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Submodularity

◦ Facility location objective [Lin and Bilmes, ’12] [Tschiatschek et al., ’14]

◦ Encourage coverage and diversity of the summary

◦ Set of all images V

◦ For any summary S ⊆ V −→ F (S) ∈ R
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Submodularity

F is submodular ⇐⇒ −F is supermodular

↓ ↓

coverage / diversity smoothness / cooperation

◦ Submodular optimization is well-studied

◦ Little existing work on probabilistic models
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Sampling Summaries
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Foreground / Background Segmentation
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Foreground / Background Segmentation

…

…

... ... ... . . . ...

…

◦ Set of all pixels V

◦ For S ⊆ V of foreground pixels,

p(S) ∝ exp

(∑
v∼w

Fv,w(S)

)
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Higher-order Models

Superpixel potentials [Kohli et al., ’08]

V = V1 ∪ V2 ∪ · · · ∪ VL

Fi(S) = ϕ (|S ∩ Vi|)

0 |Vi|
0

ϕmax

|S ∩ Vi|

ϕ

p(S) ∝ exp

(
L∑
i=1

Fi(S)

)
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Higher-order Models [Djolonga and Krause, ’15]

Pairwise Higher-order
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Probabilistic Submodular Models

Equip existing models with 
higher-order interactions
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Use submodular functions 
in probabilistic models

p(S) =
1

Z
exp(F (S))

F : 2V → R is a submodular or supermodular function
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Probabilistic Submodular Models

PSMs Markov Random Fields

◦ Ground set V with |V | = n ◦ Binary random vector

X = (X1, . . . , Xn)

◦ Sub- or supermodular function

F : 2V → R

◦ Set of factors

ϕi : {0, 1}Ci → R

◦ Distribution over subsets

p(S) ∝ exp(F (S))

◦ Distribution over binary vectors

p(X) ∝ exp
(∑

i ϕi (XCi)
)

Model order: maxi |Ci|
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Landscape of Models

product
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attractive
pairwise MRFs

product
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Landscape of Models

repulsive
pairwise MRFs

attractive
pairwise MRFs

product
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Landscape of Models

DPPs

repulsive
pairwise MRFs

attractive
pairwise MRFs

product
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Landscape of Models

log-submodular

DPPs

repulsive
pairwise MRFs

attractive
pairwise MRFs

product
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Landscape of Models

log-supermodular

log-submodular

DPPs

repulsive
pairwise MRFs

attractive
pairwise MRFs

product
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Landscape of Models

Probabilistic Submodular Models
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Inference

P(pixel label) P(image ∈ summary | selected)
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Inference

DPPsEx
ac
t ◦ Tractable only for limited subclasses

◦ #P-hard even for Ising models

BP
, M

F, 
...

low-order MRFs
◦ Extensively studied model class

◦ Complexity exponential in model order

L-
Fi
el
d Probabilistic

Submodular
Models

◦ Variational approach for general PSMs
[Djolonga and Krause, ’14]
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Inference

Probabilistic Submodular Models

What about sampling?
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Markov Chain Monte Carlo

◦ State space Ω

powerset of V

◦ Transition matrix P

Gibbs sampler

◦ Stationary distribution π

PSM distribution

Markov chain (St)t≥0 that moves according to P
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State Space of V = {1, 2, 3}

{}

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

V
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Gibbs Sampler

Start at S0

For t = 1, 2, . . .

◦ Select random v ∈ V

◦ Compute conditional padd

◦ Flip biased coin

padd 1− padd

St+1 ← St ∪ {v} St+1 ← St \ {v}

{}

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

V
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Gibbs Sampler

{}
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Gibbs Sampler

000

100 010 001

110 101 011

111
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Mixing time

Does the Markov chain converge?

d(t) = max{dtv (PSt , π) | S0 ∈ Ω}

Under mild assumptions (ergodicity), d(t)
t→∞−−−−→ 0

How long does it take to get “close enough” to π?

Mixing time tmix(ϵ) = min {t | d(t) ≤ ϵ}
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Goal

◦ Mixing times for general PSMs are exponential in |V | = n

◦ Exponential even for pairwise models [ Jerrum and Sinclair, ’93]

We establish sufficient conditions for sub-exponential mixing
of the Gibbs sampler on PSMs.
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Polynomial-time Mixing

F is modular if
sub-

super-
F (A) + F (B) F (A ∪B) + F (A ∩B)=

≥

≤

“Distance” from modularity

ζF := max
A,B⊆V

∣∣F (A) + F (B)− F (A ∪B)− F (A ∩B)
∣∣
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Polynomial-time Mixing

submodular constant modular

normalized
monotone
submodular

F (S) = c +
∑
v∈S

mv + f(S)

exp(F (S)) ∝
∏
v∈S

exp(mv) × exp(f(S))

PSM product interactions
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Polynomial-time Mixing

Theorem 1

For any submodular or supermodular set function F , the mixing time
of the Gibbs sampler is bounded by

tmix(ϵ) = O
(
n2 exp(ζf ) log ϵ−1

)
.
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Polynomial-time Mixing

Fi(S) = ϕ (|S ∩ Vi|)

F (S) =

L∑
i=1

Fi(S)

Easy to show that

ζf ≤ Lϕmax

|Vi| ≈ 105 vs. L ≈ 50
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Proof Outline

Method of canonical paths [Sinclair, ’92]

{}

1 2 3 4

12 13 14 23 24 34

123 124 134 234

V
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Proof Outline

For each A,B ⊆ V , need to route p(A)p(B) amount of flow
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Proof Outline

Capacity of an edge ∼ transition probability of Gibbs sampler

{}

1 2 3 4
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Proof Outline

Congestion of an edge ∼ (total flow through edge) / capacity

{}

1 2 3 4

12 13 14 23 24 34

123 124 134 234

V
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Proof Outline

tmix(ϵ) = O
(
max{congestion} log ϵ−1

)
[Sinclair, ’92]

{}

1 2 3 4

12 13 14 23 24 34

123 124 134 234

V
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Proof Outline

We bound the maximum congestion of a PSM using ζf

{}

1 2 3 4

12 13 14 23 24 34

123 124 134 234

V
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Fast Mixing

Theorem 2

For any submodular or supermodular set function F , if γf < 1, the
mixing time of the Gibbs sampler is bounded by

tmix(ϵ) ≤
1

1− γf
n
(
logn+ log ϵ−1

)
.

◦ γf = “maximum total influence”

◦ Simple way to bound γf , if f(S) =
∑

i fi(S)

◦ Closely related to Dobrushin uniqueness conditions, and influence
matrix norms [Dyer et al., ’09]

◦ Similar theorem by [Rebeschini and Karbasi, ’15]
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Evaluation

Compare against variational approach [Djolonga and Krause, ’14]

pairwise
MRF

higher-order
MRF

facility
location

log-supermodular log-supermodular log-submodular

◦ Compute p(v | S)

◦ |V | = 20 −→ compare to exact marginals
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Conclusion

Probabilistic Submodular Models

{}

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

V

◦ Identify higher-order models amenable to efficient inference

◦ First indications that sub-/supermodularity can lead to faster mixing

Poster #70
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Backup I

Start at S0

For t = 1, 2, . . .

◦ Select random v ∈ V

◦ ∆← F (St ∪ {v})− F (St \ {v})

◦ padd ← e∆/
(
1 + e∆

)
◦ Flip biased coin

padd 1− padd

St+1 ← St ∪ {v} St+1 ← St \ {v}
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Backup II

log-supermodular

log-submodular

low-order MRFs

DPPs

repulsive
pairwise MRFs

attractive
pairwise MRFs

product
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Backup III

Theorem 1

For any set function F , the mixing time of the Gibbs sampler is
bounded by

tmix(ϵ) = O
(
n2 exp(2ζF ) log ϵ−1

)
.

For any submodular or supermodular set function F , the mixing time
of the Gibbs sampler is bounded by

tmix(ϵ) = O
(
n2 exp(ζf ) log ϵ−1

)
.
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