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Introduction

Goal: Model the time evolution of discrete sets of items with a continuous-time MC

Example: Accumulation of DNAmutations in cancer genomics

∅ TP53 TP53 EGFR TP53 EGFR IDH1

time

Challenge: Available data are cross-sectional

TP53 EGFR
unordered set of mutations

unknown observation time
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Introduction

State of the art (Schill et al., ’19)

◦ Constrain analysis to𝑛 ≈ 20 important mutations

◦ RunO(2𝑛) max. likelihood

Our contributions

◦ Show that “unimportant” mutations are valuable to resolve underspecification

◦ Propose approximate max. likelihood scalable to hundreds of mutations

◦ Evaluate our method on synthetic and real cancer data
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Problem setup

Ground set𝑉 = {1, . . . , 𝑛}

Define continuous-time Markov chain {𝑋𝑡 }𝑡 ≥0 on state space 2𝑉

𝑸 =



𝑞∅�∅ . . . 𝑞∅�𝑅 . . . 𝑞∅�𝑉
...

...
...

𝑞𝑆�∅ . . . 𝑞𝑆�𝑅 . . . 𝑞𝑆�𝑉
...

...
...

𝑞𝑉�∅ . . . 𝑞𝑉�𝑅 . . . 𝑞𝑉�𝑉


∈ R2𝑛×2𝑛

Transition rate from𝑆 to𝑅
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Problem setup

Constraints and parametrization (Schill et al., 2019)

◦ 𝑋0 = ∅
◦ Only add a single mutation at a time (no removals)

𝑞𝑆�𝑆∪{ 𝑗 } (𝜽 ) = exp
(
𝜃 𝑗 𝑗 +

∑
𝑖∈𝑆 𝜃𝑖 𝑗

)
individual rate of 𝑗 effect of 𝑖 on 𝑗

𝚯 =


𝜃11 . . . 𝜃1𝑛
...

. . .
...

𝜃𝑛1 . . . 𝜃𝑛𝑛

 ∈ R𝑛×𝑛
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Problem setup

Draw observation time𝑇obs ∼ Exp(1)

∅ {2} {2, 3} {1, 2, 3}

time

𝑇obs
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Problem setup

Data D = {𝑆 (1) , . . . , 𝑆 (𝑁 ) }, 𝑆 (𝑖) ⊆ 𝑉

Marginal likelihood

𝑝 (𝑆 (𝑖) ;𝜽 ) =
∫ ∞

0
𝑝 (𝑆 (𝑖) | 𝑡 ;𝜽 )𝑝 (𝑡)𝑑𝑡

Obs. time

Markov chain

maximize ℓ (D;𝜽 ) =
𝑁∑
𝑖=1

log𝑝 (𝑆 (𝑖) ;𝜽 )
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Tackling underspecification

Ground set𝑉 = {1, 2}

1 2 Mutation 1 (almost) always occurs before mutation 2

Data distribution {1} ∅ {1, 2} ∅ {1} {1, 2} {1} . . .

Proposition 1 (simplified)

There is a one-dimensional family of models with identical data distribution as above.

Gotovos, Burkholz, Quackenbush, and Jegelka 7



Tackling underspecification

Ground set𝑉 = {1, 2}

1 2 Mutation 1 (almost) always occurs before mutation 2

Data distribution {1} ∅ {1, 2} ∅ {1} {1, 2} {1} . . .

Proposition 1 (simplified)

There is a one-dimensional family of models with identical data distribution as above.

Gotovos, Burkholz, Quackenbush, and Jegelka 7



Tackling underspecification

Ground set𝑉 = {1, 2}

1 2 Mutation 1 (almost) always occurs before mutation 2

Data distribution {1} ∅ {1, 2} ∅ {1} {1, 2} {1} . . .

Proposition 1 (simplified)

There is a one-dimensional family of models with identical data distribution as above.

Gotovos, Burkholz, Quackenbush, and Jegelka 7



Tackling underspecification

Another ground set𝑉+ containing i.i.d. mutations with no interaction to𝑉

𝚯full =

(
𝚯 0
0 𝜃+𝑰𝑚

)

Intuition: Mutations in𝑉+ act like a clock – give us an estimate of𝑇obs

Theorem 1 (simplified)

Let 𝑡∗ be the true observation time. Then, themean and variance of the posterior obser-
vation time distribution can be bounded as follows:��𝑀post − 𝑡∗

�� ≈ √
log𝑚

𝑚

𝑉post ≈
1
𝑚
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Tackling underspecification

Takeaway: “Unimportant” mutations can be valuable in resolving underspecification

Need SCALABLE likelihood maximization
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Scalable approximate likelihood maximization

Maximize ℓ (D;𝜽 )

First-order optimizer

Approximate∇𝜽 log𝑝 (𝑆 ;𝜽 ) ≈ 1
𝑀

∑
𝑖 ∇𝜽 log𝑝 (𝜎 (𝑖) ;𝜽 )

Compute∇𝜽 log𝑝 (𝜎 (𝑖) ;𝜽 )
using modified CTMC

Sample𝜎 (1) , . . . , 𝜎 (𝑀)

using customM-H sampler

Gotovos, Burkholz, Quackenbush, and Jegelka 10
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Real data experiments

◦ TCGA glioblastoma data

◦ |𝑉 | = 410mutations, amplifications, and deletions

Method 𝑛 = 20 𝑛 = 100

(Schill et al., 2019) 121m –

Ours 8 s 33m 43 s

Gotovos, Burkholz, Quackenbush, and Jegelka 11
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Real data experiments

0 20 40 60 80 100
0

1

A before B

B before A

𝑚

(A: PDGFRA(A), B: PDGFRA)
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Further resources

Paper: https://arxiv.org/abs/2107.02911/

Code: https://github.com/3lectrologos/time/
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