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Abstract

We consider sequential decision problems under
uncertainty, where we seek to optimize an
unknown function from noisy samples. This
requires balancing exploration (learning about
the objective) and exploitation (localizing the
maximum), a problem well-studied in the multi-
armed bandit literature. In many applications,
however, we require that the sampled function
values exceed some prespecified “safety” thresh-
old, a requirement that existing algorithms fail
to meet. Examples include medical applications
where patient comfort must be guaranteed,
recommender systems aiming to avoid user
dissatisfaction, and robotic control, where one
seeks to avoid controls causing physical harm
to the platform. We tackle this novel, yet rich,
set of problems under the assumption that the
unknown function satisfies regularity conditions
expressed via a Gaussian process prior. We
develop an efficient algorithm called SAFEOPT,
and theoretically guarantee its convergence to
a natural notion of optimum reachable under
safety constraints. We evaluate SAFEOPT on
synthetic data, as well as two real applications:
movie recommendation, and therapeutic spinal
cord stimulation.
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1. Introduction
Many machine learning applications in areas such as rec-
ommender systems or experimental design need to make
sequential decisions to optimize an unknown function. In
particular, each decision leads to a stochastic reward with
initially unknown distribution, while new decisions are
made based on the observations of previous rewards. To
maximize the total reward, one needs to solve the tradeoff
between exploring different decisions and exploiting deci-
sions currently estimated as optimal within a given set. In
some applications, however, it is unacceptable to ever in-
cur low rewards; rather, the reward of any sampled strategy
must lie above some specified “safety” threshold.
Consider, for example, medical applications (e.g., reha-
bilitation), where physicians may choose among a large
set of therapies, some of which may be novel. The effects
of different therapies are initially unknown, and can only
be determined through experimentation. Free exploration,
however, is not possible, since some therapies might
cause severe discomfort, or even physical harm to the
patient. Oftentimes, the effects of similar therapies are
correlated, hence, a feasible way to explore the space of
therapies is to start from some therapies similar to those
known to be safe. Proceeding this way, more and more
choices can be established to be safe, facilitating further
exploration. In our experiments, we address an instance
of such a problem, where the goal is to choose stimulation
patterns for epidurally implanted electrode arrays to aid
rehabilitation of patients who have suffered spinal cord
injuries. Challenges of this kind arise in learning robotic
controllers by experimenting with the robot, where some
parameters might lead to physical harm of the platform.
Similarly, in recommender systems, we might wish to
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avoid recommendations that are severely disliked by the
user, an application we also consider in our experiments.

Related work. The tradeoff between exploration and
exploitation has been extensively studied in the context
of (stochastic) multi-armed bandit problems. These
problems model sequential decision tasks, in which one
chooses among a number of different decisions (arms),
each associated with a stochastic reward with initially
unknown distribution. Classic bandit algorithms usually
aim to maximize the cumulative reward, while in the
“best-arm identification” variant (Audibert et al., 2010),
they seek to identify the decision of highest reward with
the minimum number of trials. Since their introduction
by Robbins (1952), bandit problems have been widely
studied in many settings (see Bubeck & Cesa-Bianchi
(2012) for an overview). A number of efficient algorithms
build on the work of Auer (2002), and their key idea is
to use upper confidence bounds to implicitly negotiate the
explore-exploit tradeoff by optimistic sampling. This idea
naturally extends to bandit problems with complex (or even
infinite) decision sets under certain regularity conditions
of the reward function (Dani et al., 2008; Kleinberg et al.,
2008; Bubeck et al., 2008). Srinivas et al. (2010) show how
confidence bounds can be used to address bandit problems
with a reward function that is modeled by a Gaussian
process (GP), a regularity assumption also commonly
made in the Bayesian optimization literature (Brochu et al.,
2010), which is closely related to best-arm identification.
These approaches effectively optimize long-term perfor-
mance by accepting low immediate rewards for the sake
of exploration. While this compromise is acceptable in
certain settings, it makes these techniques unsuitable for
safety-critical applications. Another related problem, is
that of active sampling for localizing level sets, that is,
decisions where the objective crosses a specified threshold
(Bryan et al., 2005; Gotovos et al., 2013). In general, these
approaches sample both above and below the threshold,
and, consequently, do not meet our safety requirements.

The problem of safe exploration has been considered in
control and reinforcement learning (Hans et al., 2008;
Gillula & Tomlin, 2011; Garcia & Fernandez, 2012). For
example, Moldovan & Abbeel (2012) consider the prob-
lem of safe exploration in MDPs. They ensure safety by
restricting policies to be ergodic with high probability, i.e.,
able to “recover” from any state visited. This is a more gen-
eral problem, which comes at a cost—feasible safe policies
do not always exist, algorithms are far more complex, and
there are no convergence guarantees. In contrast, we re-
strict ourselves to the bandit setting, where decisions do
not cause state transitions, which leads to simpler algo-
rithms with stronger guarantees, even in the agnostic (non-
Bayesian) setting.

Our contributions. We model a novel class of safe opti-
mization problems as maximizing an unknown expected-
reward function over the decision set from noisy sam-
ples. By exploiting regularity assumptions on the function,
which capture the intuition that similar decisions are asso-
ciated with similar rewards, we aim to balance exploration
(learning about the function) and exploitation (identifying
near-optimal decisions), while additionally ensuring safety
throughout the process. This additional requirement leads
to novel considerations, different from those addressed in
the classic bandit setting, since exploration is now not only
a means to reducing uncertainty about the function, but also
crucial in expanding the set of decisions established as safe.

More concretely, we propose a novel algorithm, SAFEOPT,
which models the unknown function as a sample from
a Gaussian process (GP), and uses the predictive uncer-
tainty to guide exploration. In particular, it uses confi-
dence bounds to assess the safety of as yet unexplored
decisions. We theoretically analyze SAFEOPT under the
assumptions that (1) the objective has bounded norm in
the Reproducing Kernel Hilbert Space associated with the
GP covariance function, and (2) the objective is Lipschitz-
continuous, which is guaranteed by many common kernels.
We establish convergence of SAFEOPT to a natural notion
of “safely reachable” near-optimal decision. We further
evaluate SAFEOPT on two real-world applications: movie
recommendation, and therapeutic stimulation of patients
with spinal cord injuries.

2. Problem Statement
We consider sequential decision problems, where we seek
to optimize an unknown reward function f : D → R de-
fined on a finite set of decisions D. Concretely, we pick
a sequence of decisions (e.g., items to recommend, exper-
imental stimuli) x1,x2, · · · ∈ D, and, after each selection
xt, acquire a noise-perturbed value of f , that is, we ob-
serve yt = f(xt)+nt (e.g., user rating, stimulus response).
Our goal is to identify a decision x∗ of maximum reward
f , akin to the problem of best-arm identification in multi-
armed bandits (Audibert et al., 2010). Crucially, though,
we additionally wish to ensure that, for all rounds t, it holds
that f(xt) ≥ h, where h ∈ R is a problem-specific safety
threshold. We call decisions that satisfy the above condi-
tion safe. In our recommender systems example, we seek to
identify items that are particularly liked by the user, while
guaranteeing that we never propose items the user strongly
dislikes. In our medical setting, we seek to find stimuli
that are particularly beneficial to the rehabilitation process,
while guaranteeing that no painful stimuli are applied. It is
important to note that, since f is unknown, the set of safe
decisions is initially unknown as well.
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Regularity assumptions. Without any assumptions
about f , this is clearly a hopeless task. In particular, with-
out any knowledge of the function, we do not even know
where to start our exploration. Hence, we first assume that,
before starting the optimization, we are given a “seed”
set S0 ⊂ D that contains at least one safe decision. This
establishes starting points for our exploration. To be able
to identify new safe decisions to consider for exploration,
we need to make some further assumption about f . In
what follows, we assume thatD is endowed with a positive
definite kernel function, and that f has bounded norm in
the associated Reproducing Kernel Hilbert Space (RKHS,
see Schölkopf & Smola (2002)).1 This assumption allows
us to model our reward function f as a sample from a
Gaussian process (GP) (Rasmussen & Williams, 2006). A
GP (µ(x), k(x,x′)) is a probability distribution across a
class of “smooth” functions, which is parameterized by a
kernel function k(x,x′) that characterizes the smoothness
of f . We assume w.l.o.g. that µ(x) = 0, and that our
observations are perturbed by i.i.d. Gaussian noise, i.e.,
for samples at points AT = [x1 . . .xT ]T ⊆ D, we have
yt = f(xt) + nt, where nt ∼ N(0, σ2). (We will relax
this assumption later.) The posterior over f is then also
Gaussian with mean µT (x), covariance kT (x,x′), and
variance σ2

T (x,x′), that satisfy,

µT (x) = kT (x)T (KT + σ2I)−1yT

kT (x,x′) = k(x,x′)− kT (x)T (KT + σ2I)−1kT (x′)

σ2
T (x,x′) = kT (x,x),

where kT (x) = [k(x1,x) . . . k(xT ,x)]T and KT is the
positive definite kernel matrix [k(x,x′)]x,x′∈AT .

Furthermore, we assume that f is L-Lipschitz continuous
with respect to some metric d on D. This is automatically
satisfied, for example, when considering commonly used
isotropic kernels, such as the Gaussian kernel, on D.

Optimization goal. Under the Lipschitz-continuity as-
sumption, what is the best solution that any algorithm
might be able to find? Suppose our observations were noise
free. In this case, after exploring the decisions in our seed
set S0, we could establish any decision x as safe, if there
existed a decision x′ ∈ S0, such that f(x′)−L ·d(x′,x) ≥
h. Exploring these newly identified safe decisions would
establish further decisions as safe, and so on. Unfortu-
nately our knowledge of f comes from noisy observations,
so even after experimenting with the same decision x re-
peatedly, we are not able to infer f(x) exactly, but only
up to some statistical confidence f(x) ± ε. Based on this

1Note that for finite decision sets and any universal kernel, this
assumption is automatically satisfied.

insight, we define the one-step reachability operator

Rε(S) :=

S ∪
{
x ∈ D

∣∣ ∃x′ ∈ S, f(x′)− ε− Ld(x′,x) ≥ h
}
,

which represents the subset of D that can be established as
safe upon learning f up to absolute error at most ε within
S. Clearly, it holds that S ⊆ Rε(S) ⊆ D. Similarly, we
can define the n-step reachability operator by

Rnε (S) := Rε(Rε . . . (Rε︸ ︷︷ ︸
n times

(S)) . . .),

and its closure by R̄ε(S) := lim
n→∞

Rnε (S). It is easy to see
that no algorithm that is able to learn f only up to ε will
ever be able to establish a decision x ∈ D \ R̄ε(S0) as
safe. Hence, we cannot hope that any safe algorithm will be
able to identify the global optimum f∗ = maxx∈D f(x).
We consider, instead, our benchmark to be the ε-reachable
maximum, defined as

f∗ε = max
x∈R̄ε(S0)

f(x). (1)

Failure of naive approaches. There are a number of ap-
proaches for trading exploration and exploitation under the
smoothness assumptions expressed via a GP. One such ap-
proach is the GP-UCB algorithm (Srinivas et al., 2010),
which greedily chooses

xt = argmax
x∈D

(
µt−1(x) + β

1/2
t σt−1(x)

)
(2)

for a suitable schedule of βt. While this algorithm is guar-
anteed to achieve sublinear cumulative regret, it places no
restrictions on the decisions sampled, and, as a result, nei-
ther theoretically guarantees safety, nor exhibits it in our
experiments. This is symptomatic of typical multi-armed
bandit approaches when applied to our problem. In the
following, we present an efficient algorithm, SAFEOPT,
which, under the aforementioned assumptions, for any ε >
0, is guaranteed with high probability to identify a solu-
tion x̂, such that f(x̂) ≥ f∗ε − ε, while sampling only safe
decisions. Furthermore, we provide a sample complexity
bound on the number of iterations required to achieve this
condition.

3. The SAFEOPT Algorithm
We start with a high-level description of SAFEOPT. The al-
gorithm uses Gaussian processes to make predictions about
f based on noisy evaluations, and uses their predictive un-
certainty to guide exploration. To guarantee safety, it main-
tains an increasing sequence of subsets St ⊆ D established
as safe using the GP posterior. It never chooses a sample
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Algorithm 1 SAFEOPT

1: Input: sample set D,
GP prior (µ0, k, σ0),
Lipschitz constant L,
seed set S0,
safety threshold h

2: C0(x)← [h,∞), for all x ∈ S0

3: C0(x)← R, for all x ∈ D \ S0

4: Q0(x)← R, for all x ∈ D
5: for t = 1, . . . do
6: Ct(x)← Ct−1(x) ∩Qt−1(x)
7: St←

⋃
x∈St−1

{
x′ ∈ D

∣∣ `t(x)− Ld(x,x′) ≥ h
}

8: Gt←
{
x ∈ St

∣∣ gt(x) > 0
}

9: Mt←
{
x ∈ St

∣∣ ut(x) ≥ maxx′∈St `t(x
′)
}

10: xt ← argmaxx∈Gt∪Mt
(wt(x))

11: yt← f(xt) + nt
12: Compute Qt(x), for all x ∈ St
13: end for

outside of St, while it balances two objectives within that
set: the desire to expand the safe region, and the need to
localize high-reward regions within St. For the former, it
maintains a set Gt ⊆ St of candidate decisions that, upon
potentially repeated selection, have a chance to expand St.
For the latter, it maintains a set Mt ⊆ St of decisions that
are potential maximizers of f . To make progress, in each
round it greedily picks the most uncertain decision x, that
is, the one with largest predictive variance amongGt∪Mt.
We present pseudocode of SAFEOPT in Algorithm 1, and
next explain its workings in more detail.

Confidence-based classification. The classification of
the domain into sets Mt, Gt, and St is done according to
the GP posterior. In particular, at each iteration t, SAFEOPT

uses the predictive confidence intervals

Qt(x) :=
[
µt−1(x)± β1/2

t σt−1(x)
]
. (3)

We discuss the choice of βt in the next section. Based on
the assumptions about f , the sampled reward value at x lies
within Qt(x) with high probability for all t. For technical
reasons, instead of using Qt directly, we use their intersec-
tion Ct(x) := Ct−1(x)∩Qt(x), which ensures that confi-
dence intervals are monotonically contained in each other.
Based on this, we define ut(x) := maxCt(x) as an upper
confidence bound on f(x), monotonically decreasing in t,
and similarly, `t(x) := minCt(x) as a lower confidence
bound, monotonically increasing in t. We also define the
width wt(x) := ut(x) − `t(x) of the confidence interval,
which is monotonically decreasing in t, and captures the
uncertainty of the GP model about decision x.

Having introduced the above notation, we define the essen-
tial sets considered by our algorithm, St, Mt, and Gt. The

decisions that are certified to be safe are given by the set

St =
⋃

x∈St−1

{
x′ ∈ D

∣∣ `t(x)− Ld(x,x′) ≥ h
}
.

The potential maximizers are those decisions, for which
the upper confidence bound is higher than the largest lower
confidence bound, that is,

Mt =
{
x ∈ St

∣∣ ut(x) ≥ max
x′∈St

`t(x
′)
}
.

In order to identify the set Gt, we first define the function

gt(x) :=
∣∣∣{x′ ∈ D \ St ∣∣ ut(x)− Ld(x,x′) ≥ h

}∣∣∣,
which (optimistically) quantifies the potential enlargement
of the current safe set after sampling a new decision x.
Then, Gt contains all decisions that could potentially ex-
pand the safe set, that is,

Gt =
{
x ∈ St

∣∣ gt(x) > 0
}
.

Sampling criterion. Given the classification of points
presented above, the selection rule of SAFEOPT is straight-
forward: it greedily selects the most uncertain decision
among the potential maximizers (Mt), or expanders (Gt),
that is, it selects decision xt defined as

xt ∈ argmax
x∈Mt∪Gt

wt(x).

Reducing the uncertainty within Gt eventually leads to ex-
pansion, that is, the discovery of new safe decisions. In
turn, sampling within Mt reduces the uncertainty about the
location of f ’s maximizers within St. The above greedy
selection rule balances these two goals. An illustration of
the sampling process is shown in Figure 1. SAFEOPT starts
with a singleton seed set S0. After 10 iterations, the safe
set St has grown, while SAFEOPT picks new points from
Gt ∪Mt. After 100 iterations, Mt has localized the near-
optimal decisions, while St is close to the maximal reach-
able set R̄0(S0).

Discussion. The sets St, Gt, and Mt exhibit some inter-
esting dynamics. As mentioned above, the safe set St is
monotonically increasing, S0 ⊆ S1 ⊆ S2 . . . , and the al-
gorithm consists of stages, within each of which, the set
St does not change (possibly for several iterations). St ex-
pands only when enough evidence has been accrued to es-
tablish new decisions as safe. Within each such stage, Gt
andMt keep shrinking, due to the monotonicity of the con-
fidence bounds used. As soon as new decisions are identi-
fied as safe, Gt and Mt may increase again. Furthermore,
note that, even though we defined our optimization goal (1)
with respect to an accuracy parameter ε, this parameter is
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(a) True function and seed set (b) t = 5 (c) t = 100

Figure 1. Illustration of SAFEOPT. (a) The solid curve is the (unknown) function to optimize, the straight dashed line represents the
threshold, and the triangle is the (singleton) seed set S0. The gray bar shows the reachable set R̄0(S0), and the orange square is f∗

0 .
(b, c) The solid line is the estimated GP mean function after a number of observations shown as crosses. Gt is shown in purple, Mt in
orange, and the rest of St in cyan.

not used by the algorithm, though it can be employed as a
stopping condition. Namely, if the algorithm stops under
the following condition

max
x∈Mt∪Gt

wt(x) ≤ ε,

then we will show below that w.h.p. the decision defined as
x̂ := argmaxx∈St `t(x) satisfies f(x̂) ≥ f∗ε − ε.

4. Theoretical Results
The correctness of SAFEOPT crucially relies on the fact
that the classification into sets St, Mt, and Gt is accurate.
While this requires that the confidence bounds Ct be con-
servative, using bounds that are too conservative tends to
slow down the algorithm considerably. Tightness of the
confidence bounds is controlled by parameter βt in equa-
tion (3), the choice of which has been studied by Srinivas
et al. (2010). While their problem setting is different, the
choice of βt is still valid in our setting. In particular, for
our theoretical results to hold it suffices to choose

βt = 2B + 300γt log3(t/δ), (4)

where B is a bound on the RKHS norm of f , δ is the al-
lowed failure probability, and γt quantifies the effective de-
grees of freedom associated with the kernel function. Con-
cretely,

γt = max
|A|≤t

I(f ;yA)

is the maximal mutual information that can be obtained
about the GP prior from t samples. For finite |D|, this
quantity is always bounded by

γt ≤ |D| log
(

1 + σ−2t|D|max
x∈D

k(x,x)
)
,

i.e., O(|D| log t|D|), but for commonly used kernels (such
as the Gaussian kernel), γt has sublinear dependence on
|D| (Srinivas et al., 2010). The following lemma, which
immediately follows from Theorem 6 of Srinivas et al.
(2010), justifies the above choice of βt.

Lemma 1. Suppose that ‖f‖2k ≤ B, and that the noise
nt is zero-mean conditioned on the history, as well as uni-
formly bounded by σ0 for all t. If βt is chosen as in (4),
then, for all t ≥ 1, and all x ∈ D, it holds with probability
at least 1− δ that f(x) ∈ Ct(x).

Based on this choice of βt, we now present our main
theorem, which establishes that SAFEOPT indeed manages
to identify an ε-optimal decision, while staying safe
throughout.

Theorem 1. Assume that f is L-Lipschitz continuous, and
satisfies ‖f‖2k ≤ B, and the noise nt is as in Lemma 1.
Also, assume that S0 6= ∅, and f(x) ≥ h, for all x ∈ S0.
Choose βt as in Lemma 1, define x̂t := argmaxx∈St `t(x),
and let t∗ be the smallest positive integer satisfying

t∗

βt∗γt∗
≥
C1

(
|R̄0(S0)|+ 1

)
ε2

,

where C1 = 8/ log(1 + σ−2). For any ε > 0, and δ ∈
(0, 1), when running SAFEOPT the following jointly hold
with probability at least 1− δ:

• ∀t ≥ 1, f(xt) ≥ h,

• ∀t ≥ t∗, f(x̂t) ≥ f∗ε − ε.

The theorem states that, with high probability, SAFEOPT

guarantees safety, and identifies at least one ε-optimal de-
cision within the ε-reachable set after at most t∗ iterations.
The value of t∗ depends on the size R̄0(S0), the accuracy
parameter ε, the confidence parameter δ, the complexity of
the function B, and the smoothness assumptions of the GP
via γt. The proof is based on the following idea. Within a
stage wherein St does not expand, the uncertainty wt(xt)
monotonically decreases due to the construction of Mt and
Gt. We prove that, the condition maxx∈Gt w(x) < ε im-
plies either of two possibilities: St will expand after the
next evaluation, i.e., the reachable region will increase,
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Figure 2. Synthetic data. Regret of the three algorithms.

and, hence, the next stage shall commence; or, we have
already established all decisions within R̄ε(S0) as safe,
i.e., St ⊇ R̄ε(S0). Similarly, we prove that the condition
maxx∈Mt w(x) < ε implies that we have identified an ε-
optimal decision within the current safe set St. Finally, to
establish the sample complexity we use a bound on how
quickly wt(xt) decreases. We present the detailed proof of
Theorem 1 in the longer version of this paper.

Guaranteeing safety via GP confidence bounds. In
line 7 of Algorithm 1 we update St in a manner that al-
lows us to guarantee safety in Theorem 1 based on the Lip-
schitz continuity assumption about f . It is natural to ask
whether it is possible to also use the GP confidence inter-
vals themselves to guarantee safety. As it turns out, we can
easily modify the algorithm to additionally certify a deci-
sion as safe when its lower confidence bound lies above h.
This merely requires changing the condition in the update
rule of line 7 to be max {`t(x)− Ld(x,x′), `t(x

′)} ≥
h. We can prove a variant of Theorem 1, with the con-
stant |R̄0(S0)| + 1 replaced by |D| (i.e., a worse bound).
However, this modified version of the algorithm, which is
more aggressive towards expanding, may sometimes per-
form better for some applications. Furthermore, it makes
SAFEOPT less sensitive to the choice of L. In fact, it is
possible in practice to solely use the confidence intervals to
certify safety (by setting L =∞).

5. Experiments
We evaluate our algorithm on synthetic data, as well as two
real applications. In our experiments, we seek to address
the following questions: Does SAFEOPT reliably respect
the safety requirement? How effective is it at localizing
good solutions quickly? How does it compare against stan-
dard (non-safe) bandit algorithms? In particular, we com-
pare SAFEOPT against GP-UCB (Srinivas et al., 2010), a
multi-armed bandit algorithm designed for Gaussian pro-

1.5 2 2.5

SAFEOPT

1.5 2 2.5

SAFE-UCB

1.5 2 2.5

GP-UCB

Figure 3. Synthetic data. Histograms of sampled function values
after 100 iterations. The dashed lines represent the threshold and
diamonds indicate the mean of the sampled function values.

cesses, which does not respect the safety constraint (see
(2)). We also compare against SAFE-UCB, a heuristic vari-
ant of GP-UCB, which selects at every step the decision
that maximizes the upper confidence bound (similar to GP-
UCB), but only among decisions that are certified as safe in
the same way as in SAFEOPT:

xt = argmax
x∈St

(
µt−1(x) + β

1/2
t σt−1(x)

)
.

Synthetic data. We first evaluate the algorithm on syn-
thetic data. The purpose of this experiment is to validate
our theory, and demonstrate the convergence of SAFEOPT

in situations that perfectly match our prior assumptions. In
particular, we sampled a set of 100 random functions from
a zero-mean GP with squared exponential kernel over the
spaceD = [0, 1]×[0, 1], uniformly discretized into 50×50
points. For each random function, we repeated the ex-
periment 100 different random safe seeds (random points
with value above the threshold). We estimated the Lips-
chitz constant from the gradient of several random func-
tions sampled from the GP. Regarding each safe point as
a separate seed set, we ran both SAFE-UCB and SAFEOPT

for T = 100 iterations. Here, we report a notion of regret,
defined as rt = f∗0 − max1≤i≤t f(xi). The regret values
achieved by each algorithm are averaged over the 100 seeds
for each of the 100 random functions. As we can see from
Figure 2, SAFEOPT achieves smaller regret than SAFE-
UCB on average. This is because for some cases SAFE-
UCB fails to expand some low-rewarding boundary points,
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SAFEOPT
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(c) Scores of sampled movies (non-stop)

Figure 4. Movie recommendation. (a) Fraction of the safely reachable set R̄0(S0) that the algorithms explore within 300 iterations before
violating the safety threshold. (b) Similar to (a) except the algorithms do not stop after violating the threshold. (c) The distribution of
sampled movie ratings. The dashed lines represent the threshold and diamonds are the mean values of the sampled ratings.

which lie slightly above the safe threshold and, therefore,
gets stuck at a local optimum. In contrast, SAFEOPT bal-
ances the localization of the optimal value within the cur-
rent safe set with the expansion of the reachable region.
Since GP-UCB is searching for the global optimum with-
out any safety constraints, it achieves negative regret un-
der the above definition. Figure 3 presents the histograms
of the sampled function values obtained by the three algo-
rithms after T = 100 iterations. As can be seen, SAFEOPT

and SAFE-UCB are very unlikely to sample values below
the threshold, while, as expected, a number of the GP-UCB
samples are unsafe.

Safe movie recommendations. Next we consider an ap-
plication in recommender systems, namely how to rec-
ommend movies, while ensuring that our suggestions are
to the likes of the user under question (or at least are
not particularly disliked). We test the algorithms on the
MovieLens-100k dataset, which contains (sparse) ratings
of 1682 movies from 943 customers. The main difference
between our objective and commonly used objectives such
as cumulative reward is that we are not only looking for
high scoring movies, but also focus on avoiding low scor-
ing ones. To put the problem into our framework, we pro-
ceed as follows. We first partition the data by selecting a
subset of users for training. On the training data, we ap-
ply a matrix factorization with k = 20 latent factors, which
provides a feature vector vi ∈ Rk for each movie i, and a
feature vector uj ∈ Rk for each user in the training set. We
then fit a Gaussian distribution P (u) = N (u;µ,Σ) to the
training user features. For a new user in the test set, we con-
sider P (u) as a prior, and use the Gaussian likelihood for

their ratings of movie vi as P (yi | u,vi) = N (vTi u, σ
2),

where σ2 is the residual variance on the training data. Thus,
the ratings (yi)i form a Gaussian process with linear kernel
and Gaussian likelihood.

The safety threshold is set equal to the mean of all rat-
ings. Given that the dataset only contains partial ratings,
we restrict the algorithms to only be able to sample from
the movies that the user has actually rated. After each se-
lection, the actual rating from the data set is provided as
feedback to the algorithms and we run each of them for
T = 300 iterations. Since the ratings are discrete, tak-
ing values between 1 and 5, we observed that, for all algo-
rithms, the regret reaches zero quickly within a fairly small
number of iterations. Figure 4(a) shows the percentage of
movies explored with respect to the maximal reachable set
R̄0(S0), under the constraint that the algorithms stop after
the first unsafe selection. GP-UCB violates the safety con-
straint considerably faster than the other two algorithms.

As a particular example, we present here the recommen-
dations for a particular user in our data set, starting with a
singleton seed set that consists of the movie “Return of the
Jedi”, which the user rated with a 5. During the first four
iterations, SAFEOPT recommends {→ The Empire Strikes
Back → Stargate → Star Wars → Heavy Metal }, while
SAFE-UCB recommends {→ The Empire Strikes Back →
Star Wars → Star Trek → Raiders of the Lost Ark}; all
these movies score above the threshold. On the other hand,
GP-UCB recommends {→ Star Wars → Men in Black
→ A Close Shave → So I Married an Axe Murderer}.
The last movie recommended by GP-UCB returns a score
below the threshold.
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Figure 5. Spinal cord therapy application. (a) Fraction of the safely reachable set R̄0(S0) that the algorithms explore within 300 iterations
before violating the safety threshold. (b) Similar to (a) except the algorithms do not stop after violating the threshold. (c) The distribution
of sampled muscle activities. The dashed lines represent the threshold and diamonds indicate the mean values of the sampled muscle
activities.

The movies recommended by SAFEOPT share some simi-
larity with those of SAFE-UCB due to the locality encour-
aged by safe exploration. GP-UCB, on the other hand, rec-
ommends more diversely due to the lack of any safety re-
strictions while exploring. We can also see that SAFEOPT

reaches a slightly larger set of movies than SAFE-UCB be-
cause it expands the current safe region more aggressively.
Figure 4(b) shows the same plots as (a) with no stopping
criteria applied, and Figure 4(c) shows histograms of the
sampled ratings. GP-UCB practically always samples the
whole reachable set, but its mean sampled rating is lower,
and its variance is larger, a direct result of sampling a
number of low-rated movies while exploring. In contrast,
SAFEOPT and SAFE-UCB only very rarely happen to make
an unsafe recommendation.

Safe exploration for spinal cord therapy. Our sec-
ond application lies in the domain of spinal cord therapy
(Harkema et al., 2011). Our dataset measures muscle ac-
tivity triggered by therapeutic spinal electro-stimulation in
rats that have suffered spinal cord injuries. The clinical
goal is to choose stimulating configurations that maximize
the resulting activity in lower limb muscles, as measured by
electromyography (EMG), in order to improve spinal reflex
and locomotor function. Bad configurations have negative
effects on the rehabilitation and are often painful, hence the
configurations we choose must result in responses that lie
above some threshold. Electrode configurations are points
in R4 representing cathode and anode locations. We fitted
a squared exponential ARD kernel using experimental data

from 351 stimulations (126 distinct configurations).

Figures 5(a) and (b) show the percentages of reachable
configurations by the algorithms depending on whether or
not we stop after violating the safety constraint respec-
tively. Figure 5(c) shows the distribution of sampled val-
ues by each algorithm. We can make similar observations
to our previous application. GP-UCB violates safety rather
quickly, while SAFEOPT and SAFE-UCB safely explore a
large part of R̄0(S0). Again, the resulting mean sampled
values of SAFEOPT and SAFE-UCB are very close to each
other, and clearly superior to those of GP-UCB, which
samples a number of unsafe configurations.

6. Conclusions
We introduced the novel problem of sequentially optimiz-
ing an unknown function under safety constraints, and
posed it formally using the concept of reachability. For
this problem, we proposed SAFEOPT, an efficient algorithm
that balances the tradeoff between exploring, expanding,
and optimizing. Theoretically, we proved a bound on its
sample complexity to achieve an ε-optimal solution, while
guaranteeing safety with high probability. Experimentally,
we demonstrated that SAFEOPT indeed exhibits its safety
and convergence properties. We believe our results provide
an important step towards employing machine learning al-
gorithms “live” in safety-critical applications.
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A. Proofs
Note All following lemmas hold for any ∅ ( S0 ⊆ D,
h ∈ R, δ ∈ (0, 1), and ε > 0.

Define

x̂t := argmax
x∈St

`t(x)

(
= argmax

x∈Mt

`t(x)

)
Lemma 2. The following hold for any t ≥ 1:

(i) ∀x ∈ D,ut+1(x) ≤ ut(x),

(ii) ∀x ∈ D, `t+1(x) ≥ `t(x),

(iii) ∀x ∈ D,wt+1(x) ≤ wt(x),

(iv) St+1 ⊇ St ⊇ S0,

(v) S ⊆ R⇒ Rε(S) ⊆ Rε(R),

(vi) S ⊆ R⇒ R̄ε(S) ⊆ R̄ε(R).

Proof. (i), (ii), and (iii) follow directly from their defini-
tions and the definition of Ct(x).

(iv) Proof by induction. For the base case, let x ∈ S0.
Then,

`1(x)− Ld(x,x) = `1(x) ≥ `0(x) ≥ h,

where the last inequality follows from the initializa-
tion in line 2 of Algorithm 1. But then, from the
above equation and line 7 of Algorithm 1, it follows
that x ∈ S1.

For the induction step, assume that for some t ≥ 2,
St−1 ⊆ St and let x ∈ St. By line 7 of Algorithm
1, this means that ∃z ∈ St−1, `t(z) − Ld(z,x) ≥ h.
But, since St−1 ⊆ St, it means that z ∈ St. Further-
more, by part (ii), `t+1(z) ≥ `t(z). Therefore, we
conclude that `t+1(z)−Ld(z,x) ≥ h, which implies
that x ∈ St+1.

(v) Let x ∈ Rε(S). Then, by definition, ∃z ∈ S, f(z) −
Ld(z,x) ≥ h. But, since S ⊆ R, it means that z ∈
R, and, therefore, f(z) − Ld(z,x) ≥ h also implies
that x ∈ Rε(R).

(vi) This follows directly by repeatedly applying the result
of part (v).

Lemma 3. Assume that ‖f‖2k ≤ B and nt ≤ σ, ∀t ≥ 1. If
βt = 2B + 300γt log3(t/δ), then the following holds with
probability at least 1− δ:

∀t ≥ 1 ∀x ∈ D, |f(x)− µt−1(x)| ≤ β1/2
t σt−1(x).

Proof. See Theorem 6 by Srinivas et al. (2010).

Corollary 1. For βt as above, the following holds with
probability at least 1− δ:

∀t ≥ 1 ∀x ∈ D, f(x) ∈ Ct(x).

Note Where needed in the following lemmas, we implic-
itly assume that the assumptions of Lemma 3 hold, and that
βt is defined as above.

Lemma 4. For any t1 ≥ t0 ≥ 1, if St1 = St0 , then, for
any t, such that t0 ≤ t < t1, it holds that

Gt+1 ∪Mt+1 ⊆ Gt ∪Mt.

Proof. Given the assumption that St does not change, both
Gt+1 ⊆ Gt and Mt+1 ⊆Mt follow directly from the defi-
nitions ofGt andMt. In particular, forGt, note that for any
x ∈ St, gt(x) is decreasing in t, since ut(x) is decreasing
in t. For Mt, note that maxx′∈St `t(x

′) is increasing in t,
while ut(x) is decreasing in t (see Lemma 2 (i), (ii)).

Lemma 5. For any t1 ≥ t0 ≥ 1, if St1 = St0 and C1 :=
8/ log(1 + σ−2), then, for any t, such that t0 ≤ t ≤ t1, it
holds that

wt(xt) ≤
√
C1βtγt
t− t0

.

Proof. Given Lemma 4, the definition of xt :=
argmaxx∈Gt∪Mt

(wt(x)), and the fact that, by definition,
wt(xt) ≤ 2β

1/2
t σt−1(xt), the proof is completely analo-

gous to that of Lemma 5.3 by Srinivas et al. (2010).

Corollary 2. For any t ≥ 1, if C1 is defined as above, Tt is

the smallest positive integer satisfying
Tt

βt+Ttγt+Tt
≥ C1

ε2
,

and St+Tt = St, then, for any x ∈ Gt+Tt∪Mt+Tt , it holds
that

wt+Tt(x) ≤ ε.

Note Where needed in the following lemmas, we assume
that C1 and Tt are defined as above.

Lemma 6. For any t ≥ 1, if R̄ε(S0) \ St 6= ∅, then
Rε(St) \ St 6= ∅.

Proof. Assume, to the contrary, that Rε(St) \ St = ∅.
By definition, Rε(St) ⊇ St, therefore Rε(St) = St. It-
eratively applying Rε to both sides, we get in the limit
R̄ε(St) = St. But then, by Lemma 2 (iv) and (vi), we
get

R̄ε(S0) ⊆ R̄ε(St) = St, (5)

which contradicts the lemma’s assumption that R̄ε(S0) \
St 6= ∅.
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Lemma 7. For any t ≥ 1, if R̄ε(S0) \ St 6= ∅, then the
following holds with probability at least 1− δ:

St+Tt ) St.

Proof. By Lemma 6, we get that, Rε(St) \ St 6= ∅, For
equivalently, by definition,

∃x ∈ Rε(St) \ St ∃z ∈ St, f(z)− ε− Ld(z,x) ≥ h.
(6)

Now, assume, to the contrary, that St+Tt = St (see Lemma
2 (iv)), which implies that x ∈ D \ St+Tt and z ∈ St+Tt .
Then, we have

ut+Tt(z)− Ld(z,x) ≥ f(z)− Ld(z,x) by Lemma 3
≥ f(z)− ε− Ld(z,x)

≥ h. by (6)

Therefore, by definition, gt+Tt(z) > 0, which implies z ∈
Gt+Tt .

Finally, since St+Tt = St and z ∈ Gt+Tt , we can use
Corollary 2 as follows:

`t+Tt(z)− Ld(z,x) ≥ `t+Tt − f(z) + ε+ h by (6)
≥ −wt+Tt(z) + ε+ h

by Lemma 3

≥ h. by Corollary 2

This means that by line 7 of Algorithm 1 we get x ∈ St+Tt ,
which is a contradiction.

Lemma 8. For any t ≥ 1, if St+Tt = St, then the following
holds with probability at least 1− δ:

f(x̂t+Tt) ≥ max
x∈R̄ε(S0)

f(x)− ε.

Proof. Let x∗ := argmaxx∈St+Tt
f(x). Note that x∗ ∈

Mt+Tt , since

ut+Tt(x
∗) ≥ f(x∗) by Lemma 3
≥ f(x̂) by definition of x∗

≥ `t+Tt(x̂) by Lemma 3
≥ max

x∈St+Tt
`t+Tt(x). by definition of x̂

We will first show that f(x̂t+Tt) ≥ f(x∗)− ε. Assume, to
the contrary, that

f(x̂t+Tt) < f(x∗)− ε. (7)

Then, we have

`t+Tt(x
∗) ≤ `t+Tt(x̂) by definition of x̂
≤ f(x̂) by Lemma 3
< f(x∗)− ε by (7)
≤ ut+Tt(x∗)− ε by Lemma 3
≤ `t+Tt(x∗),

by Corollary 2 and x∗ ∈Mt+Tt

which is a contradiction.

Finally, since St+Tt = St, Lemma 7 implies that R̄ε(S0) ⊆
St = St+Tt . Therefore,

max
x∈R̄ε(S0)

f(x)− ε ≤ max
x∈St+Tt

f(x)− ε R̄ε(S0) ⊆ St+Tt

= f(x∗)− ε by definition of x∗

≤ f(x̂t+Tt). proven above

Corollary 3. For any t ≥ 1, if St+Tt = St, then the fol-
lowing holds with probability at least 1− δ:

∀t′ ≥ 0, f(x̂t+Tt+t′) ≥ max
x∈R̄ε(S0)

f(x)− ε.

Proof. This is a direct consequence of the proof of the
preceding lemma, combined with the facts that both
St+Tt+t′ and `t+Tt+t′(x̂t+Tt+t′) are increasing in t′ (by
Lemma 2 (iv) and (ii) respectively), which imply that
maxx∈St+Tt+t′ `t+Tt+t

′(x) can only increase in t′.

Lemma 9. For any t ≥ 0, the following holds with proba-
bility at least 1− δ:

St ⊆ R̄0(S0).

Proof. Proof by induction. For the base case, t = 0, we
have by definition that S0 ⊆ R̄0(S0).

For the induction step, assume that for some t ≥ 1, St−1 ⊆
R̄0(S0). Let x ∈ St, which, by definition, means ∃z ∈
St−1, such that

`t(z)− Ld(z,x) ≥ h
⇒ f(z)− Ld(z,x) ≥ h. by Lemma 3

Then, by definition of R̄0 and the fact that z ∈ R̄0(S0), it
follows that x ∈ R̄0(S0).

Lemma 10. Let t∗ be the smallest integer, such that
t∗ ≥ |R̄0(S0)|Tt∗ . Then, there exists t0 ≤ t∗, such that
St0+Tt0

= St0 .
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Proof. Assume, to the contrary, that for any t ≤ t∗, St (
St+Tt . (By Lemma 2 (iv), we know that St ⊆ St+Tt .)
Since Tt is increasing in t, we have

S0 ( ST0 ⊆ STt∗ ( STt∗+TTt∗
⊆ S2Tt∗ ( · · · ,

which implies that, for any 0 ≤ k ≤ |R̄0(S0)|, it holds that
|SkTt∗ | > k. In particular, for k∗ := |R̄0(S0)|, we get

|Sk∗T | > |R̄0(S0)|

which contradicts Sk∗T ⊆ R̄0(S0) by Lemma 9.

Corollary 4. Let t∗ be the smallest integer, such that
t∗

βt∗γt∗
≥ C1|R̄0(S0)|

ε2
. Then, there exists t0 ≤ t∗, such

that St0+Tt0
= St0 .

Proof. This is a direct consequence of combining Lemma
10 and Corollary 2.

Lemma 11. If f is L-Lipschitz continuous, then, for any
t ≥ 0, the following holds with probability at least 1− δ:

∀x ∈ St, f(x) ≥ h.

Proof. We will prove this by induction. For the base case
t = 0, by definition, for any x ∈ S0, f(x) ≥ h.

For the induction step, assume that for some t ≥ 1, for any
x ∈ St−1, f(x) ≥ h. Then, for any x ∈ St, by definition,
∃z ∈ St−1,

h ≤ `t(z)− Ld(z,x)

≤ f(z)− Ld(z,x) by Lemma 3
≤ f(x). by L-Lipschitz-continuity

Proof of Theorem 1. The first part of the theorem is a direct
consequence of Lemma 11. The second part follows from
combining Corollary 3 and Corollary 4.


