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◦ |V | = 48

◦ 8.5k teams of 5 characters

◦ F is a (submodular) facility location diversity model [Tschiatschek et al., ’16]

F (S) =
∑

i∈S wi +
∑L

j=1 maxi∈S cij

[3] [4] [1] [5] [2]
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Constructing the Mixture

Input: Set function F , mixture size r

for i = 1 to r do
σ ← Perm(V )

mi ← SemiGradient(F , σ)

return {m1, . . . ,mr}

Perm
◦ Randomized construction

σ ← random permutation of V

◦ Iterative construction

σ ← Greedy
(
F (·)− log

i−1∑
j=1

exp(mj(·))
)

Ideally would want to minimize

E1(q) :=

�����
exp(F (·))

Z
− 1

Zq

r∑
i=1

wi exp(mi(·))

�����

E
(i)
2 (mi) :=

������
exp(F (·))−

i−1∑
j=1

exp(mi(·))

������
, i ∈ {1, . . . , r}

SemiGradient
◦ Submodularity→ natural diminishing returns property

◦ Sub-/supergradients → modular lower/upper approx. [Iyer et al., ’13]

◦ Construction works for general set functions F

Heuristic construction of q

The Combined Chain

Gibbs step with prob. α | M3 step with prob. 1− α
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Decomposition theorem [Jerrum et al., ’04]
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Class of Ising models on the complete graph (Curie-Weiss)

◦ Gibbs : γ = O
(
e−cn

)
[Levin et al., ’08]

◦ M3 : ?

◦ Combo : γ = Ω

(
logn
n

)
[Theorem 2]

◦ Gibbs : γ = Θ

(
logn
n

)
[Ding et al., ’09] ◦ M3 : γ = Ω(1) [Lemma 1]

The M3 Chain

1 Mixture q(S, T ) = q(T ) =
1

Zq

r∑
i=1

wi exp (mi(T ))

2 Log-Modulars mi(T ) =
∑
v∈T

miv

3 Metropolis

◦ Target p(S) ∝ exp(F (S))

◦ Proposal q(T )

◦ Accept with probability min
{
1, p(T )q(S)

p(S)q(T )

}

M3 = Mixture of Log-Modulars Metropolis

Proposition 1

Mixture q can approximate any distribution p arbitrarily well.

BUT may need an exponential (in n) number of components r

Contributions

◦ We propose the M3 sampler, which makes global moves to avoid bottlenecks.

◦ For a specific class of Ising models, we show that combining Gibbs and M3 results in an
exponential mixing time improvement over Gibbs.

◦ We propose a semigradient-based mixture construction and demonstrate its effective-
ness on three models learned from real-world data.

Sampling and Inference

Learn θ

Max. likelihood

Approximate∇θZ(θ)

Exact computation
#P-hard in general
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Discrete Probabilistic Models

Ground set
V = {1, . . . , n}

Data
D = {Si}mi=0, Si ⊆ V

Model higher-order interactions

p(S; θ) =
1

Z(θ)
exp

(
F (S; θ)

)

◦ F (S) = graph-cut(S) → Ising model

◦ F (S) = log |KS | → DPP
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