well-studied
- Little existing work on probabilistic models

Sampling Summaries

 $\circ~$ Set of all pixels V

 $\circ~$ Set of all pixels V

• For $S \subseteq V$ of foreground pixels,

$$p(S) \propto \exp\left(\sum_{v \sim w} F_{v,w}(S)\right)$$

Superpixel potentials [Kohli et al., '08]

$$V = V_1 \cup V_2 \cup \dots \cup V_L$$

Superpixel potentials [Kohli et al., '08]

$$V = V_1 \cup V_2 \cup \cdots \cup V_L$$

Superpixel potentials [Kohli et al., '08]

 $V = V_1 \cup V_2 \cup \dots \cup V_L$ $F_i(S) = \phi \left(|S \cap V_i| \right)$

Superpixel potentials [Kohli et al., '08]

Superpixel potentials [Kohli et al., '08]

Superpixel potentials [Kohli et al., '08]

Sampling from Probabilistic Submodular Models

 $V = V_1 \cup V_2 \cup \cdots \cup V_L$

Higher-order Models [Djolonga and Krause, '15]

Pairwise

Higher-order

Use submodular functions in probabilistic models

Equip existing models with higher-order interactions

 $F: 2^V \rightarrow \mathbb{R}$ is a submodular or supermodular function

PSMs

Markov Random Fields

PSMs Markov Random Fields

• Ground set V with |V| = n

• Ground set V with |V| = n

• Sub- or supermodular function

 $F: 2^V \to \mathbb{R}$

• Ground set V with |V| = n

• Sub- or supermodular function

 $F: 2^V \to \mathbb{R}$

• Distribution over subsets

 $p(S) \propto \exp(F(S))$

PSMs	Markov Random Fields
$\circ $ Ground set V with $ V =n$	• Binary random vector $X = (X_1, \dots, X_n)$
$\circ~$ Sub- or supermodular function $F:2^V \to \mathbb{R}$	$\circ\;$ Set of factors $\phi_i: \{0,1\}^{\mathcal{C}_i} o \mathbb{R}$
$\circ \; { m Distribution \; over \; subsets} \ p(S) \propto \exp(F(S))$	

PSMs	Markov Random Fields
$\circ \;$ Ground set V with $ V =n$	• Binary random vector $X = (X_1, \dots, X_n)$
$\circ~$ Sub- or supermodular function $F:2^V \to \mathbb{R}$	$\circ\;$ Set of factors $\phi_i: \{0,1\}^{\mathcal{C}_i} o \mathbb{R}$
$\circ~$ Distribution over subsets $p(S) \propto \exp(F(S))$	• Distribution over binary vectors $p(X) \propto \exp\left(\sum_{i} \phi_{i}(X_{\mathcal{C}_{i}})\right)$
Probabilistic Submodular Models

PSMs	Markov Random Fields
$\circ \;$ Ground set V with $ V =n$	• Binary random vector $X = (X_1, \dots, X_n)$
$\circ~$ Sub- or supermodular function $F:2^V \to \mathbb{R}$	$\circ\;$ Set of factors $\phi_i: \{0,1\}^{\mathcal{C}_i} o \mathbb{R}$
$\circ\;$ Distribution over subsets $p(S) \propto \exp(F(S))$	• Distribution over binary vectors $p(X) \propto \exp\left(\sum_i \phi_i\left(X_{\mathcal{C}_i}\right) ight)$

Model order: $\max_i |\mathcal{C}_i|$

Probabilistic Submodular Models

$\mathbb{P}(pixel label)$

$\mathbb{P}(\text{image} \in \text{summary} \mid \text{selected})$

- Tractable only for limited subclasses
- #P-hard even for Ising models

Exact

BP, MF, ...

• #P-hard even for Ising models

- Extensively studied model class
- Complexity exponential in model order

EXACT

BP, MF, ...

L-FIELD

- Tractable only for limited subclasses
- #P-hard even for Ising models

- Extensively studied model class
- Complexity exponential in model order

• Variational approach for general PSMs [Djolonga and Krause, '14]

What about sampling?

Sampling from Probabilistic Submodular Models

- State space Ω
- $\circ~{\rm Transition}$ matrix P
- $\circ~$ Stationary distribution π

- State space Ω
- $\circ~{\rm Transition}$ matrix P
- \circ Stationary distribution π

Markov chain $(S_t)_{t>0}$ that moves according to P

- $\circ \ \, {\rm State \ space \ } \Omega \qquad \qquad {\rm powerset \ of \ } V$
- \circ Transition matrix P
- \circ Stationary distribution π

Markov chain $(S_t)_{t\geq 0}$ that moves according to P

- State space Ω powerset of V
- Transition matrix *P* Gibbs sampler
- \circ Stationary distribution π

Markov chain $(S_t)_{t\geq 0}$ that moves according to P

Sampling from Probabilistic Submodular Models

- State space Ω powerset of V
- Transition matrix *P* Gibbs sampler
- Stationary distribution π PSM distribution

Markov chain $(S_t)_{t>0}$ that moves according to P

State Space of $V = \{1, 2, 3\}$

Start at S_0

Start at S_0

Start at S_0

For t = 1, 2, ...

 $\circ \ {\rm Select} \ {\rm random} \ v \in V$

Start at S_0

For t = 1, 2, ...

 $\circ \ {\rm Select} \ {\rm random} \ v \in V$

Start at S_0

For t = 1, 2, ...

 $\circ \ {\rm Select} \ {\rm random} \ v \in V$

Start at S_0

- $\circ \ {\rm Select} \ {\rm random} \ v \in V$
- \circ Compute conditional $p_{\rm add}$

Start at S_0

- $\circ \ {\rm Select} \ {\rm random} \ v \in V$
- \circ Compute conditional $p_{\rm add}$
- Flip biased coin

$$egin{aligned} p_{\mathsf{add}} & 1-p_{\mathsf{add}} \ & S_{t+1} \leftarrow S_t \cup \{v\} & S_{t+1} \leftarrow S_t \setminus \{v\} \end{aligned}$$

Start at S_0

- $\circ \ {\rm Select} \ {\rm random} \ v \in V$
- \circ Compute conditional $p_{\rm add}$
- Flip biased coin

$$egin{aligned} p_{\mathsf{add}} & 1-p_{\mathsf{add}} \ & S_{t+1} \leftarrow S_t \cup \{v\} & S_{t+1} \leftarrow S_t \setminus \{v\} \end{aligned}$$

Does the Markov chain converge?

Does the Markov chain converge?

Total variation distance

 $d(t) = d_{\mathrm{tv}}\left(\mathbb{P}_{S_t}, \pi\right)$

Does the Markov chain converge?

Total variation distance

 $d(t) = \max\{d_{\mathsf{tv}}\left(\mathbb{P}_{S_t}, \pi\right) \mid S_0 \in \Omega\}$

Does the Markov chain converge?

Total variation distance

$$d(t) = \max\{d_{\mathsf{tv}}\left(\mathbb{P}_{S_t}, \pi\right) \mid S_0 \in \Omega\}$$

Under mild assumptions (ergodicity), $d(t) \xrightarrow{t \to \infty} 0$

Does the Markov chain converge?

Total variation distance

$$d(t) = \max\{d_{\mathsf{tv}}\left(\mathbb{P}_{S_t}, \pi\right) \mid S_0 \in \Omega\}$$

Under mild assumptions (ergodicity), $d(t) \xrightarrow{t \to \infty} 0$

How long does it take to get "close enough" to π ?

Does the Markov chain converge?

Total variation distance

$$d(t) = \max\{d_{\mathsf{tv}}\left(\mathbb{P}_{S_t}, \pi\right) \mid S_0 \in \Omega\}$$

Under mild assumptions (ergodicity), $d(t) \xrightarrow{t o \infty} 0$

How long does it take to get "close enough" to π ?

Mixing time $t_{mix}(\epsilon) = \min \{t \mid d(t) \le \epsilon\}$

Sampling from Probabilistic Submodular Models

\circ Mixing times for general PSMs are exponential in |V|=n

- \circ Mixing times for general PSMs are exponential in |V| = n
- Exponential even for pairwise models [Jerrum and Sinclair, '93]

- \circ Mixing times for general PSMs are exponential in |V| = n
- Exponential even for pairwise models [Jerrum and Sinclair, '93]

We establish sufficient conditions for sub-exponential mixing of the Gibbs sampler on PSMs.

F is modular if $F(A) + F(B) = F(A \cup B) + F(A \cap B)$

sub-F is modular if $F(A) + F(B) = F(A \cup B) + F(A \cap B)$

 $egin{array}{ccc} {
m sub-} &\geq & \ F ext{ is modular if } & F(A)+F(B) &= & F(A\cup B)+F(A\cap B) \ & \ {
m super-} &\leq & \ \end{array}$

 $egin{array}{ccc} {
m sub-} &\geq & \ F ext{ is modular if } &F(A)+F(B) &= &F(A\cup B)+F(A\cap B) \ & \ {
m super-} &\leq & \ \end{array}$

"Distance" from modularity

 $\left|F(A) + F(B) - F(A \cup B) - F(A \cap B)\right|$

Sampling from Probabilistic Submodular Models

 $egin{array}{ccc} {
m sub-} &\geq & \ F ext{ is modular if } & F(A)+F(B) &= & F(A\cup B)+F(A\cap B) \ & \ {
m super-} &\leq & \ \end{array}$

"Distance" from modularity

 $\overline{\zeta_F} \coloneqq \max_{A,B \subseteq V} \left| F(A) + F(B) - F(A \cup B) - F(A \cap B) \right|$

Sampling from Probabilistic Submodular Models

Theorem

For any submodular or supermodular set function F, the mixing time of the Gibbs sampler is bounded by

$$t_{\mathsf{mix}}(\epsilon) = \mathcal{O}\left(n^2 \exp(\zeta_f) \log \epsilon^{-1}\right).$$

 $F_i(S) = \phi \left(|S \cap V_i| \right)$ $F(S) = \sum_{i=1}^L F_i(S)$

 $F_i(S) = \phi\left(|S \cap V_i|\right)$ $F(S) = \sum_{i=1}^{L} F_i(S)$

Easy to show that $\zeta_f \leq L \phi_{\max}$

 $F_i(S) = \phi\left(|S \cap V_i|\right)$ $F(S) = \sum_{i=1}^{L} F_i(S)$

Easy to show that $\zeta_f \leq L \phi_{\max}$

$$|V_i| pprox 10^5$$
 vs. $L pprox 50$

Method of canonical paths [Sinclair, '92]

For each $A, B \subseteq V$, need to route p(A)p(B) amount of flow

Capacity of an edge \sim transition probability of Gibbs sampler

Congestion of an edge $\, \sim \,$ (total flow through edge) / capacity

 $t_{\mathsf{mix}}(\epsilon) = \mathcal{O}\left(\mathsf{max}\{\mathsf{congestion}\}\log\epsilon^{-1}
ight)$ [Sinclair, '92]

We bound the maximum congestion of a PSM using ζ_f

Theorem 2

For any submodular or supermodular set function F, if $\gamma_f<1,$ the mixing time of the Gibbs sampler is bounded by

$$t_{\min}(\epsilon) \leq \frac{1}{1 - \gamma_f} n\left(\log n + \log \epsilon^{-1}\right).$$

• γ_f = "maximum total influence"

Theorem 2

For any submodular or supermodular set function F, if $\gamma_f<1,$ the mixing time of the Gibbs sampler is bounded by

$$t_{\min}(\epsilon) \leq rac{1}{1 - \gamma_f} n\left(\log n + \log \epsilon^{-1}
ight).$$

- γ_f = "maximum total influence"
- $\circ~$ Simple way to bound γ_f , if $f(S) = \sum_i f_i(S)$

Theorem 2

For any submodular or supermodular set function F, if $\gamma_f < 1$, the mixing time of the Gibbs sampler is bounded by

$$t_{\mathsf{mix}}(\epsilon) \leq \frac{1}{1 - \gamma_f} n\left(\log n + \log \epsilon^{-1}\right).$$

• γ_f = "maximum total influence"

- $\circ~$ Simple way to bound γ_f , if $f(S) = \sum_i f_i(S)$
- Closely related to Dobrushin uniqueness conditions, and influence matrix norms [Dyer et al., '09]

Theorem 2

For any submodular or supermodular set function F, if $\gamma_f < 1$, the mixing time of the Gibbs sampler is bounded by

$$t_{\mathsf{mix}}(\epsilon) \leq \frac{1}{1 - \gamma_f} n\left(\log n + \log \epsilon^{-1}\right).$$

• γ_f = "maximum total influence"

- $\circ~$ Simple way to bound γ_f , if $f(S) = \sum_i f_i(S)$
- Closely related to Dobrushin uniqueness conditions, and influence matrix norms [Dyer et al., '09]
- Similar theorem by [Rebeschini and Karbasi, '15]

Compare against variational approach [Djolonga and Krause, '14]

Compare against variational approach [Djolonga and Krause, '14]

Compare against variational approach [Djolonga and Krause, '14]

 \circ Compute $p(v \mid S)$

Compare against variational approach [Djolonga and Krause, '14]

• Compute $p(v \mid S)$ • $|V| = 20 \longrightarrow$ compare to exact marginals

Sampling from Probabilistic Submodular Models

Evaluation

Evaluation

Evaluation

• Identify higher-order models amenable to efficient inference

Sampling from Probabilistic Submodular Models

Identify higher-order models amenable to efficient inference

· First indications that sub-/supermodularity can lead to faster mixing

Identify higher-order models amenable to efficient inference

· First indications that sub-/supermodularity can lead to faster mixing

Backup I

Start at S_0

For t = 1, 2, ...

- $\circ \ {\rm Select} \ {\rm random} \ v \in V$
- $\circ \ \Delta \leftarrow F(S_t \cup \{v\}) F(S_t \setminus \{v\})$
- $\circ \ p_{\rm add} \leftarrow e^{\Delta} / \left(1 + e^{\Delta}\right)$
- Flip biased coin

 $p_{ ext{add}}$ $1 - p_{ ext{add}}$ $S_{t+1} \leftarrow S_t \cup \{v\}$ $S_{t+1} \leftarrow S_t \setminus \{v\}$

Backup II

Backup III

Theorem

For any set function F, the mixing time of the Gibbs sampler is bounded by

$$t_{\mathsf{mix}}(\epsilon) = \mathcal{O}\left(n^2 \exp(2\zeta_F) \log \epsilon^{-1}
ight).$$

For any submodular or supermodular set function F, the mixing time of the Gibbs sampler is bounded by

$$t_{\mathsf{mix}}(\epsilon) = \mathcal{O}\left(n^2 \exp(\zeta_f) \log \epsilon^{-1}\right).$$

Sampling from Probabilistic Submodular Models