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Abstract

Practical problems of discrete nature are very common in machine learning;
application domains include computer vision (e.g., image segmentation), se-
quential decision making (e.g., active learning), social network analysis (e.g.,
influence maximization), and natural language processing (e.g., document
summarization). Submodular set functions have found wide applicability in
such problems for their ability to capture notions of coverage, diversity, or
exclusivity; analogously, supermodular set functions have been used to cap-
ture notions of regularity, smoothness, or co-occurrence.

While the topic of submodular optimization has receivedmuch attention,
these functions can also be used to define expressive discrete probabilistic
models, called probabilistic submodular models. Going beyond optimiza-
tion, these models allow us to quantify predictive uncertainty, and suggest a
maximum likelihood approach for learning such functions from noisy data.
Prominent examples of probabilistic submodular models include Ising and
Potts models, as well as determinantal point processes, but the general class
is much richer and little studied.

It is well known, though, that performing probabilistic inference in such
models is computationally intractable in general. In this thesis, we investi-
gate the use of Markov chain Monte Carlo sampling as a means of perform-
ing approximate inference in probabilistic submodular models.

We start with analyzing the Gibbs sampler, and establish theoretical con-
ditions that guarantee efficient convergence of this sampler in probabilis-
tic submodular models. We next propose a novel sampling procedure that
makes use of discrete semigradients to perform efficient global moves, so as
to avoid so-called state-space bottlenecks, and thus lead to improved conver-
gence behavior. Finally, we employ the aforementioned sampling methods
to approximate the likelihood gradients, and learn such models from data.
We apply our learning procedure to the problem of modeling interactions
between genetic mutations in cancer patients, and demonstrate considerable
improvement over the state of the art in many of our experimental results
on both synthetic and real cancer data.
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Zusammenfassung

Praktische Probleme diskreter Natur sind weit verbreitet im maschinellen
Lernen. Anwendungsbereiche umfassen unter anderenComputer Vision (z.B.
Bildsegmentierung), sequentielle Entscheidungsfindung (z.B. aktives Lernen),
soziale Netzwerkanalyse (z.B. Einflussmaximierung), undmaschinelle Sprach-
verarbeitung (z.B. Dokumentzusammenfassung). SubmodulareMengenfunk-
tionen werden in diesen Bereichen häufig aufgrund ihrer Fähigkeit, Über-
deckungsprobleme, Diversität oder Exklusivität zu modellieren, eingesetzt.
Analog werden Supermodulare Mengenfunktionen verwendet, um Regula-
rität, Glattheit oder das gemeinsame Auftreten verschiedener Elemente zu
modellieren.

Insbesondere der Themenbereich Submodulare Optimierung hat einige
Aufmerksamkeit erregt, dabei können submodulare Funktionen ebenso der
Definition diskreter probabilistischer Modelle dienen, auch bekannt unter
dem Namen Probabilistische Submodulare Modelle. Über ihre Optimierung
hinaus ermöglichen sie uns auch, stochastische Unsicherheit zu quantifizie-
ren und legen eine Maximum-Likelihood-Methode nahe, um sie auf Basis
verrauschter Daten zu lernen. Berühmte Beispiele Probabilistischer Submo-
dularer Modelle sind vor allem Ising und Potts Modelle sowie Determinantal
Point Processes. Doch die generelle Modellklasse ist um einiges reichhaltiger
und weniger gut untersucht.

Allerdings ist allgemeint bekannt, dass die Inferenz dieser Modelle im
Allgemeinen rechnerisch unmöglich ist. Deshalb untersuchen wir in dieser
Dissertation die Markov-Ketten-Monte-Carlo (MCMC) Verfahren zur appro-
ximativen Inferenz Probabilistischer Submodularer Modelle.

Zunächst analysieren wir Gibbs Sampling und etablieren theoretische
Voraussetzungen, unter denen dieser Algorithmus bei Probabilistischen Sub-
modularenModellen effizient konvergiert. Als nächstes stellenwir ein neuar-
tiges Verfahren zur Stichprobenentnahme vor, die diskrete Halbgradienten
gebraucht, um effiziente globale Schritte zu unternehmen. Dies vermeidet
sogenannte Zustandsraumengpässe (bottlenecks) und führt zu verbessertem
Konvergenzverhalten. Letztendlich benutzen wir zuvor erwähnte Sampling
Methoden, um Likelihood-Gradienten zu approximieren und unsere Model-
le aus Daten zu lernen. Konkret verwenden wir unser Lernverfahren, um
die Interaktionen genetischer Mutationen in Krebspatienten zu modellieren.
Sowohl für synthetische als auch echte Daten erzielen wir erhebliche Verbes-
serungen in vielen unserer Experimente im Vergleich zum neuesten Stand
der Forschung.
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1 Introduction

To introduce the main concepts of this thesis, we begin with a motivating
application from the field of cancer genomics. One of the major undertak-
ings in large-scale cancer genomics research projects, such as The Cancer
Genome Atlas (TCGA, 2008), is obtaining and analyzing genetic data from
cancer patients. Beyond investigating the occurrence of genetic mutations
one by one, it is of particular interest to discover meaningful interactions
between groups of mutations.

For example, it has been observed that, depending on the type of can-
cer, there are groups of specific mutations that are approximately mutually
exclusive, that is, most of the time no more than one mutation from a partic-
ular group occurs in the same patient (Yeang et al., 2008). Biologically this
is explained by the fact that so-called driver mutations, i.e., mutations that
are crucial in cancer development, often occur in a limited number of bio-
logical pathways, and mutations that affect a specific pathway tend to not
occur in the same patient. Conversely, discovering groups of mutually exclu-
sive mutations may be helpful in uncovering the structure of cancer-related
pathways, and identifying important groups of driver mutations.

More concretely, assume that we are given a data set of n mutations and
m patients. In the simplest case, the data set contains only binary informa-
tion about whether or not each mutation i ∈ {1, . . . ,n} occurs in each pa-
tient j ∈ {1, . . . ,m}, which can be encoded using a binary matrix, as shown
at the top of Figure 1.1. At the bottom of the same figure we show a per-
muted version of the previous matrix, which illustrates that the first four
mutations are approximately mutually exclusive. Searching for such groups
in data sets containing hundreds or thousands of mutations is a combina-
torially daunting task. Crucially, the available data is quite limited—TCGA
data sets range from a few hundred to a couple of thousand patients—and
contains significant noise introduced by the employedmeasurement and pre-
processing procedures.

Many other practical machine learning problems are of similar nature,
that is, like the problem described above, they consist in choosing one or
more subsets out of a set of finite elements. Examples include sensor place-
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Figure 1.1: (top) An example binary mutation matrix, in which each shaded
entry (i, j) indicates that mutation i occured in patient j. (bottom) The same
matrix with permuted rows and columns to illustrate the mutual exclusivity
between the first four mutations.

ment (Krause et al., 2006), active learning (Golovin &Krause, 2011), influence
maximization (Kempe et al., 2003), image segmentation (Jegelka & Bilmes,
2011), and document summarization (Lin & Bilmes, 2011). While discrete
optimization methods have been successful in many of these applications,
it is often advantageous to go beyond optimization, and consider discrete
probabilistic models.

The probabilistic nature of such models offers a way to deal with noisy
data, and provides a flexible framework to robustly answer queries pertain-
ing to the problem at hand. Rather than obtaining a single optimum as the
solution to our problem, we have a way to quantify our uncertainty about
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the most likely configurations, and make robust decisions based on comput-
ing various marginal and conditional probabilities of interest. In addition,
the use of probabilistic models suggests a principled approach for learning
the potentially complex interactions present in the data, namely maximiz-
ing the likelihood of the model parameters. Finally, constraining ourselves
to specific model classes allows us to incorporate prior assumptions about
the problem structure, and alleviate the scarce data issue.

1.1 Probabilistic Submodular Models

One one hand, past research on discrete probabilistic models has primarily
focused on models defined by pairwise interactions, such as Markov ran-
dom fields (Koller & Friedman, 2009). In many applications, however, it is
of importance to directly capture higher-order dependencies between larger
groups of variables. For example, in our aforementioned application, being
able to directly encode larger groups of mutually exclusive mutations pro-
vides a potentially sparser and easier to interpret representation, while at
the same time it allows for a richer structure of interactions.

On the other hand, in the context of discrete optimization, there has
been extensive research on submodular set functions. Submodularity is a
diminishing returns property that has been used to encode repulsiveness, di-
versity, or exclusivity. Analogously, its counterpart, supermodularity, has
been used to encode attractiveness, cooperation, or co-occurence. Notably,
there exist well-known efficient algorithms for both approximate submodu-
lar maximization as well as submodular minimization.

Merging these two directions naturally leads us to consider probabilistic
submodular models (Djolonga & Krause, 2014; Gotovos et al., 2015), a class
of discrete probabilistic models defined by submodular (or supermodular)
functions. More concretely, given a ground setV = {1, . . .n}, a probabilistic
submodular model is a distribution over subsets ofV of the form

p(S;θ ) = 1

Z (θ ) exp (F (S;θ )) ,

for all S ⊆ V , where F is a submodular or supermodular function parame-
terized by θ , and Z (θ ) is the normalizer of the distribution. Distributions of
this form generalize some well-studied model classes, such as Ising models
and determinantal point processes.
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1.2 Thesis Topic & Contributions

Both learning the model parameters θ from data, as well as quantifying un-
certainty and making decisions with the learned distribution, boil down to
the fundamental task of probabilistic inference, that is, computing the nor-
malizer Z or various marginal probabilities of such distributions, a problem
that is known to be computationally intractable in general. The main topic
of this thesis is to investigate the use of Markov chain Monte Carlo sampling
as a means of performing approximate inference in probabilistic submodular
models.

The primary contributions of this thesis can be summarized as follows.

Chapter 3 We analyze the Gibbs sampler in probabilistic submodular models,
and prove sufficient theoretical conditions for polynomial-time, and
fast—O(n logn)—mixing.

Chapter 4 We propose a novel sampler that makes use of discrete semigradi-
ents to perform efficient global moves in the state space to avoid
bottlenecks, thus leading to improvedmixing compared to the Gibbs
sampler.

Chapter 5 We use sampling to learn probabilistic submodular models via ap-
proximate likelihood maximization, and apply this procedure to the
problem ofmodeling interactions between genetic mutations in can-
cer patients. Many of our results demonstrate considerable improve-
ment over the state of the art.

1.3 Collaborators

The topic of sampling from probabilistic submodular models was conceived
by my advisor, Prof. Andreas Krause, who has also contributed to most parts
of this thesis by providing large amounts of input and feedback over the
years. Parts of the theoretical analysis in Chapter 3 and Chapter 4 were
done in collaboration with Prof. Hamed Hassani. The work of Chapter 4
was done under the guidance of Prof. Stefanie Jegelka, who also contributed
to the theoretical analysis of this chapter. Finally, regarding the application
presented in Chapter 5, I have had several fruitful discussions with Gideon
Dresdner, Dr. Kjong Lehmann, and Prof. Gunnar Rätsch.



2 Background

2.1 Submodularity

Modeling notions such as coverage, representativeness, or diversity is an
important challenge in many machine learning problems. These notions
are well captured by submodular set functions. Analogously, supermodu-
lar functions capture notions of smoothness, regularity, or cooperation. As
a result, submodularity and supermodularity have found numerous applica-
tions in machine learning problems of discrete nature, akin to concavity and
convexity in continuous optimization.

2.1.1 Basics

We consider set functions F : 2V → R, whereV is a finite ground set of size
|V | = n. Without loss of generality, if not otherwise stated, we will hereafter
assume that V = [n] := {1, 2, . . . ,n}. Adding an element i to a set S results
in a difference in the value of F that is called marginal gain, and is defined
as follows.

Definition 2.1 (Marginal gain). For any i ∈ V , and S ⊆ V , the marginal gain
of adding i to S is

F (i | S) := F (S ∪ {i}) − F (S).

Intuitively, submodularity expresses a notion of diminishing returns; that
is, adding an element to a larger set provides less benefit than adding it to a
smaller one.

Definition 2.2 (Submodularity). F is submodular if, for any S ⊆ T ⊆ V , and
any v ∈ V \T , it holds that

F (v |T ) ≤ F (v | S).

The following is an equivalent definition of submodularity that will also be
useful later in the thesis.

5



6 2. Background

Definition 2.3 (Submodularity). F if submodular if, for anyA,B ⊆ V , it holds
that

F (A ∪ B) + F (A ∩ B) ≤ F (A) + F (B).

Supermodularity is defined analogously by reversing the sign of the above
inequalities.

Definition 2.4 (Supermodularity). A function F is supermodular if and only
if −F is submodular.

If a function m is both submodular and supermodular, then it is called
modular. Modular functions can be seen as the discrete analogue of linear
continuous functions, and can be defined using a sum over real-numbered
weights.

Definition 2.5 (Modularity). A functionm is called modular if it is both sub-
modular and supermodular; it can be written as

F (S) = c +
∑
i ∈S

mi ,

where c ∈ R, andmi ∈ R, for all i ∈ V .

A function is called monotone when adding an element never decreases
its value.

Definition 2.6 (Monotonicity). A function F is monotone if, for any i ∈ V ,
and S ⊆ V , it holds that

F (i | S) ≥ 0.

Furthermore, a function F is called normalized if F (�) = 0. In some of
our results we will use the fact that we can separate the non-normalized, and
non-monotone parts of any submodular function according to the following
decomposition.

Definition 2.7 (Submodular decomposition). Any submodular function F can
be decomposed as

F (S) = c +m(S) + f (S),

for all S ⊆ V , where c ∈ R is a constant,m is a normalized modular function,
and f is a normalized monotone submodular function.

An analogous decomposition using a monotone supermodular function
f is possible for any supermodular function F as well.
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Algorithm 2.1: Greedy submodular maximization

Input :Set function F , cardinality constraint k
1 S∗←�
2 for j = 1 to k do

3 Select i∗ ∈ argmaxi ∈V \S∗ F (i | S∗)
4 S∗← S∗ ∪ {i∗}

5 return S

2.1.2 Submodular Maximization

Perhaps the most celebrated result pertaining to submodular functions is the
approximation guarantee for maximizing a monotone submodular function
under a cardinality constraint. Although the maximization problem itself is
NP-hard, Nemhauser et al. (1978) showed that the simple greedy Algorithm
2.1, which repeatedly adds the element with the maximum marginal gain,
identifies a solution that is within a factor of 1 − 1/e of the optimal value.

Theorem 2.8 (Nemhauser et al., 1978). For any normalized monotone submo-
dular function F , the solution S∗ returned by Algorithm 2.1 satisfies

F (S∗) ≥
(
1 − 1

e

)
max

S ⊆V , |S | ≤k
F (S).

Numerous extensions and generalizations of this result have been stud-
ied, including approximation guarantees for the non-monotone setting (Feige
et al., 2011; Buchbinder et al., 2014); for different kinds of constraints, such
as matroid (Lee et al., 2009; Calinescu et al., 2011) and knapsack (Chekuri
et al., 2011); and for the adaptive setting (Golovin & Krause, 2011; Gotovos
et al., 2015).

2.2 Discrete Probabilistic Models

As stated in the introduction, in the interest of venturing beyond discrete
optimization, we consider discrete probabilistic models, that is, distributions
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over finite subsets of the ground setV defined as

p(S;θ ) = 1

Z (θ ) exp (F (S;θ )) ,

for all S ⊆ V . The function F is parameterized by a vectorθ , andZ (θ ) denotes
the normalizing constant of the distribution, which is also often referred to
as the partition function, and defined as

Z (θ ) :=
∑
S ⊆V

exp (F (S;θ )) .

An alternative and equivalent way of defining distributions of the above
form is via binary random vectors X ∈ {0, 1}n . If we define the transfor-
mation from vectors to sets, V (X ) := {v ∈ V | Xv = 1}, it is easy to see that
the distribution pX (X ) ∝ exp(F (V (X ))) over binary vectors is isomorphic to
the above distribution over sets. With a slight abuse of notation, we will use
F (X ) to denote F (V (X )), and use p to refer to both distributions.

For large parts of this thesis, we will focus on such distributions with F
being submodular or supermodular.

Definition 2.9 (Probabilistic submodular model). A probabilistic submodular
model (Djolonga & Krause, 2014; Gotovos et al., 2015) is a distribution of the
form

p(S;θ ) ∝ exp (F (S;θ )) ,

for all S ⊆ V , where F is a submodular or supermodular function.

The resulting distributions of this form are also referred to as log-submo-
dular and log-supermodular respectively. Note that the most likely config-
urations of these distributions directly correspond to the maximizers of the
sub- or supermodular function F . Some commonly used discrete models fall
under these categories; for example, the standard Ising and Potts models are
log-supermodular, while determinantal point processes are log-submodular.
We now present some examples models in more detail.

Example 2.10 (Product distribution). Product or log-modular distributions de-
scribe a collection ofn independent binary random variables. The corresponding
function F is modular, that is, F (S) = c +

∑
i ∈S mi , and the partition function

can be derived in closed form as

Z = exp(c)
∏
i ∈V
(1 + exp(mi )) .
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Consequently, a log-modular distribution can be written as

p(S) =
exp

(∑
i ∈S

mi

)
∏
i ∈V
(1 + exp(mi ))

.

Note that the constant c does not appear in the distribution. More generally, the
discrete models we consider are invariant to adding a constant to F , since that
constant gets canceled by the partition function Z .

Example 2.11 (Ising model). In its simplest form, the (ferromagnetic) Ising
model (Ising, 1925) is defined via an undirected graph (V , E), and a set of “at-
tractive” pairwise potentials

σi , j (S) := 4 (⟦{i ∈ S}⟧ − 0.5) (⟦{j ∈ S}⟧ − 0.5),
for all {i, j} ∈ E. We use ⟦·⟧ to denote the Iverson bracket, which has value
1 when the enclosed condition is true, and 0 otherwise. We can see that σi , j
takes value 1 if S contains both or neither of i, j, and value −1 if it contains
only one of i or j. It follows that each σi , j is a supermodular set function. The
Ising distribution is defined as

p(S) ∝ exp
©«

∑
{i , j }∈E

σi , j (S)
ª®¬ .

It is log-supermodular, since each σi , j is supermodular, and supermodular func-
tions are closed under addition.

We can also define the anti-ferromagnetic Ising model by a different set of
“repulsive” pairwise potentials σ̂i , j (S) := −σi , j (S). In this case, each σ̂i , j is a
submodular set function, and the resulting distribution is log-submodular.

Ising models, and Potts models (Potts, 1952), which generalize Ising models
from binary to k-state variables, originate in statistical physics, but have also
found numerous applications in computer vision (Wang et al., 2013).

Example 2.12 (Determinantal point process). A determinantal point process
(Lyons, 2003; Kulesza & Taskar, 2012) is defined via a positive semidefinite ma-
trix L ∈ Rn×n , and has a distribution of the form

p(S) = det(LS )
det(L + I ) ,
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where LS denotes the square submatrix indexed by set S , and I is the n×n iden-
tity matrix. (We only describe here the form known as an L-ensemble.) Since
F (S) = log det(LS ) is a submodular function, determinantal point processes
(DPPs) are log-submodular distributions. Interestingly, as we can see from the
above equation, the partition function Z = det(L + I ) can be easily computed,
which makes DPPs one of very few known tractable higher-order models.

DPPs originate in statistical physics, but have been used to encourage diver-
sity in various machine learning applications, such as image and video sum-
marization (Kulesza & Taskar, 2012; Gong et al., 2014).

Example 2.13 (FLiD). Tschiatschek et al. (2016) defined the class of facility lo-
cation diversity (FLiD) models by means of facility location functions, that is,
functions of the form

F (S) =
∑
i ∈S

ui +
L∑
j=1

(
max
i ∈S

wi j −
∑
i ∈S

wi j

)
,

wherewi j ≥ 0. This is a submodular set function, therefore the resulting distri-
bution p(S) ∝ exp(F (S)) is log-submodular.

The above function F is parameterized by a utility vector u ∈ Rn , and
a diversity matrix w ∈ Rn×L . Increasing the utility ui of an element i ∈ S
intuitively increases the probability of all sets containing that element, therefore
also increases its marginal probability. The diversity matrixw can be thought
of as consisting of L latent dimensions (columns). Elements of the ground set
that have large value in the same column j will tend to appear together less
frequently, since the termmaxi ∈S wi j −

∑
i ∈S wi j will be negative for sets S that

contain combinations of such items. The structure of these models make them
ideal for capturing mutual exclusivity, since the high-valued entries of each
column of thew matrix intuitively encode a group of approximately mutually
exclusive elements.

In Figure 2.1, we show an example FLiD model on ground set V = {1, 2, 3}.
Note how the high value of u3 = 1 increases the probability of sets containing
element 3, but the high values ofw22 = w32 = 2 significantly decrease the prob-
ability of sets {2, 3} and V . Similar observations can be made about the lower
probability of set {1, 2} due tow11 = w21 = 1. In this sense, the model encodes
two approximately mutually exclusive groups, namely {1, 2}, and {2, 3}.

Example 2.14 (FLDC). Djolonga et al. (2016b) extended the FLiD model described
above to include an additional matrix v that encodes “attraction” between
groups of elements. The additional term is analogous to the original facility



112.2 Discrete Probabilistic Models

u w

1

2

3 0.0

1.0

1.0

2.0

2.0

0.0

1.0

-1.0

-1.0
F (∅) = 0

F ({1}) = −1

F ({2}) = −1

F ({3}) = 1

F ({1, 2}) = −3

F ({1, 3}) = 0

F ({2, 3}) = −2

F (V ) = −4

∅ {1} {2} {3} {1, 2} {1, 3} {2, 3} V
0

0.2

0.4

0.6

0.8

1

S

p
(S
)

Figure 2.1: An example FLiD model with L = 2 dimensions on ground set
V = {1, 2, 3}, the corresponding values of the facility location function F (S),
for all S ⊆ V , and the resulting distribution p(S) ∝ exp(F (S)).
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location function, except that its sign is reversed. The corresponding function of
the resulting facility location diversity and complements (FLDC) model is of the
following form,

F (S) =
∑
i ∈S

ui +
L∑
j=1

(
max
i ∈S

wi j −
∑
i ∈S

wi j

)
−

K∑
j=1

(
max
i ∈S

vi j −
∑
i ∈S

vi j

)
.

We have now L latent dimensions encoding diversity or mutual exclusivity, and
K latent dimensions encoding complementarity or co-occurrence. Note that the
added term is a supermodular function, therefore F (S) is neither submodular
nor supermodular anymore. It follows that the distribution F (S) ∝ exp(F (S))
is not a probabilistic submodular model.

In Figure 2.2, we show an example FLDCmodel, which has the sameu andw
as our previous FLiD example, but additionally contains an attractive matrixv of
dimension K = 1. The single latent dimension encodes co-occurrence between
elements 1 and 3. While the only function values that change from before are
F ({1, 3}) and F (V ), note that all probabilities p(S) are different than those of
Figure 2.1, because of the new partition function Z .

2.2.1 Inference

The basic tasks we would like to perform in a given discrete probabilistic
model are computing various marginal probabilities of interest, and comput-
ing the partition function Z . These two tasks are more often that not tightly
related to each other, and many algorithms that accomplish one of them can
also accomplish the other with minor modifications. We therefore refer to
them jointly as probabilistic inference.

There are very few classes of discrete probabilisticmodels that are known
to be amenable to tractable exact inference. The most prominent such class
is that of determinantal point processes that we described above. In fact, it
is well known that performing exact inference in general probabilistic sub-
modular models is a computationally intractable problem. Even for Ising
models, Jerrum & Sinclair (1993) showed that exactly computing the par-
tition function is a #P-hard problem. Worse than that, they showed that
there can be no FPRAS for these models unless RP = NP. However, they also
proposed a sampling-based procedure for performing approximate inference
in ferromagnetic Ising models under some conditions. Several other condi-
tional results for approximate sampling-based inference are known for Ising
models (Ch. 15, Levin et al., 2008b). A generalization of determinantal point
processes, called strongly Rayleigh distributions (Borcea et al., 2008), are the
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Figure 2.2: An example FLDC model with L = 2 and K = 1 dimensions on
ground set V = {1, 2, 3}, the corresponding values of F (S), for all S ⊆ V ,
and the resulting distribution p(S) ∝ exp(F (S)). The two function values
F ({1, 3}) and F (V ) are the only ones that change compared to the previous
FLiD example.
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result of a long line of research into the notion of negative dependence be-
tween random variables (Pemantle, 2000; Liggett, 2002;Wagner, 2008). It has
been shown that one can efficiently sample from strongly Rayleigh distribu-
tions using a simple Metropolis sampler (Anari et al., 2016; Li et al., 2016).

Iyer & Bilmes (2015) considered a different class of probabilistic models,
called submodular point processes, which are also defined via submodular
functions, and are of the form p(S) ∝ F (S). They showed that inference in
these models is, in general, also a hard problem, and provided approxima-
tions and closed-form solutions for some subclasses.

Besides sampling, the primary alternative for performing approximate
inference in discrete models have been variational methods. The fundamen-
tal idea of thesemethods is to choose a distribution among a tractable class to
approximate the true distribution at hand. There has been extensive research
on variational methods for low-order models, particularly for exponential
families; manywell-known algorithms, such as belief propagation andmean-
field methods, fall under this category. (For an introductory treatment we
refer to the monograph byWainwright & Jordan (2008).) More recently, Djo-
longa & Krause (2014) proposed a variational approach for performing ap-
proximate probabilistic inference in probabilistic submodular models based
on log-modular approximations of the distribution.

2.3 Sampling

In this thesis, we focus on Markov chain Monte Carlo sampling algorithms,
which are based on performing randomly selected moves in a state space Ω
to approximate probabilistic quantities of interest. The visited states (X0,X1,
. . .) form a Markov chain, which under mild conditions converges to a sta-
tionary distribution p (see Theorem 4.9, Levin et al., 2008b). Crucially, the
probabilities of transitioning from one state to another are carefully chosen
to ensure that the stationary distribution is identical to the distribution of
interest. In our case, the state space is the powerset of our ground set, that
is, Ω := 2V , and we want to construct a chain over subsets of V that has
stationary distribution p. We denote by P : Ω×Ω → R the transition matrix
of a Markov chain, that is,

P(S,R) := P [Xt+1 = R |Xt = S] ,
for all S,R ∈ Ω.

We next present two well-known chains that we will use throughout this
thesis. Both of them are by construction reversible with respect to p(·) ∝
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exp(F (·)), that is, they satisfy the detailed balance conditions

p(S)P(S,R) = p(R)P(R, S),

for all S,R ∈ Ω. It follows that they asymptotically converge to the unique
stationary distribution p.

Gibbs sampler. One of the most commonly used chains is the (single-site)
Gibbs sampler, also known as the Glauber dynamics, which adds or removes
a single element at a time. It first selects uniformly at random an element
i ∈ V ; subsequently, it adds or removes i to the current state Xt according
to the probability of the resulting state, as shown in Algorithm 2.2. More
concretely, we define an adjacency relation S ∼ R on the elements of the
state space, which denotes that S and R differ by exactly one element, i.e.,��|R | − |S |�� = 1. It follows that each S ∈ Ω has exactly n neighbors. We also
define

pS→R =
exp(F (R))

exp(F (R)) + exp(F (S)) .

Then, the transition matrix PG of the Gibbs sampler is

PG(S,R) =


1

n
pS→R , if R ∼ S

1 −
∑
T∼S

1

n
pS→T , if R = S

0 , otherwise

.

In Figure 2.3we illustrate one step of the Gibbs sampler on a small ground
setV = {1, 2, 3}. Assuming that the current state isXt = {2}, there are three
potential new next states, namely �, {1, 2}, or {2, 3}, which are the three
neighbors of Xt in the state space. The Gibbs sampler first selects one of the
neighbors uniformly at random, and then either stays atXt or moves to that
neighbor according to the corresponding conditional probability.

It is important to note here that the computed conditional probabilities
do not depend on the partition function Z , thus the chain can be simulated
efficiently, even though Z is unknown and hard to compute. Moreover, it is
easy to see that

∆F (i |Xt ) = ⟦i < Xt⟧F (i |Xt ) + ⟦i ∈ Xt⟧F (i |Xt \ {i}).

Therefore, the Gibbs sampler only requires a black box for themarginal gains
of F , which are often faster to compute in practice than the values of F .
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Algorithm 2.2:The Gibbs sampler for prob. submodular models.

Input :Ground set V , distribution p(·) ∝ exp(F (·))
1 X0← random subset of V
2 for t = 0 toM do

3 Draw i ∼ Unif(V )
4 padd← exp(∆F (i |Xt ))/(1 + exp(∆F (i |Xt )))
5 Draw z ∼ Unif([0, 1])
6 if z ≤ padd then

7 Xt+1← Xt ∪ {i}
8 else

9 Xt+1 ← Xt \ {i}

∅

{1} {2} {3}

{1, 2} {1, 3} {2, 3}

V

Xt

Figure 2.3: An illustration of a single Gibbs step on ground setV = {1, 2, 3},
and current state Xt = {2}. We first choose one of the neighbors of Xt
uniformly at random, and then either stay at Xt or move to that neighbor
according to the corresponding conditional probability.
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Algorithm 2.3:The Metropolis sampler for prob. sub. models.

Input :Ground set V , distribution p(·) ∝ exp(F (·)), proposal q
1 X0← random subset of V
2 for t = 0 toM do

3 Draw S ∼ q(· |Xt )
4 pacc ← min

{
1,

q(S | R) exp(F (R))
q(R | S ) exp(F (S ))

}
5 Draw z ∼ Unif([0, 1])
6 if z ≤ pacc then

7 Xt+1← S

8 else

9 Xt+1 ← Xt

Metropolis sampler. Anotherwell-studied chain is theMetropolis chain (Me-
tropolis et al., 1953; Hastings, 1970), which, like the Gibbs sampler, also per-
forms local moves between neighboring states, but does so following a some-
what different procedure. The Metropolis chain first draws a candidate next
state according to a proposal distribution q(· |Xt ); then, it either accepts the
proposed state or not according to the probability ratio of the two states
corrected by the proposal ratio, as shown in Algorithm 2.3.

More concretely, if we define the acceptance probability

pacc(S,R) := min

{
1,
q(S | R)p(R)
q(R | s)p(S)

}
= min

{
1,
q(S | R) exp(F (R))
q(R | s) exp(F (S))

}
,

then the transition matrix of the Metropolis chain can be defined as follows,

PM(S,R) =


q(R | S)pacc(S,R) , if R , S

1 −
∑
T,S

q(T | S)pacc(S,T ) , otherwise
.

As with the Gibbs sampler, the computed acceptance probabilities do not
depend on the partition function Z , therefore the chain can be simulated
efficiently.



18 2. Background

Approximating expectations. Approximating quantities of interest using
MCMC methods is largely based on using time averages to estimate expec-
tations over the desired distribution. In particular, we estimate the expected
value of function д : Ω → R by

Ep [д(X )] ≈
1

M

M∑
r=1

д(Xs+r ). (2.1)

For example, to estimate the marginal probability P(i ∈ S), for some i ∈ V ,
we can define д(S) = ⟦i ∈ S⟧, for all S ∈ Ω. The point in time s ∈ N,
after which we start taking samples into account, is often referred to as the
burn-in time of the chain. Our goal is to perform marginal inference for the
distributions described above. Concretely, for some fixed A ⊆ B ⊆ V , we
would like to compute the probability of sets S that contain all elements of
A, but no elements outside of B, that is, p(A ⊆ S ⊆ B).

Approximating the partition function. There are two straightforwardmeth-
ods for estimating the partition function Z using sampling. The first, impor-
tance sampling (IS) (Neal, 2001), assumes that we have a tractable distribu-
tion π : 2V → R, from which we draw M samples {xs+1, . . . , xs+M }. Then,
we can estimate the partition function of p(·) ∝ exp(F (·)) by

ZIS :=
1

M

M∑
r=1

exp(F (xs+r ))
π (xs+r )

. (2.2)

Although this is known to be an unbiased estimator of Z , it often has high
variance, and tends to underestimate the true value of the partition function.

The second method, reverse important sampling (RIS) (Gelfand & Dey,
1994), works in the opposite direction, by first sampling M samples {xs+1,
. . . , xs+M } from the target distribution p, and then estimating the partition
function by

ZRIS :=

(
1

M

M∑
r=1

π (xs+r )
exp(F (xs+r ))

)−1
. (2.3)

Similarly to the IS estimator, the RIS estimator also often has high variance,
but, in contrast to IS, it tends to overestimate the true value of the partition
function. Taking the average 0.5ZIS + 0.5ZRIS is a natural way to obtain
an improved estimate, while other more involved related methods have also
been proposed (Burda et al., 2015; Liu et al., 2015).
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Mixing time. The choice of burn-in time s and number of samplesM in (2.1)–
(2.3) presents a tradeoff between computational efficiency and approxima-
tion accuracy. It turns out that the effect of both s and M is largely depen-
dent on a fundamental quantity of the chain calledmixing time (Levin et al.,
2008b).

The mixing time of a chain quantifies the number of iterations t required
for the distribution of Xt to get close to the stationary distribution p. More
formally, it is defined as

tmix(ϵ) := min {t | d(t) ≤ ϵ} ,

where d(t) denotes the worst-case (over the starting state X0 of the chain)
total variation distance between the distribution of Xt and π , that is,

d(t) := max
X0∈Ω

‖P t (X0, ·) − p‖TV .

A generalization of Chebyshev’s inequality to correlated Markov chain sam-
ples (see Theorem 12.19, Levin et al., 2008b) shows that upper bounding the
mixing time is sufficient to guarantee efficient approximate sampling-based
marginal inference.





3 Gibbs Sampling in Prob. Submodular Models

The majority of the content of this chapter has already been published in con-
ference proceedings (Gotovos et al., 2015).

3.1 Introduction

In this chapter, we consider one of the simplest and most commonly used
sampling procedures, namely the (single-site) Gibbs sampler, which is also
known as the Glauber chain. While there has been extensive work on the
properties of the Gibbs sampler on low-order models, for example, Ising
models (Levin et al., 2008b, Ch. 15), not much is known about its behav-
ior on higher-order models, except that, in general, we cannot hope for sub-
exponential mixing times (Jerrum & Sinclair, 1993). In fact, we show that
even for probabilistic submodular models defined by monotone submodular
functions, there are simple model families with exponential lower bounds
on mixing time.

Our goal is to establish theoretical conditions that guarantee rapid mix-
ing of the Gibbs sampler in probabilistic submodular models, and at the same
time, investigate in what way the properties of sub- and supermodularity af-
fect the resulting conditions.

We focus on distributions of the form

p(S) = exp(βF (S))
Z

, (3.1)

for all S ⊆ V , where F is submodular or supermodular. For now we assume
that F is already learned or given, and omit the parameter vector θ from
the notation. Furthermore, we have introduced a scaling parameter β ≥ 0,
which is referred to as inverse temperature, and will be useful for our sub-
sequent theoretical analysis. Intuitively, β controls the concentration of p
around the high-value sets of F . When β = 0, p is the uniform distribution
over 2V ; when β → ∞, the mass of p fully concentrates around the maxi-
mizers of F .

21
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3.2 Hardness of Inference

Performing exact inference in probabilistic submodular models is, in gen-
eral, computationally infeasible. Only for very few exceptions, such as de-
terminantal point processes, is exact inference possible in polynomial time
(Kulesza & Taskar, 2012). As we mentioned before, even approximating the
partition function of general Ising models—a subclass of probabilistic sub-
modular models—is a hard problem; in particular, there is no FPRAS for this
problem, unless RP = NP (Jerrum & Sinclair, 1993). This implies that the
mixing time of any Markov chain with such a stationary distribution will, in
general, be exponential in the size n of the ground set.

3.2.1 Example: Log-submodular Grid

To further highlight the hardness of inference in the general models we con-
sider, we show that even for distributions defined through a seemingly be-
nign subclass of submodular functions, mixing times can be exponential in
n.

For the purposes of the following proposition, we will use a Metropolis
chain (see Section 2.3), rather than a Gibbs chain, to simplify the exposition.
While the two chains are not identical, they share the same principle of mak-
ing local moves by considering ratios of probabilities of neighboring states.

Proposition 3.1. There is a family of monotone submodular functions (Fn)n ,
such that, for the corresponding log-submodular family of distributions (pn)n ,
the Metropolis chain has mixing time

tmix = Ω(2n/2),

for any value of β .

Proof. The functions used to prove the above lemma are based on the follow-
ing construction. For any even n ≥ 2, letVn = {1, . . . ,n}, Rn = {1, . . . ,n/2},
and Cn = {n/2 + 1, . . . ,n}. To define function Fn : 2Vn → R, we conceptu-
ally use a n/2×n/2 square grid, whose rows are indexed by Rn and columns
by Cn . Each cell (i, j) of the grid is considered to be covered, if either row
i ∈ R or column j ∈ C is selected. Formally, we define Fn by

Fn(S) =
4

n2
�� {(i, j) ∈ R ×C | i ∈ S ∨ j ∈ S}

��,
for any S ⊆ Vn , which results in Fn(Vn) = 1. Figure 3.1 shows an example of
such a grid construction.
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Figure 3.1: Example grid for n = 8 with the cells that correspond to
F8({1, 3, 7}) = 10/16 shown shaded.

Furthermore, if we define Rn = {S ⊆ V | R ⊆ S}, Cn = {S |C ⊆ S ⊆ V },
and Kn = 2V \ (Rn ∪ Cn), then the following properties hold.

|Rn | = |Cn | = 2n/2 (3.2)
Rn ∩ Cn = {V } (3.3)
∀S ∈ Rn ∪ Cn, f (S) = 1 (3.4)
∀S ∈ Kn, f (S) ≤ 1 − 4/n2. (3.5)

Assume a Metropolis chain with transition matrix P , and stationary distribu-
tion pn(S) ∝ exp(βFn(S)). To prove a lower bound on the mixing time of this
chain, we are going to upper bound the bottleneck ratio (Levin et al., 2008a,
Ch. 7) of set Tn = Rn \ {V }, defined as

Φ(Tn) =
Q(Tn,T c

n )
π (Tn)

=
Q(Tn, Cn) +Q(Tn,Kn)

π (Tn)
,

where T c
n = 2V \ Tn is the complement of Tn . We now compute or bound

each of the terms π (Tn), Q(Tn, Cn), and Q(Tn,Kn).

• Computing π (Tn):

π (Tn) = |Tn |
eβ

Z
by (3.4)

= (2n/2 − 1)e
β

Z
. by (3.2)
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Note that, by an analogous derivation, we get π (Cn \ {V }) = π (Tn) and, by
(3.3),

π (Tn) + π (Cn \ {V }) < 1

⇒ π (Tn) < 0.5.

• Computing Q(Tn, Cn):

Q(Tn, Cn) =
∑
x ∈Tn

Q(x, Cn)

=
∑
x ∈Tn

Q(x, {V }) by (3.3)

=
∑
x ∈Tn

1

2n

eβ

Z
by (3.4)

= n
1

2n

eβ

Z
=

eβ

2Z
.

• Bounding Q(Tn,Kn):

Q(Tn,Kn) =
∑
x ∈Tn

Q(x,Kn)

≤
∑
x ∈Tn

1

2n

eβ−4β/n
2

Z
by (3.5)

=
2n/2 − 1

2n

eβ−4β/n
2

Z
. by (3.2)

• Bounding Φ(Tn):

Φ(Tn) ≤
1

2n/2 − 1

(
1

2
+
(2n/2 − 1)e−4β/n2

2n

)
=

1

2(2n/2 − 1)
+
e−4β/n

2

2n
.

Using Theorem 7.3 (Levin et al., 2008b), it follows that

tmix(1/4) ≥
1

4Φ(Tn)
= Ω(2n/2).

�
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3.3 Polynomial-time Mixing

Our first result provides conditions that guarantee polynomial mixing times
in the sizen of the ground set. Aswewill see, the conditions depend crucially
on the following quantity, which is defined for any set function F : 2V → R,

ζF := max
A,B⊆V

|F (A) + F (B) − F (A ∪ B) − F (A ∩ B)| .

Intuitively, ζF quantifies a notion of distance to modularity. For submodular
and supermodular functions, ζF represents the worst-case amount by which
F violates the submodular inequality, and ζF = 0 if and only if F is modular
(cf. Section 2.1).

It is also important to note that, for submodular and supermodular func-
tions, ζF depends only on the monotone part of F ; if we decompose F ac-
cording to Definition 2.7, then it is easy to see that ζF = ζf . A trivial
upper bound on ζF , therefore, is ζF ≤ f (V ). Another quantity that has
been used in the past to quantify the deviation of a submodular function
from modularity is the curvature (Conforti & Cornuejols, 1984), defined as
κF := 1 − mini ∈V (F (i |V \ {i})/F (i)). Although of similar intuitive mean-
ing, the multiplicative nature of its definition makes it significantly different
from ζF , which is defined additively.

3.3.1 Examples

Concave over modular. As an example of a function class with ζF indepen-
dent of n, assume a ground set V =

⋃L
ℓ=1Vℓ , and consider functions of the

form

F (S) =
L∑

ℓ=1

φ(|S ∩Vℓ |),

where φ : R → R is a bounded concave function, e.g, φ(x) = min{φmax, x}.
Functions of this form are submodular, and have been used in applications
such as document summarization to encourage diversity (Lin&Bilmes, 2011).
It is easy to see that ζF ≤ Lφmax, which shows that ζF is independent of n.

FLiD. For the FLiDmodel (see Example 2.13), we have f (S) = ∑L
j=1 maxi ∈S wi j ,

therefore we get ζF ≤ f (V ) = ∑L
j=1w

max
j , wherewmax

j = maxi ∈V wi j . Since
the values ofw depend primarily on the number of repulsive groups, rather
than the size of the ground set, we expect ζF to grow much slower than n in
most practical applications.
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FLDC. For the FLDCmodel (see Example 2.14), although F is neither submodular
nor supermodular in general, we can still write it as

F (S) =m(S) + д(S) + h(S),

wherem is a modular function, д(S) := ∑L
j=1 maxi ∈S wi j is submodular, and

h(S) := −∑K
j=1 maxi ∈S vi j is supermodular. Using the triangle inequality in

the definition of ζF , we get that ζF ≤ д(V )+h(V ) = ∑L
j=1w

max
j +

∑K
j=1v

max
j ,

wherewmax
j = maxi ∈V wi j , and vmax

j = maxi ∈V vi j .

3.3.2 Mixing Time Bound

The following theorem establishes a bound on the mixing time of the Gibbs
sampler run on models of the form (3.1). The bound is exponential in ζF , but
polynomial in n.

Theorem 3.2. For any function F : 2V → R, the mixing time of the Gibbs
sampler is bounded by

tmix(ϵ) ≤ 2n2 exp(2βζF ) log
(

1

ϵpmin

)
,

where pmin := min
S ∈Ω

p(S). If F is submodular or supermodular, then the bound

is improved to

tmix(ϵ) ≤ 2n2 exp(βζf ) log
(

1

ϵpmin

)
.

Note that, since the factor of two that constitutes the difference between
the two statements of the theorem lies in the exponent, it can have a sig-
nificant impact on the above bounds. The dependence on pmin is related to
the (worst-case) starting state of the chain, and can be eliminated if we have
a way to guarantee a high-probability starting state. If F is submodular or
supermodular, this is usually straightforward to accomplish by using one of
the standard constant-factor optimization algorithms (see Section 2.1) as a
preliminary step. More generally, if F is bounded by 0 ≤ F (S) ≤ Fmax, for
all S ⊆ V , then log(1/pmin) = O(nβFmax).

3.3.3 Proof of Theorem 3.2

Our proof of Theorem 3.2 is based on the method of canonical paths (Jerrum,
2003; Sinclair, 1992; Jerrum & Sinclair, 1989; Diaconis & Stroock, 1991). The
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high-level idea of this method is to view the state space as a graph, and
try to construct a path between each pair of states, which carries a certain
amount of flow specified by the stationary distribution under consideration.
Depending on the choice of these paths and the resulting load on the edges
of the graph we can derive bounds on the mixing time of the Markov chain.

More concretely, let us assume that for some set function F and corre-
sponding distribution p as in (3.1), we construct the Gibbs chain on state
space Ω = 2V with transition matrix P . We can view the state space as a
directed graph that has vertex set Ω, and for any A,B ∈ Ω, contains edge
(S, S ′) if and only if S ∼ S ′, that is, if and only if S and S ′ differ by exactly
one element. Now, for any pair of states A,B ∈ Ω, we define a canonical
path

γAB := (A = S0, S1, . . . , Sℓ = B),

such that all (Si , Si+1) are edges in the above graph. We denote the length of
path γAB by |γAB |, and defineQ(S, S ′) := p(S)P(S, S ′). We also denote the set
of all pairs of states whose canonical path goes through (S, S ′) by

CSS ′ := {(A,B) ∈ Ω × Ω | (S, S ′) ∈ γAB } .

The following quantity, referred to as the congestion of an edge, uses a collec-
tion of canonical paths to quantify to what amount that edge is overloaded:

ρ(S, S ′) := 1

Q(S, S ′)
∑

(A,B)∈CSS′
p(A)p(B)|γAB |. (3.6)

The denominator Q(S, S ′) quantifies the capacity of edge (S, S ′), while the
sum represents the total flow through that edge according to the choice of
canonical paths. The congestion of the whole graph is then defined as ρ :=
maxS∼S ′ ρ(S, S ′). Low congestion implies that there are no bottlenecks in
the state space, and the chain can move around fast, which results in rapid
mixing. The following theorem makes this statement more concrete.

Theorem 3.3 (Sinclair, 1992; Jerrum, 2003). For any collection of canonical
paths with congestion ρ, the mixing time of the chain is bounded by

tmix(ϵ) ≤ ρ log

(
1

ϵpmin

)
,

where pmin := min
S ∈Ω

p(S).
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Figure 3.2: (a) The state space for ground setV = {1, 2, 3, 4}, and an illustra-
tion of a canonical path from A = {2, 4} to B = {1, 3}. (b) For an example
distribution p, the width of each edge denotes the corresponding capacity
Q(S, S ′). (c) The color of each edge denotes the corresponding congestion
ρ(S, S ′); darker edges indicate higher congestion. (d) Similar to (c), but for a
different distribution that has almost all of its mass concentrated on seven
states. It can been seen that it has notably higher congestion ρ, and contains
a significant bottleneck at S = {V }.
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To applyTheorem 3.3 to our class of distributions, we need to construct a
set of canonical paths in the corresponding state space 2V , and upper bound
the resulting congestion. First, note that, to transition from state A ∈ Ω to
state B ∈ Ω, in our case, it is enough to remove the elements ofA\B and add
the elements of B \A. Each removal and addition corresponds to an edge in
the state space graph, and the order of these operations identify a canonical
path in this graph that connects A to B. For our analysis, we assume a fixed
order onV (e.g., the natural order of the elements themselves), and perform
the operations according to this order. Figure 3.2a shows an example of such
a canonical path for a small state space, and Figures 3.2b–3.2d illustrate the
capacities Q(S, S ′), and congestions ρ(S, S ′) for two example distributions.

Having defined the set of canonical paths, we proceed to bounding the
congestion ρ(S, S ′) for any edge (S, S ′). The main difficulty in bounding
ρ(S, S ′) is due to the sum in (3.6) over all pairs in CSS ′ . To simplify this sum,
we construct for each edge (S, S ′) an injective map ηSS ′ : CSS ′ → Ω; this is a
combinatorial encoding technique that has been previously used in similar
proofs to ours (Jerrum, 2003). The following lemma details this construction,
where for sets A,B, we denote A ⊕ B := (A \ B) ∪ (B \A).

Lemma 3.4. Define the maps ηSS ′ : CSS ′ → Ω, for each pair (S, S ′) ∈ Ω × Ω
with S ∼ S ′, as follows:

ηSS ′(A,B) =
{
A ⊕ B ⊕ S , if F (S ′) ≥ F (S)
A ⊕ B ⊕ S ′ , otherwise .

Then, each map ηSS ′ is injective.

Proof. Assume that F (S ′) ≥ F (S), and S ′ = S ∪ {r }, for some r ∈ V . Assume
that we are given C := A ⊕ B ⊕ S , and we want to recover A and B. We will
denote by ≺ the natural ordering of the ground setV . First, we define

K− := {i ∈ C ⊕ S | i ≺ r }
K+ := {i ∈ C ⊕ S | i � r } .

Then, we can recover A and V as follows:

A = S ⊕ K−

B = S ′ ⊕ K+.

The case S ′ = S \{r }, as well as the two cases for F (S ′) < F (S) are completely
analogous. Note that the distinction based on the value of the function has
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no effect on the proof here, but is technically needed for the next lemma. The
only thing that changes between the cases is whether the element r that gets
added or removed in the transition (S, S ′) belongs toA or B, which is always
straightforward to determine from the type of the transition (for additions
it belongs to B, and for removals to A). �

We then prove the following key lemma about the maps constructed above.

Lemma 3.5. For any S ∼ S ′, and any A,B ∈ Ω, it holds that

p(A)p(B) ≤ 2n exp(2βζF )Q(S, S ′)p(ηSS ′(A,B)).

If F is submodular or supermodular, then the bound is improved to

p(A)p(B) ≤ 2n exp(βζf )Q(S, S ′)p(ηSS ′(A,B)).

Proof. We will consider the case S ′ = S ∪ {r }, for some r ∈ V , with F (S ′) ≥
F (S). Again, the other three cases are completely analogous by using ηSS ′ as
defined in Lemma 3.4.

We first compute

Q(S, S ′) = p(S)P(S, S ′)

=
1

n

p(S)p(S ′)
p(S) + p(S ′) by definition of the Gibbs sampler

=
1

nZ

exp(βF (S)) exp(βF (S ′))
exp(βF (S)) + exp(βF (S ′)) by definition of our models

≥ 1

nZ

exp(βF (S)) exp(βF (S ′))
2 exp(βF (S ′)) by F (S ′) ≥ F (S)

=
exp(βF (S))

2nZ
.

As a result, we get

p(A)p(B)
Q(S, S ′) ≤

2n

Z
exp(β(F (A) + F (B) − F (S))). (3.7)

Let us denote

ζF (A,B) := F (A) + F (B) − F (A ∪ B) − F (A ∩ B),

for any A,B ⊆ V , so that ζF = maxA,B⊆V |ζF (A,B)|. Then, if we denote

C := ηSS ′(A,B) = A ⊕ B ⊕ S,
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we have

F (A) + F (B) − F (S)
= (F (A) + F (B) − F (A ∪ B) − F (A ∩ B))−
(F (S) + F (C) − F (A ∪ B) − F (A ∩ B)) + F (C)
= (F (A) + F (B) − F (A ∪ B) − F (A ∩ B))−
(F (S) + F (C) − F (S ∪C) − F (S ∩C)) + F (C)
= ζF (A,B) − ζF (S,C) + F (C)
≤ 2ζF + F (C).

If F is submodular, then ζF (A,B) and ζF (S,C) are both non-negative, there-
fore ζF (A,B) − ζF (S,C) + F (C) ≤ ζF + F (C) = ζf + F (C). Similarly, if F
is supermodular, then ζF (A,B) and ζF (S,C) are both non-positive, therefore
ζF (A,B)−ζF (S,C)+F (C) ≤ ζF +F (C) = ζf +F (C). Substituting these bounds
in (3.7) gives us the result of the lemma. �

Since ηSS ′ is injective, it follows that
∑
(A,B)∈CSS′ p(ηSS ′(A,B)) ≤ 1. Fur-

thermore, it is clear that each canonical path γAB has length |γAB | ≤ n, since
we need to add and/or remove at most n elements to get from stateA to state
B. Combining these two facts with the above lemma, we get

ρ(S, S ′) ≤ 2n2 exp(2βζF ),

for any set function F , and

ρ(S, S ′) ≤ 2n2 exp(2βζf ),

if F is sub- or supermodular.

3.4 Fast Mixing

We now proceed to show that, under some stronger conditions, we are able
to establish even faster—O(n logn)—mixing. For any function F , we denote

∆F (i | S) := F (S ∪ {i}) − F (S \ {i}),

and define the following quantity,

γF ,β := max
S ⊆V
r ∈V

∑
i ∈V

tanh

(
β

2

���∆F (i | S) − ∆F (i | S ∪ {r })
���) ,
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which quantifies the (maximum) total influence of an element r ∈ V on the
values of F . For example, if the inclusion of r makes no difference with
respect to other elements of the ground set, we will have γF ,β = 0. The fol-
lowing theorem establishes conditions for fast mixing of the Gibbs sampler
when run on models of the form (3.1).

Theorem 3.6. For any set function F : 2V → R, if γF ,β < 1, then the mixing
time of the Gibbs sampler is bounded by

tmix(ϵ) ≤
1

1 − γF ,β
n

(
logn + log

1

ϵ

)
.

If F is additionally submodular or supermodular, and is decomposed according
to Definition 2.7, then

tmix(ϵ) ≤
1

1 − γf ,β
n

(
logn + log

1

ϵ

)
.

Note that, in the second part of the theorem, γf ,β depends only on the
monotone part of F .

3.4.1 Proof of Theorem 3.6

Our proof of Theorem 3.6 is based on the coupling technique (Aldous, 1983);
more specifically, we use the path coupling method (Bubley & Dyer, 1997;
Levin et al., 2008a; Jerrum, 2003). Given a Markov chain (Zt ) on state space
Ωwith transitionmatrix P , a coupling for (Zt ) is a newMarkov chain (Xt ,Yt )
on state space Ω×Ω, such that both (Xt ) and (Yt ) are by themselves Markov
chains with transition matrix P . The idea is to construct the coupling in such
a way that, even when the starting pointsX0 and Y0 are different, the chains
(Xt ) and (Yt ) tend to coalesce. Then, it can be shown that the coupling time
tcouple := min {t ≥ 0 | Xt = Yt } is closely related to the mixing time of the
original chain (Zt ) (Levin et al., 2008a).

The main difficulty in applying the coupling approach lies in the con-
struction of the coupling itself, for which one needs to consider any possible
pair of states (Xt ,Yt ). The path coupling technique makes this construction
easier by utilizing the same state-space graph that we used to define canon-
ical paths in Section 3.3. The core idea is to first define a coupling only over
adjacent states, and then extend it for any pair of states by using a metric on
the graph. More concretely, let us denote by d : Ω × Ω → R the path metric
on state space Ω; that is, for any x,y ∈ Ω, d(x,y) is the minimum length
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of any path from x to y in the state space graph. The following theorem
establishes fast mixing using this metric, as well as the diameter of the state
space, diam(Ω) := maxx ,y∈Ω d(x,y).
Theorem 3.7 (Bubley&Dyer, 1997; Levin et al., 2008a). For anyMarkov chain
(Zt ), let (Xt ,Yt ) be a coupling, such that, for some a ≥ 0, and any x,y ∈ Ω
with x ∼ y, it holds that

E[d(Xt+1,Yt+1) |Xt = x,Yt = y] ≤ e−αd(x,y).

Then, the mixing time of the original chain (Zt ) is bounded by

tmix(ϵ) ≤
1

α

(
log(diam(Ω)) + log 1

ϵ

)
.

In our case, the path metric d is the Hamming distance between the bi-
nary vectors representing the states (equivalently, the number of elements
by which two sets differ). We need to construct a suitable coupling (Xt ,Yt )
for any pair of states x ∼ y. Consider the two corresponding sets S,R ⊆ V
that differ by exactly one element, and assume that R = S ∪ {r }, for some
r ∈ V . (The case S = R ∪ {s} for some s ∈ V is completely analogous.)
Remember that the Gibbs sampler first chooses an element i ∈ V uniformly
at random, and then adds or removes it according to the conditional prob-
abilities. Our goal is to make the same updates happen to both S and R as
frequently as possible. As a first step, we couple the candidate element for
update i ∈ V to always be the same in both chains. Then, we have to distin-
guish between the following cases.

If i = r , then the conditionals for both chains are identical, and we can
couple both chains to add r with probability

padd :=
p(S ∪ {r })

p(S) + p(S ∪ {r }) ,

which will result in new sets S ′ = R′ = S ∪ {r }, or remove r with probability
1−padd, which will result in new sets S ′ = R′ = S . Either way, we will have
d(S ′,R′) = 0.

If i , r , we cannot always couple the updates of the chains, because the
conditional probabilities of the updates are different. In fact, we are forced
to have different updates (one chain adding i , the other chain removing i)
with probability equal to the difference of the corresponding conditionals,
which we denote here by pdif (v), defined as follows,

pdif (i) :=
���� p(S ∪ {i})
p(S ∪ {i}) + p(S \ {i}) −

p(R ∪ {i})
p(R ∪ {i}) + p(R \ {i})

���� .
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In the case of different updates, we have d(S ′,R′) = 2, otherwise the chains
make the same update and still differ only by element r , that is, d(S ′,R′) = 1.

Putting together the three possible cases for the value of d(S ′,R′) de-
scribed above, we get the following expected distance after one step,

E[d(S ′,R′)] = 1 − 1

n
+
1

n

∑
i,r

pdif (i).

We then prove the following lemma to bound the sum of pdif .
Lemma 3.8. For any S,R ⊆ V with R = S ∪ {r },∑

i,r

pdif (i) ≤ γF ,β .

Proof. For any i , r , we have

pdif (i) =
����� exp(βF (S ∪ {i}))
exp(βF (S ∪ {i})) + exp(βF (S \ {i}))−

exp(βF (R ∪ {i}))
exp(βF (R ∪ {i})) + exp(βF (R \ {i}))

�����
=

���� exp(β∆F (i | S))
1 + exp(β∆F (i | S))

− exp(β∆F (i | R))
1 + exp(β∆F (i | R))

����
=

���� exp(β∆F (i | S)) − exp(β∆F (i | R))
(1 + exp(β∆F (i | S)))(1 + exp(β∆F (i | R)))

����
≤

����exp(β∆F (i | S)) − exp(β∆F (i | R))
exp(β∆F (i | S)) + exp(β∆F (i | R))

����
=

����exp(β(∆F (i | S) − ∆F (i | R))) − 1
exp(β(∆F (i | S) − ∆F (i | R))) + 1

����
= tanh

(
β

2

��(∆F (i | S) − ∆F (i | R))
��) .

The lemma follows by definition of γF ,β , and the fact that R = S ∪ {r }. �

Applying this lemma, we get

E[d(S ′,R′)] = 1 − 1

n
+
1

n

∑
i,r

pdif (i)
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≤ 1 − 1

n
(1 − γF ,β )

≤ exp

(
−
1 − γF ,β

n

)
,

and the result of Theorem 3.6 follows from applying Theorem 3.7 with α =
γF ,β/n, and noting that diam(Ω) = n.

The specialization of Theorem 3.6 to sub- or supermodular functions is
based on the following lemma.

Lemma 3.9. If F is submodular or supermodular, and decomposed according
to Definition 2.7, then

γF ,β = γf ,β .

Proof. For any S,R ⊆ V with R = S ∪ {r }, and any i ∈ V , we have

∆F (i | S) − ∆F (i | R)
= F (S ∪ {i}) − F (S \ {i}) − F (R ∪ {i}) + F (R \ {i})
= f (S ∪ {i}) − f (S \ {i}) − f (R ∪ {i}) + f (R \ {i})
= ∆f (i | S) − ∆f (i | R).

�

3.4.2 Additively Decomposable Functions

Some commonly usedmodels, such as the Isingmodel and FLiD, can bewritten
as a sum of simpler supermodular (resp. submodular) functions Fj ,

F (S) =
∑
j ∈[L]

Fj (S). (3.8)

We prove the following corollary that provides an easy to check condition
for fast mixing of the Gibbs sampler when F can be additively decomposed
as above.

Corollary 3.10. For any submodular function F that can be written in the
form of (3.8), with f being its monotone (also additively decomposable) part
according to Definition 2.7, if we define

θf := max
i ∈V

∑
j ∈[L]

√
fj ({i}) and λf := max

j ∈[L]

∑
i ∈V

√
fj ({i}),
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then it holds that

γf ,β ≤
β

2
θf λf .

Proof. For any S,R ⊆ V with R = S ∪ {r }, we have∑
i,r

tanh

(
β

2

��(∆f (i | S) − ∆f (i | R))
��)

≤
∑
i,r

β

2

��(∆f (i | S) − ∆f (i | R))
�� by tanh(x) ≤ x , for all x ≥ 0

≤
∑
i,r

β

2
(∆f (i | S) − ∆f (i | R)) by submodularity of f

=
β
2

∑
i,r
(f (S ∪ {i }) − f (S \ {i }) − f (S ∪ {r } ∪ {i }) + f (S ∪ {r } \ {i }))

=
β
2

∑
i,r

∑
j∈[L]
(fj (S ∪ {i }) − fj (S \ {i }) − fj (S ∪ {r } ∪ {i }) + fj (S ∪ {r } \ {i }))

≤ β
2

∑
i,r

∑
j∈[L]

min
{
fj (S ∪ {i }) − fj (S \ {i }), fj (S ∪ {r } \ {i }) − fj (S \ {i })

}
by monotonicity of fj

≤ β

2

∑
i,r

∑
j ∈[L]

min
{
fj (i), fj (r )

}
by submodularity of fj

≤ β

2

∑
i,r

∑
j ∈[L]

√
fj (i)fj (r )

=
β

2

∑
j ∈[L]

√
fj (r )

∑
i,r

√
fj (i).

The result follows by maximizing both sides over S and r . �

Example. Applying the above corollary to the FLiD model, we get

θf = max
i ∈V

∑
j ∈[L]

√
wi j ,

and

λf = max
j ∈[L]

∑
i ∈V

√
wi j ,
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and we obtain fast mixing if θf λf ≤ 2/β . As a special case, if we consider
the class of set cover functions (wi j ∈ {0, 1}), such that each i ∈ V covers
at most δ sets, and each set indicated by j ∈ [L] is covered by at most δ
elements, then θf , λf ≤ δ , and we obtain fast mixing if δ2 ≤ 2/β . Note, that
the corollary can be trivially applied to any submodular function by taking
L = 1, but may, in general, result in a loose bound if used that way.

3.5 Experiments

In the following two experiments, we compare the Gibbs sampler against
the variational approach proposed by Djolonga & Krause (2014) for perform-
ing inference in probabilistic submodular models. In particular, the authors
propose two variational approximations, denoted in the following by “up-
per” and “lower”, which are obtained from factorized distributions associated
with modular upper and lower bounds respectively.

Estimating the log-partition function. We start with approximating the nor-
malizers log(Z ) for a family of (log-submodular) FLiD models on ground set
sizes ranging fromn = 10 ton = 100. These FLiDmodels are learned from syn-
thetic data that we describe in Section 5.4.2. In short, eachmodel represents a
single approximately mutually exclusive group of three genes together with
five frequently and independently occurring genes, as well as a number of
random noise genes.

We obtain estimates for log(Z ) via a Gibbs-based reverse importance
sampling procedure (see Section 2.3), using 200, 1000, and 5000 samples.
For each model we repeat the sampling procedure 100 times to get standard
error estimates. Since estimating the exact value of log(Z ) is infeasible for
n > 20, we obtain an accurate estimate by computing the averaged impor-
tance sampling and reverse importance sampling estimates when run with
2 · 106 samples. Figure 3.3 shows the estimation errors with respect to this
approximately true value; error bars depict two standard errors. As is natu-
ral, more Gibbs samples result in more accurate estimates, and we can also
observe that reverse importance sampling tends to produce overestimates of
the log-partition function. We also see that the two variational approaches,
which guarantee upper and lower bounds respectively, are considerably less
accurate.

Estimating marginals. We now repeat the experiments performed by Djo-
longa & Krause (2014) to estimate marginals, and use the same three models
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Figure 3.3: The error in estimating the log-partition function when using
Gibbs-based reverse importance sampling compared to the variational ap-
proximations by Djolonga & Krause (2014).

that they used.
The first is a FLiD model, in which a manually added modular term penal-

izes the number of selected elements, that is, p(S) ∝ exp(f (S) − 2|S |), where
f is a submodular facility location function. The model is constructed from
randomly subsampling real data from a problem of sensor placement in a
water distribution network (Krause et al., 2008). In the experiments, we it-
eratively condition on random observations for each variable in the ground
set.

The second is a log-supermodular pairwise Markov random field, con-
structed by first randomly sampling points from a two-dimensional two-
cluster Gaussian mixture model, and then introducing a pairwise potential
for each pair of points with exponentially-decreasing weight in the distance
of the pair. In the experiments, we iteratively condition on pairs of observa-
tions, one from each cluster.

The third is a log-supermodular higher-orderMarkov randomfield, which
is constructed by first generating a random Watts-Strogatz graph, and then
creating one higher-order potential per node, which contains that node and
all of its neighbors in the graph. The strength of the potentials is controlled
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by a parameter µ, which is closely related to the curvature of the functions
that define them. In the experiments, we vary this parameter from 0 (modu-
lar model) to 1 (“strongly” supermodular model).

For all three models, we constrain the size of the ground set to n = 20,
so that we are able to compute, and compare against, the exact marginals.
Furthermore, we run multiple repetitions for each model to account for the
randomness of themodel instance, and the random initialization of the Gibbs
sampler. The marginals we compute are of the form p(i ∈ S |C ⊆ S ⊆ D),
for all i ∈ V . As before, we run the Gibbs sampler for 200, 1000, and 5000
iterations on each problem instance.

Figure 3.4 compares the average absolute error of the approximate mar-
ginals with respect to the exact ones. The averaging is performed over i ∈ V ,
and over the different repetitions of each experiment; error bars depict two
standard errors. We notice a similar trend on all three models. For the
regimes that correspond to less “peaked” posterior distributions (small num-
ber of conditioned variables, small µ), even a few thousand Gibbs iterations
outperform both variational approximations. On the other hand, the varia-
tional methods gain an advantagewhen the posterior is concentrated around
only a few states, which happens after having conditioned on almost all vari-
ables in the first two models, or for µ close to 1 in the third model.

3.6 Conclusion

In this chapter, we presented two conditions that guarantee upper bounds
on the mixing time of the Gibbs sampler in probabilistic submodular models.
Furthermore, we demonstrated that, in practice, the Gibbs sampler compares
favorably to previously proposed variational approximations, particularly in
regimes of high uncertainty.

Further related work. In contemporary work to ours, Rebeschini and Kar-
basi (Rebeschini & Karbasi, 2015) analyzed the mixing times of log-submo-
dular models. Using a method based on matrix norms, which was previously
introduced by Dyer et al. (2009), and is closely related to path coupling, they
arrived at a similar, though not directly comparable, condition to that of
Theorem 3.6.

Li et al. (2016) extended our polynomial-time mixing result of Theorem
3.2 to the problem of sampling from a distribution under specific constraints.
In particular, they used a similar to ours canonical path argument involving
an analogous quantity to our ζF to prove mixing bounds under uniform and
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partition matroid constraints.
The canonical path method for bounding mixing times has been previ-

ously used in a number of theoretical results, such as approximating the
partition function of ferromagnetic Ising models (Jerrum & Sinclair, 1993),
approximating matrix permanents (Jerrum & Sinclair, 1989; Jerrum et al.,
2004a), and counting matchings in graphs (Jerrum, 2003).

Coupling-based methods have been most prominently used for counting
k-colorings in low-degree graphs (Jerrum, 1995; Bubley et al., 1998; Jerrum,
2003). Other applications of coupling include counting independent sets in
graphs (Dyer &Greenhill, 2000), and approximating the partition function of
various subclasses of Ising models at high temperatures (Levin et al., 2008b).
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Figure 3.4: Absolute error of the marginals computed by the Gibbs sampler
compared to the variational approximations by Djolonga & Krause (2014).





4 Improved Mixing using Semigradients

The majority of the content of this chapter has already been published in con-
ference proceedings (Gotovos et al., 2018).

4.1 Introduction

The conditions derived in the previous chapter gave us some insight into the
factors that determine the mixing rate of the Gibbs sampler in probabilistic
submodular models. Unfortunately, oftentimes in practice these conditions
do not hold, and the Gibbs sampler mixes prohibitively slowly. A fundamen-
tal reason for this slow mixing behavior is the existence of bottlenecks in
the state space of the Markov chain. Conceptually, one can think about the
state-space graph containing several isolated components that are poorly
connected to each other, thus making it hard for the Gibbs sampler to move
between them.

In this chapter, we propose a novel sampling strategy that allows for
global moves in the state space, thereby avoiding bottlenecks, and, thus, ac-
celeratingmixing. Our sampler is based on using a proposal distribution that
approximates the target p by a mixture of product distributions. We further
propose an algorithm for constructing such a mixture using discrete semi-
gradient information of the associated function F . This idea takes a step to-
wards bridging optimization and sampling, a theme that has been successful
in continuous spaces. Our sampler is readily combined with other existing
samplers, and we show provable theoretical, as well as empirical examples
of speedups.

Mixing time and spectral gap. As a reminder, the mixing time of a Markov
chain (Xt )t denotes the minimum number of iterations required to get ϵ-
close to stationarity, tmix(ϵ) := min{t | d(t) ≤ ϵ}. The distance to sta-
tionarity, d(t) := maxX0∈Ω dTV

(
P t (X0, ·),p

)
, is the maximum total variation

distance, over all starting states, between Xt and the target distribution p
(see Section 2.3).

43
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A common way to obtain an upper bound on the mixing time of a chain
is by lower bounding its spectral gap, defined as γ := 1 − λ2, where λ2 is
the second largest eigenvalue of the corresponding transition matrix P . The
following well-known theorem connects the spectral gap to mixing time.

Theorem 4.1 (cf. Theorems 12.3, 12.4 in (Levin et al., 2008b)). Let P be the
transition matrix of a lazy, irreducible, and reversible Markov chain, and let γ
be its spectral gap, and pmin := minS ∈Ω p(S). Then,(

1

γ
− 1

)
log

(
1

2ϵ

)
≤ tmix(ϵ) ≤

1

γ
log

(
1

ϵpmin

)
.

4.2 The Mixture Chain

Despite the simplicity and computational efficiency of the Gibbs sampler,
the fact that it is constrained to performing local moves makes it suscep-
tible to state-space bottlenecks, which hinder the movement of the chain
around the state space. Intuitively, the state space may contain several high-
probability regions arranged in such a way that moving from one to another
using only single-element additions and deletions requires passing through
states of very low probability. As a result, the Gibbs sampler may mix ex-
tremely slowly on the whole state space, despite the fact that it can move
sufficiently fast within each of the high-probability regions.

To alleviate this shortcoming, it is natural to ask whether it is possible to
bypass such bottlenecks by using a chain that performs larger moves. In this
paper, we introduce a novel approach that uses a Metropolis chain based on
a specific mixture of log-modular distributions, which we call the M3 chain,
to perform global moves in the state space. Concretely, we define a proposal
distribution

q(S,R) = q(R) = 1

Zq

r∑
i=1

exp (Fi (R))

=
1

Zq

r∑
i=1

wi exp (mi (R)) , (4.1)

where each Fi (R) = ci +
∑
v ∈Rmiv is a modular function, each mi (R) =∑

v ∈Rmiv is a normalized modular function (mi (�) = 0), andwi = exp(ci ) >
0. If we denote byZi the normalizer ofmi , then the normalizer of themixture
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can be written in closed form as

Zq =
∑
R∈Ω

q(R) =
∑
R∈Ω

r∑
i=1

wi exp (mi (R))

=

r∑
i=1

wi

∑
R∈Ω

exp (mi (R))

=

r∑
i=1

wiZi .

We define the M3 chain as a Metropolis chain using q as a proposal distribu-
tion. Its transition matrix PM : Ω × Ω → R is given by

PM(S,R) =


q(R)pa(S,R) , if R , S

1 −
∑
T,S

q(T )pa(S,T ) , otherwise
,

where

pa(S,R) := min

{
1,
p(R)q(S)
p(S)q(R)

}
.

Note that, contrary to usual practice, the proposal q only depends on the
proposed state, but not on the current state of the chain. As a result, the
chain is not constrained to local moves, but rather can potentially jump to
any part of the state space. In practice, M3 sampling proceeds in two steps:
first, a candidate set R is sampled according to q; then, the move to R is ac-
cepted with probability pa . Sampling from q can be done in O(n) time—first,
sample a log-modular component, then sample a set from that component.
Computing pa requires O(r ) time for the sum in (4.1), and it can be straight-
forwardly improved by parallelizing this computation. All in all, the total
time for one step of M3 is O(n + r ).

As is always the case with Metropolis chains, the mixing time of the M3

sampler will depend on how well the proposal q approximates the target
distribution p. The following observation shows that, in theory, we can ap-
proximate any distribution of the form p(S) ∝ exp(F (S)) by a mixture of the
form (4.1).

Proposition 4.2. For any distribution p(S) ∝ exp(F (S)) on Ω, and any ϵ > 0,
there are positive constants wi = wi (ϵ) > 0, and normalized modular func-
tions mi = mi (ϵ), such that, if we define q(S) := ∑r

i=1wi exp(mi (S)), then
dTV (p,q) ≤ ϵ .
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Proof. Let r = |Ω |, and let (Si )ri=1 be an enumeration of all sets in Ω. For any
i ∈ {1, . . . , r }, and any v ∈ V , we define

miv =

{
βi , if v ∈ Si
−βi , otherwise ,

andmi (S) =
∑
v ∈S miv , for all S ∈ Ω. We also define

wi =
p(Si )
Zi
=

p(Si )(
1 + eβi

) |Si | (1 + e−βi ) |V \Si | .
Then, for all i ∈ {1, . . . , r }, we have

di (β1, . . . , βr ) := |p(Si ) − q(Si )|

=

�����p(Si ) − r∑
j=1

p(S j )
eβj |Sj |(

1 + eβj |Sj |
) (
1 + e−βj |V \Sj |

) �����
≤ p(Si )

(
1 − eβi |Si |(

1 + eβi |Si |
) (
1 + e−βi |V \Si |

) ) +∑
j:Sj,Si

p(S j )
eβj |Si |(

1 + eβj |Sj |
) (
1 + e−βj |V \Sj |

) .
Note that both terms vanish if we let all βj → ∞. Therefore, for any δ > 0,
there are βi j = βi j (δ ), for all j ∈ {1, . . . , r }, such that di (βi1, . . . , βir ) ≤ δ .
Finally, choosing β̂j := maxi ∈{1, ...,r } βi j , for all j ∈ {1, . . . , r }, we get

dTV (p,q) =
1

2

r∑
i=0

di (β̂1, . . . , β̂r ) ≤ 2n−1δ .

The result follows by choosing δ = ϵ/2n−1. �

Conceptually, the proof relies on having one log-modular term per set
in Ω. Therefore, while the above result shows that mixtures of log-modulars
are expressive enough, the constructed mixture of exponential size in n is
not useful for practical purposes. On the other hand, it is not necessary for
us to have q be an accurate approximation of p everywhere, as long as the
corresponding M3 chain is able to bypass state-space bottlenecks. With this
in mind, we suggest combining the M3 and Gibbs chains, so that each of them
serve complementary purposes in the final chain; the role of M3 is to make
global moves and avoid bottlenecks, while the role of Gibbs is to move fast
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within well-connected regions of the state space. To make this happen, we
define the transition matrix PC : Ω × Ω → R of the combined chain as

PC(S,R) = δPG(S,R) + (1 − δ )PM(S,R), (4.2)

where 0 < δ < 1. It is easy to see that PC is reversible, and has stationary
distribution p.

We next illustrate how combining the two chains works on an example
model class, in which a mixture of only a few log-modular distributions can
dramatically improve themixing time compared to running the vanilla Gibbs
chain.

4.3 Ising Model on the Complete Graph

We consider the Ising model on a finite complete graph (Levin et al., 2008a),
also known as the Curie-Weiss model in statistical physics, which is family
of log-supermodular distributions that can be written as follows,

p(S) = 1

Z (β) exp
(
−2β
n
|S |(n − |S |)

)
. (Isingβ )

In particular, we focus on the case where β = ln(n), that is,

p(S) = 1

Z
exp

(
−2 ln(n)

n
|S |(n − |S |)

)
. (Ising)

In this case, if we define dn := 2 ln(n)/n, then F (S) = −dn |S |(n − |S |).
The Gibbs sampler is known to experience poor mixing in this model; the

following is an immediate corollary of Theorem 15.3 in (Levin et al., 2008b).

Corollary 4.3. For n ≥ 3, the Gibbs sampler on Ising has spectral gap γG =

O (e−cn), where c > 0 is a constant.

FromTheorem 4.1 it follows that the mixing time of Gibbs is

tmix(ϵ) = Ω

(
(ecn − 1) log

(
1

2ϵ

))
.

Yet, it has been shown that the only reason for this is a single bottleneck
in the state space (Levin et al., 2008a). To make this statement more formal,
let us define a decomposition of Ω into two disjoint sets (Jerrum et al., 2004b),

Ω0 := {S ∈ Ω | |S | < n/2},
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Ω1 := {S ∈ Ω | |S | > n/2}.

To keep things simple, we will assume for the remainder of this section that
n is odd; the analysis when n is even follows from the same arguments with
only a minor technical adjustment.

The projection and restriction chains. Our goal is to separately examine
two characteristics of the sampler: (i) its movement between the two sets
Ω0, Ω1, and (ii) its movement when restricted to stay within each of these
sets. For analyzing the “between-sets” behavior, we define the projection
p̄ : {0, 1} → R of p as

p̄(i) :=
∑
S ∈Ωi

p(S),

and, for any reversible chain P , we define its projection chain P̄ : {0, 1} ×
{0, 1} → R as

P̄(i, j) := 1

p̄(i)
∑

S ∈Ωi ,R∈Ωj

p(S)P(S,R).

It is easy to see that P̄ is also reversible and has stationary distribution p̄. For
analyzing the “within-set” behavior, we define the restrictions pi : Ωi → R
of p as

pi (S) :=
pi (S)
p̄(i) ,

and the two restriction chains Pi : Ωi × Ωi → R of P as

Pi (S,R) :=


P(S,R) , if S , R

1 −
∑

T ∈Ωi :T,S
P(S,T ) , otherwise .

Again, it is easy to see that each of the Pi is also reversible and has stationary
distribution pi .

In Figure 4.1, we depict the structure of our reasoning for the rest of this
section, including the results that we prove or use to ultimately arrive at the
upcoming Theorem 4.6.

Gibbs restrictions. Coming back to the Gibbs sampler, if we could show
that it mixes fast within each of Ω0 and Ω1, then we could deduce that the
only reason for the slow mixing on Ω is the bottleneck between these two
sets. Indeed, the following corollary of a theorem by Ding et al. (2009) shows
exactly that.
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Projection chain

1 2

Restriction chains

Ω1

Ω2

M3 – Lemma 4.5

Combined – Lemma 4.7

Gibbs – Corollary 4.4 (Ding et al., 2009)

Combined – Lemma 4.8

Comparison arguments (Diaconis & Saloff-Coste, 1993)

Theorem 4.9 (Jerrum et al., 2004)

Combined – Theorem 4.6

Ω1 Ω2

Figure 4.1: The structure of our reasoning to prove Theorem 4.6.
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Corollary 4.4 (cf. Theorem 2, Ding et al., 2009). For all n ≥ 3, the restriction
chains of the Gibbs sampler PG

i , i = 0, 1, on Ising have spectral gap γG
i =

Θ
( 2 ln(n)−1

n

)
.

M3 projection. To improve mixing we want to create an M3 chain that is able
to bypass the aforementioned bottleneck. For this purpose, we use a mixture
of two log-modular distributions, the first of which puts most of its mass on
Ω0, and the second on Ω1. We define the mixture of the form (4.1) by

m1(S) =
∑
v ∈S
−dn(n − 1) = −dn(n − 1)|S |,

m2(S) =
∑
v ∈S

dn(n − 1) = dn(n − 1)|S |.

We also usew1 = 1/Z1 andw2 = 1/Z2, where Z1 and Z2 are the normalizers
ofm1 andm2 respectively. The resulting proposal distribution can be written
as follows,

q(S) = 1

2

(
exp(−dn(n − 1)|S |)

Z1
+
exp(dn(n − 1)|S |)

Z2

)
, (4.3)

where Z1 = (1 + exp(−dn(n − 1)))n , and Z2 = (1 + exp(dn(n − 1)))n . It fol-
lows that Zq = 1/2, and, furthermore, the mixture q is symmetric, that is,
q(S) = q(V \ S).

Since the proposal q is symmetric and state independent, we would ex-
pect the M3 chain to jump between Ω0 and Ω1 without being hindered by
the bottleneck described previously. We verify this intuition by proving the
following lemma.

Lemma 4.5. For all n ≥ 10, the projection chain P̄M of the M3 sampler on Ising
has spectral gap γ̄M = Ω(1).

Proof. We define pk =
∑

S ∈Ω, |S |=k p(S), and qk =
∑

S ∈Ω, |S |=k q(S). We then
proceed to upper bound pk , and lower bound qk .

Bounding pk . By definition, we can write pk = p̂k/Z , where p̂0 = 1, and for
k > 0 we have

p̂k :=

(
n

k

)
exp

(
−2 ln(n)

n
k(n − k)

)
=

(
n

k

)
n−

2k
n (n−k )
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≤
(en
k

)k
n−

2k
n (n−k )

=
( e
k

)k
n−k+

2k2
n .

It follows that

ln(p̂k ) ≤ −k ln
(
k

e

)
+

(
2k2

n
− k

)
ln(n). (4.4)

It is easy to verify that for all n ≥ 10 and 3 ≤ k ≤ bn/2c, it holds that
(2k − n) ln(n) ≤ 0.5n ln(k/e). Substituting this into (4.4), we get

ln(p̂k ) ≤ −0.5k ln
(
k

e

)
⇒ p̂k ≤ exp(−0.5k ln(k/e)).

Noting that, for all k , p̂k ≤ 1, and using the fact that p̂n−k = p̂k , we get

Z =
n∑

k=0

p̂k

≤ 2

bn/2c∑
k=0

p̂k

= 2(p̂0 + p̂1 + p̂2 +
bn/2c∑
k=3

p̂k )

≤ 3 +

bn/2c∑
k=3

exp(−0.5k ln(k/e))

≤ c1, (4.5)

where c1 is a constant.

Bounding qk . First, it is easy to see that, for all n ≥ 1, Z1 ≤ 3.

qk =
∑

S ∈Ω, |S |=k
q(S)

≥
∑

S ∈Ω, |S |=k

1

2

exp(−dn(n − 1)|S |)
Z1

(by (4.3))

≥ 1

6

(
n

k

)
exp(−dn(n − 1)|S |)
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Bounding the spectral gap. For the projection chain P̄M, we have

P̄M(0, 1) = 1

p̄(0)
∑
S ∈Ωi
R∈Ωj

p(S)PM(S,R)

≥ 2p0qn (p̄(0) = 1/2 by symmetry of p)
= 2p0q0 (by symmetry of q)

≥ 2
p̂0
Z

1

6
(q0 ≥ 1

6 )

≥ 2
1

c1

1

6
(p̂0 = 1)

= cp̄(1),

where c = (2/3)c1.
Finally, it is easy to show that the spectral gap of any reversible two-

state chain P with stationary distribution p that satisfies P(0, 1) = c p(1) is
c; for example, see Fact 6 by Anari et al. (2016). Applying this to the above
projection chain shows that the spectral gap of P̄M is c . �

Combining the chains. Putting everything together, we show the following
result about the combined chain PC.

Theorem 4.6. For all n ≥ 10, the combined chain PC on Ising has spectral gap

γC = Ω

(
2 ln(n) − 1

2n

)
.

The proof consists of two steps. In the first step, we make two comparison
arguments (Diaconis & Saloff-Coste, 1993; Levin et al., 2008b) to show that
the spectral gaps of the projection and restriction chains of the combined
sampler are smaller by at most a constant factor in δ compared to those of
Gibbs and M3. In particular, we use the M3 bound (Lemma 4.5) for the pro-
jection chain, and the Gibbs bound (Corollary 4.4) for the restriction chains.
The following two lemmas make this more concrete.

Lemma 4.7. For all n ≥ 10, the projection chain P̄C of the combined chain on
Ising has spectral gap γ̄C = Ω(1).

Proof. By definition, P̄C(S,R) ≥ δ P̄M(S,R), therefore a simple comparison
argument (e.g., Lemma 13.22 in (Levin et al., 2008b)) combinedwith the result
of Lemma 4.5 gives us γ̄C ≥ δγ̄M = Ω(1). �
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Lemma 4.8. For all n ≥ 3, each of the restriction chains PC
i of the combined

chain on Ising has spectral gap γC
i = Θ

(
2 ln(n) − 1

2n

)
.

Proof. By definition, PC
i (S,R) ≥ δPG

i (S,R), therefore, using a comparison
argument like above together with Corollary 4.4 gives us

γC
i ≥ δγG

i = Θ

(
2 ln(n) − 1

2n

)
.

�

The second step combines the projection and restriction bounds to estab-
lish a bound on the spectral gap of the combined chain. To accomplish this
we use the following result by Jerrum et al. (2004b), which states that the
spectral gap of the whole chain cannot be much smaller than the smallest of
the projection and restriction spectral gaps.

Theorem 4.9 (Theorem 1, Jerrum et al., 2004b). Given a reversible Markov
chain P , if the spectral gap of its projection chain P̄ is bounded below by γ̄ , and
the spectral gaps of its restriction chains Pi are uniformly bounded below by
γmin, then the spectral gap of P is bounded below by

γ = min

{
γ̄

3
,

γ̄γmin

3Pmax + γ̄

}
,

where pmax := max
i ∈{0,1}

max
S ∈Ωi

∑
R∈Ω\Ωi

P(S,R).

The result of Theorem 4.6 follows directly by combining the spectral gap
bounds of Lemmas 4.7 and 4.8 in Theorem 4.9, and noting that Pmax ≤ 1.

Finally, using Theorem 4.1, and noting that, in this case, pmin = O(e−n)
(cf. proof of Lemma 4.5), we get amixing time of tmix(ϵ) = O(n2 log(1/ϵ)) for
the combined chain. This shows that the addition of the M3 sampler results
in an exponential improvement in mixing time over the Gibbs sampler by
itself.

4.4 Constructing the Mixture

Having seen the positive effect of the M3 sampler, we now turn to the issue of
how to choose the proposal q. While a manual construction like the one we
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Algorithm 4.1: Iterative semigradient-based mixture construction

Input :Set function F , mixture size r
1 for i = 1 to r do

2 σ ← GReedyDifMax(F , {m1, . . . ,mi−1})
3 mi ← SemiGRadient(F , σ )

4 return {m1, . . . ,mr }

just presented for the Ising model may be feasible in some cases, it is often
more practical to have an automated way of obtaining the mixture.

Let us assume, as is usually the case, that we have access to a function
oracle for F , and we want to create a mixture of size r . Ideally, we would like
to construct a proposal q that is as close to p as possible, that is, minimize an
objective such as the following,

E1(q) := min
q
‖p − q‖

= min
q

exp(F (·))Z
− 1

Zq

∑r
i=1wi exp(mi (·))

 ,
where ‖ · ‖ could be, for example, total variation distance or the maximum
norm. Unfortunately, this problem is hard; both computing the partition
function Z , and jointly optimizing over all wi ,mi are infeasible in practice.
To make the problem easier, we could try to get rid of the normalizers and
weightswi , and iteratively minimize over eachmi individually:

E(i)2 (mi ) := min
mi

exp(F (·)) −∑i−1
j=1 exp(mi (·))

 ,
for i ∈ {1, . . . , r }. This problem is still hard, since optimizing ‖ exp(F (·))‖ is
by itself infeasible in general.

To arrive at a practical algorithm, we approximate the above objective
using the two-step procedure described in Algorithm 4.1. In the first step,
we generate a permutation σ of the ground set V by running the greedy
algorithm on function Di (S) := F (S) − log

∑i−1
j=1 exp(mj (S)), as shown in

Algorithm 4.2 (cf. Algorithm 2.1). Intuitively, the sets that are formed by
elements near the beginning of σ are those on which F and the current mix-
ture disagree by the most. Therefore, in the second step, we would like to
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Algorithm 4.2: Greedy difference maximization

Input :Set function F , modular functions {m1, . . . ,mi−1}
1 Di (S) ← F (S) − log∑i−1

j=1 exp(mj (S)), for all S ∈ Ω
2 σ ← (1, . . . ,n)
3 A←�
4 for i = 1 to n do

5 v∗← argmaxv ∈V \A (Di (A ∪ {v}) − Di (A))
6 σi ← v∗

7 A← A ∪ {v∗}

8 return σ

add to the mixture a modular functionmi that is a good approximation for
F on {σ1, . . . ,σk }, for a choice of 1 ≤ k ≤ n. To accomplish this, we propose
using discrete semigradients.

Semigradients are modular functions that provide lower (subgradient)
or upper (supergradient) approximations of a set function F (Fujishige, 2005;
Iyer et al., 2013). More concretely, given a set S ∈ Ω, a modular functionm is
a subgradient of F at S , if, for all R ∈ Ω, F (R) ≥ F (S)+m(R)−m(S). Similarly,
m is a supergradient if the inequality is reversed. Although, in general, a
function is not guaranteed to have sub- or supergradients at each S ∈ Ω,
it has been shown that this is true when F is submodular or supermodular
(Fujishige, 2005; Jegelka & Bilmes, 2011; Iyer & Bilmes, 2012).

Coming back to the second step of Algorithm 4.1, to create a subgra-
dient of F given permutation σ we just need to define a modular function
via marginal gains according to the permutation order (Iyer et al., 2013), as
shown in Algorithm 4.3. Moreover, this is a subgradient of F at {σ1, . . . ,σk },
for all 1 ≤ k ≤ n. On the other hand, Algorithm 4.4 creates a supergradient
of F at {σ1, . . . ,σk } for a randomly chosen k . (This type of supergradient
is denoted by д̄Y by Iyer et al. (2013).) In fact, the modular functions m1,
m2 that we used in analyzing the Ising model in the previous section were
supergradients of F at sets S1 = �, and S2 = V respectively.

In practice, we can use Algorithm 4.1 regardless of whether F is sub- or
supermodular. We have noticed that subgradients give better results when
F is submodular, and vice versa for supergradients and supermodular F .
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Algorithm 4.3: Subgradient computation

Input :Set function F , permutation σ

1 A←�
2 c ← F (�)
3 for v = 1 to n do

4 mv ← F (A ∪ {σv }) − F (A)
5 A← A ∪ σv
6 returnm(S) := c +∑

v ∈S mv

Algorithm 4.4: Supergradient computation

Input :Set function F , permutation σ

1 Draw k ∼ Unif({1, . . . ,n})
2 for v = 1 to k do

3 mv ← F (V ) − F (V \ {v})

4 for v = k + 1 to n do

5 mv ← F ({v})

6 returnm(S) := ∑
v ∈S mv

4.5 Experiments

We start by repeating the experiment of the previous chapter shown in Fig-
ure 3.3, which involved estimating the log-partition function using reverse
importance sampling on a synthetic data set that contains a group of three
mutually exclusive genes. Here we only focus on the ground set of size
|V | = 100. Figure 4.2 shows the resulting (approximate) error in estimat-
ing log(Z ) using the Gibbs sampler, compared to our proposed combined
sampler using a mixture q constructed by Algorithm 4.1 (Combo-I). We also
compare against a variation where we substitute the greedy procedure in
line 2 of Algorithm 4.1 with picking a permutation σ of the ground set uni-
formly at random (Combo-R). Both variations use r = 20 subgradients, and we
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Figure 4.2: The error in estimating the log-partition function with the two
versions of the combined sampler compared to the Gibbs sampler.

repeat the experiment 100 times. We can see that they clearly outperform
the Gibbs sampler, while the difference between the two variations is not as
significant.

Next we evaluate the marginal inference performance of our proposed
sampler on the Isingmodel we analyzed earlier, as well as the following three
models learned from real-world data sets.

Water. The same FLiD model that we used in the experimental section of last
chapter (see Figure 3.4a), which was based on a problem of sensor placement
in awater distribution network (Krause et al., 2008) In this case, we randomly
subsample the original facility location matrix, so that n = 50, and L = 500.

Sensor. A determinantal point process (see Example 2.12), which was used in
a problem of sensor placement for indoor temperature monitoring (Guestrin
et al., 2005). The function F is of the form

F (S) = log |K + σ2I |,

whereK is a kernel matrix, andσ is a noise parameter. The size of the ground
set is n = 46.
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Game. A FLiDmodel that represents the characters that are chosen by players
in the popular online game “Heroes of the Storm”. We learned the model
from an online data set of approximately 8, 000 teams of 5 characters1 using
noise-contrastive estimation, as described by Tschiatschek et al. (2016). The
model has a ground set of size n = 48, and L = 10 latent dimensions.

In practice, we would only be interested in sampling sets of fixed size
ℓ = 5. The Gibbs sampler can be easily modified to sample under a cardi-
nality constraint by using moves that swap an element in the current set Xt
with an element inV \Xt . Extending the M3 chain to sample from cardinality-
constrained models is also straightforward. In fact, the only additional in-
gredient required is a procedure to sample a set of size ℓ from a log-modular
distribution, which can be easily done, as before, in O(n) time.

Results. To assess convergence, we use the potential scale reduction factor
(PSRF) (Brooks et al., 2011) with 20 parallel chains. Intuitively, the PSRF
compares the within-chain variance of some probabilistic quantity to the
between-chain variance of that same quantity. As each of the chains con-
verges to the stationary distribution, the PSRF is expected to converge to
0. In our experiments, we compute the PSRF using single-element marginal
probabilities, and show the worst (highest PSRF) marginal averaged over 50
repetitions of each simulation.

In Figure 4.3 we show the results for the Ising model (n = 6, 7, 8). The
additional Combo-F lines denote the combined sampler with two mixture com-
ponents discussed in Section 4.3. The other two combined samplers use mix-
tures of size r = 20. Note that Gibbs mixes dramatically slower than the
combined sampler, even for such small n, because of the significant bottle-
neck we described before.

In Figure 4.4 we show the results on the three log-submodular models
above using mixtures of size r = 200. We see again that even random per-
mutations are enough to provide a significant improvement over the perfor-
mance of Gibbs. Similar observations can be made with respect to computa-
tion time (see Figure A.1 in the appendix).

In Figure 4.5a we show how mixture size affects performance; as ex-
pected, adding more components to the mixture results in a proposal that
approximates the target distribution better, and, therefore, mixes faster. Fi-
nally, in Figure 4.5b we illustrate the effect of the combination weight δ ,
while having the number of subgradients fixed to r = 200. We see that both
Gibbs (δ = 1) and M3 (δ = 0) perform poorly by themselves, but combining

1https://www.hotslogs.com
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Figure 4.3: Ising model results for increasing n. Note how the previously
discussed bottleneck significantly affects the Gibbs sampler’s performance,
while it has almost no effect on the combined chains.
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Figure 4.4: Potential scale reduction factor (PSRF) as a function of sampling
iterations. The combined chains have a clear advantage over Gibbs on all
three models.
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them results in much improved performance. This highlights again the com-
plementary nature of the two chains (local vs. global moves) we discussed
earlier.

4.6 Conclusion

In this chapter, we presented the M3 sampler that proposes global moves
using a mixture of log-modular distributions. We theoretically analyzed the
effect of combining our sampler with the Gibbs sampler on a class of Ising
models, and proved an exponential improvement in mixing time. We also
demonstrated notable improvements when combining the two samplers on
three models of practical interest.

Further related work. There has been some recent work on mapping dis-
crete inference to continuous domains (Zhang et al., 2012; Pakman & Panin-
ski, 2013; Dinh et al., 2017; Nishimura et al., 2018) to enable the use of well-
established continuous samplers, such as Hamiltonian Monte Carlo (Neal,
2012; Betancourt, 2017). It is worth pointing out that, while these methods
usually outperform simple Gibbs or Metropolis samplers, they still tend to
suffer from considerable slowdowns inmultimodal distributions (Neal, 2012).
Our work in this chapter is orthogonal to these methods, in the sense that
our proposed sampler can be combined with any of the existing ones to pro-
vide a principled way for performing global moves that can lead to improved
mixing.

Both darting Monte Carlo (Sminchisescu & Welling, 2007; Ahn et al.,
2013), and variational MCMC (de Freitas et al., 2001) share the high-level
concept of combining two chains, one making global moves between high-
probability regions, and another making local moves around those regions.
However, their proposed global samplers for continuous spaces are gener-
ally not applicable to the class of discrete distributions we consider.

Other (non-MCMC) approaches to discrete sampling include Perturb-
and-MAP (Papandreou & Yuille, 2011; Hazan et al., 2013), and random pro-
jections (Zhu & Ermon, 2015).

Semigradients of submodular set functions have recently been exploited
for optimization (Iyer et al., 2013; Jegelka & Bilmes, 2011), and variational
inference (Djolonga et al., 2016a), but, to our knowledge, no prior work has
used them for sampling.
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Figure 4.5: (a) Increasing the number of mixture components improves per-
formance. (b) The combination of Gibbs and M3 performs better than either
of them does individually.



5 Learning Prob. Submodular Models

5.1 Introduction

As discussed before, learning probabilistic models from data is one of the
main motivations of our work. The probabilistic framework we have con-
sidered throughout the thesis suggests a principled way to estimate model
parameters given a data set, namely by maximizing the likelihood of those
parameters under the given data.

Evaluating the likelihood or computing its gradient with respect to the
model parameters boils down performing inference, in particular, comput-
ing expectations over themodel distribution. This brings us back to the famil-
iar setting of the previous chapters. We show how we can use the sampling
procedures discussed before to approximate the likelihood gradients, and,
thus, perform an approximate gradient ascent procedure. Unfortunately,
the likelihood functions of probabilistic submodular models are generally
non-convex, therefore the optimization is only guaranteed to find a local
optimum of the likelihood.

The rest of this chapter is then focused on applying this learning proce-
dure to the application of modeling the interactions between gene mutations
in cancer patients that we discussed in the introduction of the thesis. We
evaluate our proposed method on synthetic and real cancer data, visualize
the results in several ways, and compare them to the state of the art.

5.2 Approximate Maximum Likelihood Learning

We reintroduce here the notation of explicitly stating the model parameters,
and thus denote our distribution of interest by

p(S;θ ) = 1

Z (θ ) exp (F (S;θ )) ,

63
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where θ ∈ Rd is a parameter vector to be learned. Given a data set of N sets,
D := {D1, . . . ,DN }, with D1, . . . ,DN ⊆ V , the log-likelihood of the above
model can be written as

ℓ(θ ) :=
N∑
i=1

logp(Di ;θ )

=

N∑
i=1

(F (Di ;θ ) − logZ (θ ))

=

N∑
i=1

F (Di ;θ ) − N logZ (θ ).

The gradient of the log-likelihood with respect to the parameters θ is then

д(θ ) := ∇θ ℓ(θ )

=

N∑
i=1

∇θ F (Di ;θ ) − N∇θ logZ (θ )

=

N∑
i=1

∇θ F (Di ;θ ) − N
1

Z (θ )∇θZ (θ )

=

N∑
i=1

∇θ F (Di ;θ ) − N
1

Z (θ )∇θ
∑
S ⊆V

exp (F (S;θ ))

=

N∑
i=1

∇θ F (Di ;θ ) − N
∑
S ⊆V

exp (F (S;θ ))
Z (θ ) ∇θ F (S;θ )

=

N∑
i=1

∇θ F (Di ;θ ) − N
∑
S ⊆V

p(S;θ )∇θ F (S;θ )

=

N∑
i=1

∇θ F (Di ;θ ) − N Ep [∇θ F (S;θ )]

=
1

N

N∑
i=1

∇θ F (Di ;θ ) − Ep [∇θ F (S;θ )] .

This shows that the maximum likelihood parameters (when д(θ ) = 0) satisfy
a generalized version of the well-known moment matching condition for
exponential family models (Wainwright & Jordan, 2008; Koller & Friedman,



655.2 Approximate Maximum Likelihood Learning

Algorithm 5.1: Approximate maximum likelihood maximization
Input: Data D, iterations niter, samplesM , step (γi )i , grad. oracle
∇θ F (S;θ )

1: Initialize θ
2: for i = 1 to niter do
3: S ← sampleM sets from p(· ;θ )
4: д̃(θ ) ← 1

N
∑N

i=1 ∇θ F (Di ;θ ) − 1
M

∑M
i=1 ∇θ F (Si ;θ )

5: θ ← θ + γi д̃(θ )
6: end for
7: return θ

2009). That is, at the maximum, the empirical mean of the function gradient
over the data set matches the expected gradient over the model distribution.

While the expectation term in the log-likelihood gradient is, in general,
infeasible to compute exactly, we can straightforwardly approximate it us-
ing the sampling methods discussed in the previous chapters. In particular,
if we have drawn samples S = {S1, . . . , SM }, with S1, . . . , SM ⊆ V , from
distribution p, we can approximate the gradient д(θ ) by

д̃(θ ) := 1

N

N∑
i=1

∇θ F (Di ;θ ) −
1

M

M∑
i=1

∇θ F (Si ;θ ).

We, therefore, propose learning the parameters θ using an approximate gra-
dient ascent procedure, which involves alternating between sampling from
the current model to compute д̃(θ ), and performing a gradient step towards
the direction of д̃(θ ), as shown in Algorithm 5.1.

Gradients of the FLDCmodel. Since we will be focusing on the FLDCmodel for
the remainder of this chapter, we derive here the gradients of its potential
function with respect to its parameters. For simplicity, we assume that we
use an equal number of L dimensions for both the repulsive and the attrac-
tive matrices. As a reminder, the FLDC model is in that case defined via the
following function (cf. Example 2.14),

F (S;u,w,v) =
∑
i ∈S

ui +
L∑
j=1

(
max
i ∈S

wi j −
∑
i ∈S

wi j −max
i ∈S

vi j +
∑
i ∈S

vi j

)
.
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Due to the presence of the two “max” functions, F is differentiable only al-
most everywhere. For the points where it is not differentiable, we define
subgradients that give equal contribution to all elements that belong to the
corresponding set of maximizers. In particular, for all i ∈ V , j ∈ [L], we have

∇ui F (S;u,w,v) = ⟦i ∈ S⟧
∇wi j F (S;u,w,v) =

⟦i ∈ argmaxr ∈S wr j⟧
| argmaxr ∈S wr j |

− ⟦i ∈ S⟧

∇vi j F (S;u,w,v) = −
⟦i ∈ argmaxr ∈S vr j⟧
| argmaxr ∈S vr j |

+ ⟦i ∈ S⟧.

Tschiatschek et al. (2016) used an alternative set of subgradients, involving
randomization over the choice of the “argmax” at each gradient step. We
have noticed that our choice often results in slightly improved learning per-
formance in practice.

Related work. Most of the previous work on learning discrete probabilistic
models has focused on (pairwise) Markov random fields. Using a maximum
likelihood approach to learn such models, or more generally, exponential
family models, is fundamentally very similar to what we described above.
As we mentioned, the moment matching condition requires approximating
marginals, which has been accomplished in the past using a variety of sam-
pling (Geyer, 1991), and variational (Wainwright & Jordan, 2008) methods.
The method of contrastive divergence (Carreira-Perpiñán & Hinton, 2005)
has been notable for making further approximations to the sampling proce-
dure to speed up the learning process.

Alternative approaches seek to optimize different objectives than the
likelihood to avoid performing inference altogether. Examples of other ob-
jectives include the pseudolikelihood (Besag, 1975), which involves easy to
compute conditional probabilities; the noise-contrastive objective that aims
to differentiate real data from noise Gutmann & Hyvärinen (2012); Tschi-
atschek et al. (2016); and the objective proposed by Domke (2013) that is
directly based on marginal probabilities.

The problem of learning submodular functions has also been approached
from non-probabilistic viewpoints. For example, Balcan & Harvey (2012)
investigate learning such a function when given a black-box oracle of its
value. Tschiatschek et al. (2014) learn mixtures of submodular functions,
and Dolhansky & Bilmes (2016) learn submodular functions defined by deep
architectures, both using large-margin approaches.
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5.3 Modeling Interactions of Gene Mutations in Cancer

One of the goals of cancer genomics research is identifying so-called driver
mutations, that is, somatic mutations that are responsible for various forms
of cancer, and distinguishing them from randomly occurring passenger mu-
tations. While sequencing data from large projects, such as The Cancer
Genome Atlas (TCGA, 2008), has been available in increasing quantities, an-
alyzing mutation interactions is a combinatorially daunting task.

Driver mutations often occur in a limited number of key biological path-
ways, and it has been observed that multiple mutations involved in the same
pathway tend to not occur together in the same patient (Yeang et al., 2008).
As a result, it is of interest to discover groups of gene alterations that are (ap-
proximately) mutually exclusive. Finding such a group is then an indication
that the participating mutations are part of the same cancer-related pathway.
Since most existing pathway databases lack in detail and accuracy, there has
been particular interest in de novo methods, that is, methods that analyze
the existing patient data without using any prior biological knowledge, and
try to identify new potentially significant combinations of mutations. For a
general review of the topic, we refer to Raphael et al. (2014).

Previous de novo methods have used different combinatorial or statisti-
cal scores to assess the degree of mutual exclusivity of a group of mutations.
These are then paired with some discovery algorithm that exhaustively enu-
merates groups (Szczurek & Beerenwinkel, 2014; Yeang et al., 2008), progres-
sively builds up larger groups from smaller ones (Babur et al., 2015; Miller
et al., 2011; Ciriello et al., 2011; Constantinescu et al., 2015), or performs a
randomized search in the group space (Vandin et al., 2011; Leiserson et al.,
2013; 2015). As a result, these methods either scale poorly in the number of
mutations at hand, or require prior assumptions on the exact or maximum
size of the groups to be discovered. In the following sections, we compare
our results against the CoMEt algorithm (Leiserson et al., 2015), which is a
state-of-the-art method for discovering multiple groups of mutually exclu-
sive mutations. While CoMEt requires prespecifying the number and size of
groups to be searched for, it is able to ultimately put together a consensus
of arbitrarily sized groups.

5.3.1 Our Approach

Assume that we are given a ground set V = {1, . . . ,n} of possible gene
mutations, and a data set of N patients, D := (D1, . . . ,DN ), where Di ⊆ V
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is the combination of mutations that were present in patient i . The data
is commonly represented in the literature using a binary alteration matrix,
where each row represents a mutation, and each column a patient. Our goal
is to discover groups of mutations M1,M2, . . ., Mi ⊆ V , with the property
that mutations that belong to the same group rarely occur together in the
same patient (see Figure 1.1).

We propose using the patient data D to learn an FLDC model over the
mutation space V . Based on the definition of this model, we expect the
columns of the w and v matrices to encode groups of mutually exclusive
and co-occurring mutations respectively. For the purposes of this thesis, we
propose extracting potential groups by thresholding each matrix at a spec-
ified level; these groups can then be further assessed for mutual exclusiv-
ity or co-occurrence using some of the previously proposed statistical tests.
More generally, one can perform inference in the learned model to compute
various probabilistic quantities that may be useful in specific biological ap-
plications.

Our approach offers several advantages over previous work. First, it in-
herently uses higher-order potentials to directly capture mutation interac-
tions of arbitrary size, without any need to specify the number of groups
or size of each group in advance. Second, in addition to mutual exclusiv-
ity, it also models mutation co-occurrence, a property that may also pro-
vide useful information in cancer research (Yeang et al., 2008; Raphael et al.,
2014). Finally, in terms of computational complexity, the only potentially
super-linear component in our learning procedure is the number of samples
required to get an accurate gradient approximation. This further justifies
the pursuit of efficient sampling methods in the previous chapters. In prac-
tice, our algorithm only takes a few minutes to run on real cancer data sets
containing hundreds of mutations.

5.3.2 Experimental Setup

We provide here some more details about each step of the procedure we use
to discover mutually exclusive groups of mutations. The steps for discover-
ing co-occurring groups are analogous.

Step 1: Learning the FLDC model. We use the approximate maximum likeli-
hood method described in Section 5.2. By definition of the FLDC model, the
elements of matrices w and v must be non-negative. To achieve this dur-
ing learning, we project the entries of w and v to the positive orthant after
each gradient step. Furthermore, we have found it beneficial in practice to
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induce sparsity on these matrices, in order to reduce the effect of noisy data
on the learned models, and obtain more interpretable solutions. To this end,
we employ an L1-regularization to bothw andv by projecting each row and
column of these matrices to the corresponding L1-ball after each gradient
step.

We initialize the entries ofu to the maximum likelihood estimates of the
respective product distribution, that is,

ui = log

(
fi

1 − fi

)
,

where fi is the frequency of element i ∈ V in the data set D. We randomly
initialize the entries of w and v by drawing each of them from a uniform
distributionU[0, 0.01]. To avoid duplicate latent dimensions in the two ma-
trices, for the first half of the iterations, we check the columns of w and v
after each gradient step, and reinitialize a column when we detect that its L1-
distance to another column of the same matrix is smaller than a predefined
threshold.

Unless otherwise stated, we use niter = 2 · 104 gradient iterations, and
M = 200|V | samples per iteration. We use the combined sampler detailed
in Chapter 4 with a mix of 100 random sub- and supergradients, and a com-
bination weight of δ = 0.5. Finally, we use a fixed step size (γ = 5 · 10−4)
for the first half of the iterations, and a geometrically decreasing step size
(γi = γr i with r = 10−3/niter ) for the second half.

Step 2: Extracting proposed mutation sets. We start by thresholding each
column of the learnedw matrix at a fixed levelwth = 1.5. We then proceed to
create a graph that contains one clique of nodes for each group extracted in
the previous step. Our proposed mutation sets consist of all maximal cliques
in this constructed graph. Creating the graph, rather than directly proposing
the groups extracted from the matrix columns, can be useful for merging
smaller groups of genes that have been encoded in separate columns of w
during learning.

Step 3: Testing mutual exclusivity. We make use of two statistical tests for
testing the degree of mutual exclusivity of a mutation group.

The first was proposed by Babur et al. (2015), and used as part of the Mu-
tex algorithm. For each gene in a proposed mutation group, we run Fisher’s
one-tailed exact test on the contingency table that results from examining
the occurrences of that gene in the data set versus the union of all other
genes in the group. This results in one p-value per gene in the mutation
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group, and the output of the test is the maximum of these p-values. We will
call this the “one vs. all” test, and denote its output p-value by pova.

The second was proposed by Leiserson et al. (2015), and used as part of
the CoMEt algorithm. It generalizes Fisher’s exact test to higher-dimensional
contingency tables. In particular, it consists of a null hypothesis of indepen-
dent hypergeometric distributions, one for each mutation in the group, and
uses as a test statistic the sum of patients in which exactly one mutation
from the group occurs. We will call this the “generalized Fisher” test, and
denote its output p-value by pgf .

Step 4: FDR control. For the synthetic experiments, we will want to make
a final decision of whether a proposed group is significantly mutually ex-
clusive or not, in order to compare to the ground truth. For that purpose,
we employ the one vs. all test discussed above, and correct for multiple
testing by using an online FDR control procedure known as LORD++ (Ram-
das et al., 2017; Javanmard & Montanari, 2018). In contrast to classic offline
methods, such as the BH step-up procedure (Benjamini & Hochberg, 1995),
online methods can be applied to settings where the hypotheses to be tested
are not necessarily known in advance, and my arrive in an arbitrary order.
This is useful in our case, because we want to output maximal mutually ex-
clusive groups, which means that the decision of whether to test a group or
not will depend on whether a supergroup has already been rejected or not.
The LORD++ procedure takes as input the significance level α at which we
are testing. For the procedure’s “starting alpha-wealth” parameter we use
W0 = 0.8α .

For the real data experiments, in the absence of ground truth, we take a
more exploratory approach, and do not employ multiple testing. Rather, we
illustrate and discuss the most significant discovered groups, as indicated by
their p-values according to both statistical tests described above.

Co-occurrence tests. For assessing co-occurrence, we define a version of
the “one vs. all” test that is completely analogous to the one described above,
except that we use the opposite tail of the null distribution in Fisher’s test
compared to the mutually exclusive case. To define a “generalized Fisher”
test for co-occurrence, we use as a test statistic the sum of patients in which
all mutations from the corresponding group occur simultaneously.
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5.4 Synthetic Data

We proceed to practically apply our learning algorithm to the problem of
modeling gene interactions, starting with three synthetic data sets.

5.4.1 Learning

To begin with, we want to illustrate how the gradient approximation via
sampling affects the learning algorithm. We create a reduced version of one
of the real cancer data sets (see Section 5.5), so that we are able to compute
the exact log-likelihood during learning. Starting with the AML data set
detailed in the next section, we only keep the 17 gene mutations shown in
Figure 5.8, thus creating a data set of 17mutations and 200 patients. We then
learn a FLDC model with L = 10 latent dimensions for niter = 104 gradient
iterations.

Figure 5.1a shows the evolution of the log-likelihood for an increasing
number of samples, while keeping the number of semigradients constant. As
expected, using a larger number of samples leads to a more accurate gradient
approximation, which results in faster learning. We also see that the benefit
of increased samples plateaus after some point; for example, we see minimal
benefit when increasing the samples from 500 to 1000.

Similar conclusions can be drawn from the results Figure 5.1b about the
effect of the number of semigradients used. We can see that for this example
we get practically no benefit from adding more than 20 semigradients, but
this number will likely need to be adjusted when learning from data with
larger ground sets. We also see that the benefit obtained from 20 semigradi-
ents corresponds to about doubling the number of Gibbs samples from 100
to 200.

5.4.2 Single Mutually Exclusive Group

We focus now on extracting a single group of mutually exclusive mutations.
We create synthetic data sets of 100 mutations and 500 patients, following
the procedure outlined by Leiserson et al. (2015). First, we choose k = 3
mutations, which cover a fraction γ of the patients, and have them be com-
pletely mutually exclusive, that is, only one of the three mutations occurs in
each of the 500γ patients. Furthermore, each of the three mutations appear
in a fraction 0.5, 0.35, and 0.15 of the 500γ patients, respectively. Second,
we choose 5 mutations, which occur frequently (with fractions 0.67, 0.49,
0.29, 0.29, 0.2 in the 500 patients), and completely independently of each
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Figure 5.1: Learning curves on the reduced AML data set for (a) varying
number of samples, and (b) varying number of semigradients.
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other and of any other mutation, including the mutually exclusive ones. Fi-
nally, we add random noise by independently activating each mutation in
each patient with probability 0.0028.

Figure 5.2 shows the learned w matrix of the FLDC model for such a syn-
thetic data set with γ = 0.5. Note how the mutually exclusive group S =
{16, 23, 68} is distinctly encoded in the last column of the matrix.

To evaluate the ability of our method to recover the true mutually ex-
clusive group, we computed the F -measure of the union of the resulting ex-
tracted groups compared to the true group. Figure 5.3 shows the results
across different values of the fraction γ of patients covered by the mutually
exclusive group, ranging from 0.1 to 1.0. For each value of γ , we repeat the
experiment on 50 randomly generated data sets.

We show the results of our procedure for two different values of the con-
sidered hypothesis testing level α , which trades off between false negatives
and false positives. For α = 0.01, we have practically perfect recovery when
γ ≥ 0.4, but are not able to extract statistically significant groups below
γ = 0.3. Using a much higher α = 0.3 trades off some false positives to
gain statistical power, and exceeds the performance of CoMEt for almost all
values of γ . Either way, the results show that, in the majority of the cases,
the learned FLDCmodel is able to encode the correct group, and propose it for
further testing. It is important to emphasize that CoMEt takes the size k = 3 of
the group as input, although it can still output groups of different size; our
method, on the other hand, does not use any such information.

5.4.3 Multiple Mutually Exclusive Groups

We now move to the problem of extracting multiple groups of mutually ex-
clusive mutations. Again, we create synthetic data sets following a proce-
dure outlined by Leiserson et al. (2015). In this case, we start with 20, 000
mutations and 500 patients, and select t groups of k mutually exclusive mu-
tations. The number of groups t range from 2 to 4, and the mutations per
group k from 3 to 5. Each group covers a fraction of patients ranging from
0.4 to 0.7, and the mutations of each group cover equal number of patients.
As before, we add 5 independently mutated genes with high frequencies, as
well as random noise. Finally, we remove genes that are mutated in fewer
than 5 patients, which results in a final ground set of average size |V | ≈ 275.
To assess the quality of the recovered groups against the true ones, we use
the adjusted Rand index (Hubert, 1985), which is a measure that compares
the similarity of two clusterings of a set of elements. Thus, an adjusted Rand
index of 1 indicates that the recovered groups are identical to the true ones.
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Figure 5.2: The w matrix of the learned FLDC model on a synthetic data set
of 100 genes and 500 patients. The implanted mutually exclusive group of
k = 3 mutations covers a fraction γ = 0.5 of the patients, and is distinctly
encoded in the last column of the matrix.
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Figure 5.3: Results on recovering a single group of k = 3mutually exclusive
mutations for different values of the fraction γ of patients covered by that
group. The level α at which we test trades off statistical power at low γ for
false positives at high γ .

For each combination of t and k we repeated the experiment on 50 ran-
domly generated data sets. We ran CoMEtwith fixed values of t = 3 and k = 4,
as was done in the original paper (Leiserson et al., 2015). Figure 5.4 shows
the results, in which we see that our method significantly outperforms CoMEt,
especially at the lower values of t and k . This showcases the problems en-
countered by CoMEt when the number and size of the groups to be found is
misspecified. These problems are shared with several other methods pro-
posed in the past. In contrast, we see that our method performs consistently
well across all different values of t and k , without any knowledge of these pa-
rameters. We also see that, in this case, a higher level α degrades the quality
of the final results, because of the frequent occurrence of false positives.
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Figure 5.4: Results on recovering t groups of k mutually exclusive mutations.
Our method performs consistently well across all different t and k , while
CoMEt performs poorly when t and k are misspecified.

5.5 Real Cancer Data

We analyzed two real cancer data sets from TCGA, the first pertaining to
acutemyeloid leukemia (TCGA, 2013), and the second to breast cancer (TCGA,
2012). For both data sets, we used the preprocessed versions by Leiserson
et al. (2015) available on GitHub1.

5.5.1 Acute Myeloid Leukemia (AML)

Thedata set consists of 51mutations and 200 patients. The learned FLDCmodel
(L = 10) is shown in Figure 5.5. We have annotated on the two matrices
the discovered mutually exclusive and co-occurring groups that have (un-
corrected) p-values ≤ 0.01 for both pgf and pova. (We have also decided to
include group R2, even though its pova is barely above 0.01.)

Figures 5.6 and 5.7 illustrate in detail each of the mutually exclusive

1https://github.com/raphael‐group/comet

https://github.com/raphael-group/comet
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groups R1–R8 by showing the corresponding permuted data rows, as well
as the computed p-values for each group. Figure 5.8 summarizes these eight
groups into a graphical structure. Each node represents a mutation, with
darker nodes corresponding to higher marginal frequency in the data set.
The mutually exclusive groups are shown shaded, with darker groups corre-
sponding to lower pova. Figure 5.9 shows the five discovered groups A1–A5

of co-occurring mutations.
It is notable that CoMEt detects groupsR1 (without the last mutation, RUNX1-

RUNX1T1) and R2, but fails to detect any of the other six groups, even though
almost all of them have particularly low pgf . We suspect that this is caused
by the combination of CoMEt using as input a fixed number of groups and
sizes thereof, as well as the fact that the algorithm’s sampling-based search-
ing procedure based works on a particularly slow-mixing landscape. As an
example, although the authors are searching for a group of size 6, they never
discover the groupR3 shown in Figure 5.6, because their sampler presumably
gets stuck on group R1, which has a few orders of magnitude lower pgf com-
pared to R3. On the other hand, CoMEt detects two other groups (see Figure
A.2 in the appendix), which have pova significantly above our cutoff, and fur-
thermore, also have pgf significantly higher than all our discovered groups
except for R8. For a comparison of the discovered mutation interactions, we
also refer to (TCGA, 2013, Figure S8), which confirms many of our findings,
although it is limited to pairwise interactions.

5.5.2 Breast Cancer (BRCA)

The data set consists of 375 mutations and 507 patients. We show the re-
sulting learned FLDC model (L = 15) in Figure 5.10, the extracted mutually
exclusive groups R1–R11 in Figures 5.11 and 5.12, and a graphical summa-
rization of all these groups in Figure 5.13. In Figure 5.14 we show the six
extracted co-occurring groups with the highest coverage; groups A7–A14

can be found in Figures A.3 and A.4 in the appendix.
The CoMEt results on BRCA take into account additional information about

the classification of each patient into four different subtypes of breast can-
cer. While this means that we cannot directly compare our results to theirs,
we still recover some of their findings (e.g., the first three mutations in R1),
but also extract significant groups that were not found by CoMEt, even when
constrained to a specific subtype (e.g., R3 for the “Luminal-A” subtype). Fur-
thermore, we observe that the co-occurring groups A1–A6 are particularly
significant, with p-values of order 10−5 or less.
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u w v

R1 R2 R3 R4 R5 R6 R7 R8 A1
A2
A5 A3 A4

NPM1
RUNX1

PML-RARα
TP53

MLL-fusions
MYH11-CBFβ

RUNX1-RUNX1T1
FLT3

Ser./Thr. kinases
NRAS/KRAS
Tyr. kinases

Cohesin comp.
IDH2
IDH1

Spliceosome
MLL-PTD
DNMT3A
ASXL1

Epig. mods
NF1

MIR142
PHACTR1

TET2
CROCC

CACNA1B
CACNA1E
PLCE1
PTPs
DIS3

MT-CO2
WT1

MT-CYB
GRIK2
SPEN

COL12A1
FCGBP

BCR-ABL1
Myeloid tfs.
MT-RNR1
DNAH9

NUP98-NSD1
EZH2
PHF6

KDM6A
GPR128-TFG

MT-ND5
CEBPA
MT-CO3

KIT
GBP4
FAM5C

-6 1 0 2 0 3

Figure 5.5: The learned utility (u), repulsive (w), and attractive (v) matrices
of the FLDC model (L = 10) on the TCGA AML data set. We have permuted
the rows and columns to bring the discovered groups towards the upper left
of the matrices. Groups R1–R8 are mutually exclusive, while groups A1–A5

are co-occurring.
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Figure 5.6: The first fourmutually exclusive groups extracted from the TCGA
AML data set. Each row corresponds to a mutation, and each column to a
patient. The highlighted entries represent co-occurring mutations.
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Figure 5.7: The next four mutually exclusive groups extracted from the
TCGA AML data set. Each row corresponds to a mutation, and each column
to a patient. The highlighted entries represent co-occurring mutations.
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Figure 5.8: A graphical representation of the eight discovered mutually ex-
clusive groups in the TCGAAML data set. Darker nodes correspond to more
frequent mutations, and darker shaded polygons correspond to more signif-
icant (that is, lower pova) groups.
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Figure 5.9: The five co-occurring groups extracted from the TCGAAML data
set. Each row corresponds to a mutation, and each column to a patient. The
highlighted entries represent co-occurring mutations.
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u w v
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Figure 5.10: The learned utility (u), repulsive (w), and attractive (v) matrices
of the FLDC model (L = 15) on the TCGA BRCA data set. For illustration
purposes, we only show the submatrices corresponding to the 39mutations
that participate in the extracted groups. We have also permuted the rows and
columns to bring these groups towards the upper left of thematrices. Groups
R1–R11 are mutually exclusive, while groups A1–A14 are co-occurring.
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Figure 5.11: The first five mutually exclusive groups extracted from the
TCGA BRCA data set. Each row corresponds to a mutation, and each col-
umn to a patient. The highlighted entries represent co-occurring mutations.
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Figure 5.12: The next sixmutually exclusive groups extracted from the TCGA
BRCA data set. Each row corresponds to a mutation, and each column to a
patient. The highlighted entries represent co-occurring mutations.
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Figure 5.13: A graphical representation of the 11 discovered mutually ex-
clusive groups in the TCGA BRCA data set. Darker nodes correspond to
more frequent mutations, and darker shaded polygons correspond to more
significant (that is, lower pova) groups.
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Figure 5.14: The first six co-occurring groups extracted from the TCGA
BRCA data set. Each row corresponds to a mutation, and each column to
a patient. The highlighted entries represent co-occurring mutations.



88 5. Learning Prob. Submodular Models

5.6 Conclusion

In this chapter, we have seen how sampling can be effectively used to obtain
estimates of the gradient of a probabilistic submodular model with respect to
its parameters. It, thus, facilitates applying an approximate maximum like-
lihood maximization procedure to learn such models from data. We have
applied this learning procedure to the problem of modeling interactions of
genetic mutations in cancer patients, with the particular goal of discovering
groups of mutually exclusive and co-occurring mutations. We have shown
that our method often outperforms the state of the art for this task by natu-
rally capturing these higher-order interactions without the need to prespec-
ify the number or size of groups to be found.



6 Conclusion

In this thesis, we focused on discrete probabilistic models defined via submo-
dular or supermodular functions, and investigated the use of Markov chain
Monte Carlo sampling techniques to perform inference in such models.

We analyzed the mixing behavior of the Gibbs sampler on probabilis-
tic submodular models, and showed that under conditions that quantify the
distance from modularity or the influence of element on the function values,
we can guarantee polynomial-time or O(n logn)mixing, respectively. These
conditions also showed how sub- or supermodularity can lead to improved
mixing bounds.

We then proposed a novel sampling procedure that combines the Gibbs
sampler with a Metropolis chain that performs global moves to avoid state-
space bottlenecks. The construction of this chain involved creating a mix-
ture of semigradient-based log-modular distributions, and illustrated how
concepts from discrete optimization may be leveraged in probabilistic infer-
ence.

Finally, we showed how we can use sampling to approximate the likeli-
hood gradients, and perform an approximate likelihood maximization using
gradient ascent. We applied this learning procedure to the problem of model-
ing interactions of genetic mutations in cancer patients, in particular mutual
exclusivity and co-occurrence. Our results illustrated that our probabilistic
framework provides a flexible way to encode such interactions without the
need to specify the number or size of the groups that are being searched for.
Moreover, in real cancer data we discovered significant groups of mutations
that previous state-of-the-art methods failed to find.

6.1 Future Work

We list here a few promising directions for future work related to this thesis.

Learning models with efficiency guarantees. Our approach in Chapter 3
was to provide conditions for efficient sampling in general probabilistic sub-
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modular models. On the other hand, our learning procedure of Chapter 5
cannot guarantee that these conditions will hold in the resulting model. It is
interesting to consider the problem of directly incorporating conditions for
guaranteed inference efficiency into the learning process, in order to make
sure that the learned models are amenable to inference. There has been little
work in this direction for a limited model class (Domke, 2015).

Continuous sampling for discrete inference. Sampling methods for contin-
uous domains, such as Hamiltonian Monte Carlo, have received increasing
attention in the past few years, for their ability to combine gradient informa-
tion with random momentum to perform more efficient moves in the state
space. There has been some promising recent work on embedding discrete
models into suitable continuous domains, then using a continuous sampler,
and finally converting the samples back to the discrete domain (Zhang et al.,
2012; Pakman & Paninski, 2013; Dinh et al., 2017; Nishimura et al., 2018). It
is also interesting to investigate whether it is possible to directly define dis-
crete counterparts of momentum and gradients, and, as a result, a discrete
version of Hamiltonian Monte Carlo.

Strongly Rayleigh distributions. Strongly Rayleigh (Borcea et al., 2008) dis-
tributions capture a strong notion of negative dependence between elements,
and have been shown to allow for efficient sampling (Anari et al., 2016; Li
et al., 2016). Except for determinantal point processes, only very few inter-
esting classes of parametric distributions are known to be strongly Rayleigh
(Li et al., 2017). It is interesting to investigate under what conditions some
well-known model classes are strongly Rayleigh, and to find efficient ways
to represent and learn more general strongly Rayleigh models.
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A.1 Results from Chapter 4
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Figure A.1: Potential scale reduction factor as a function of wall-clock time.
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A.2 Results from Chapter 5
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Figure A.2: Two more groups reported by CoMEt as mutually exclusive, which
our method rejects due to the high pova values.
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Figure A.3: The next three co-occurring groups extracted from the TCGA
BRCA data set.
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Figure A.4: The rest of the co-occurring groups extracted from the TCGA
BRCA data set.
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