
Experiments

Efficient likelihood maximization

Tackling underspecification

Contributions

Problem setupMotivation

Goal: Model the time evolution of discrete sets of items using a continuous-time Markov chain

Example application: Accumulation of genetic mutations during cancer progression

Challenge: Available data are cross-sectional
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unordered set of mutations

unknown observation time

State of the art (Schill et al, 2019)

◦ Constrain analysis to 𝑛𝑛 ≈ 20 “important” mutations

◦ Run O (2𝑛𝑛) max. likelihood

◦ We show that “unimportant” mutations are valuable to resolving underspecification

◦ We propose an efficient approximate max. likelihood method that scales to hundreds
of mutations

◦ We evaluate our method on synthetic and real cancer data

Ground set 𝑉𝑉 = {1, . . . , 𝑛𝑛} (e.g., 𝑛𝑛 genetic mutations)

Define continuous-time Markov chain {𝑋𝑋𝑡𝑡 }𝑡𝑡 ≥0 on state space 2𝑉𝑉

𝑸𝑸 =



𝑞𝑞∅�∅ . . . 𝑞𝑞∅�𝑅𝑅 . . . 𝑞𝑞∅�𝑉𝑉
...

...
...

𝑞𝑞𝑆𝑆�∅ . . . 𝑞𝑞𝑆𝑆�𝑅𝑅 . . . 𝑞𝑞𝑆𝑆�𝑉𝑉
...

...
...

𝑞𝑞𝑉𝑉�∅ . . . 𝑞𝑞𝑉𝑉�𝑅𝑅 . . . 𝑞𝑞𝑉𝑉�𝑉𝑉
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Transition rate from 𝑆𝑆 to 𝑅𝑅

Generator matrix
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Parametrization (Schill et al, 2019)

𝑝𝑝 (𝑆𝑆 ;𝜽𝜽 ) =
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Observation time prior

Markov chain

Marginal likelihood over unknown observation time

Start from empty set

Add a single mutation at 
a time (never remove)

Toy example 1 2 Mutation 1 (almost) always occurs before mutation 2

Data distribution {1} ∅ {1, 2} ∅ {1} {1, 2} {1} . . .

Proposition 1 (simplified)

There is a one-dimensional family of models with identical data distribution as above.

Insight: 

Objective 𝐹𝐹 (D;𝜽𝜽 ) = 1
𝑁𝑁
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TCGA glioblastoma data:

Approximately independent mutations

Heavily interacting mutations

𝑛𝑛 = 410 mutations, amplifications, and deletions

Learned parameter matrix

Runtime Method 𝑛𝑛 = 20 𝑛𝑛 = 100

(Schill et al., 2019) 121m –

Ours 8 s 33m 43 s

L₁ regularization enforces sparsity and helps 
uncover block-diagonal parameter structure

Assume another ground set 𝑉𝑉+ containing i.i.d. mutations with no interaction to 𝑉𝑉
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Mutations in 𝑉𝑉+ act like a clock!

Theorem 1 (simplified)

Let 𝑡𝑡∗ be the true observation time. Then, the mean and variance of the posterior
observation time distribution can be bounded as follows:
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Maximize 𝐹𝐹 (D;𝜽𝜽 )

First-order optimizer

Approximate ∇𝜽𝜽 log 𝑝𝑝 (𝑆𝑆 ;𝜽𝜽 ) ≈ 1
𝑀𝑀

∑
𝑖𝑖

∇𝜽𝜽 log 𝑝𝑝 (𝜎𝜎 (𝑖𝑖) ;𝜽𝜽 )

Compute ∇𝜽𝜽 log 𝑝𝑝 (𝜎𝜎 (𝑖𝑖) ;𝜽𝜽 )
using modified CTMC

Sample 𝜎𝜎 (1) , . . . , 𝜎𝜎 (𝑀𝑀)

using custom M-H sampler

Can we recover the true 
underlying model ?

Underspecification

Can we learn a model on 
hundreds of mutations ?

Scalability

◦ Schill et al. Modelling cancer progression using mutual hazard networks. Bioinformatics, 2019.

◦ Gerstung et al. The evolutionary history of 2,658 cancers. Nature, 2020.

◦ Beerenwinkel et al. Cancer evolution: Mathematical models and computational inference. Systematic Biology, 2014.
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