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Better safe than sorry

youtube.com/user/mattessons
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Therapeutic spinal cord stimulation

girardgibbs.com

sjm.com

I Find electrode configurations that
maximize muscle activity

I Bad configurations may cause pain or have
negative effects on treatment
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Goal

Optimize an unknown reward function via sequential sampling

AND

remain “safe” throughout the process
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Problem statement

I Finite decision setD

I Unknown reward function f : D → R

I Safety threshold h ∈ R

I Seed set S0 of safe decisions (∀x ∈ S0, f(x) ≥ h)

h
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Problem statement

Sequential sampling

I For t = 1, 2, . . .

I select xt ∈ D

I observe f(xt) + nt

Goal

I Find x∗ ∈ argmaxx∈D f(x)

I Remain safe: ∀t ≥ 1, f(xt) ≥ h
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Related work

I Bayesian optimization: function evaluation is expensive

I Various proposed criteria, e.g.,

I Expected improvement [Mockus et al., 1974]

I UCB [Auer, 2002] [Srinivas et al., 2010]

I Related variants

I Level set estimation [Gotovos et al., 2013]

I Bayesian optimization with constraints [Gardner et al., 2014]

I Gaussian processes popular for modeling the unknown function
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Gaussian process regression
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Gaussian process regression
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Gaussian process regression

ut(x)

ℓt(x)

x
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GP-UCB

I Use upper confidence bounds for optimistic sampling

I xt = argmaxx∈D ut(x)

I Sublinear regret under suitable conditions on f [Srinivas et al., 2010]
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GP-UCB example (t = 0)
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GP-UCB example (t = 5)
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GP-UCB example (t = 10)
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GP-UCB example (t = 20)
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Certifying safety

I Assume that f isL-Lipschitz continuous w.r.t. a metric d

I If for some safe xwe know f(x), then a safety certificate for x′ is

f(x)− Ld(x, x′) ≥ h
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Certifying safety

S0

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 31



Certifying safety

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 32



Certifying safety

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 33



Certifying safety

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 34



Certifying safety

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 35



Certifying safety

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 36



Certifying safety

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 37



Certifying safety

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 38



Certifying safety
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Certifying safety

R̄0(S0)
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Certifying safety
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Certifying safety
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Reachability
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Reachability
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Reachability
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Reachability

R̄ϵ(S0)
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Reconsidering optimization

I Initial goal of finding f∗ = maxx∈D f(x) is unrealistic

I Instead, aim for the ϵ-reachable maximum

f∗
ϵ = max

x∈R̄ϵ(S0)
f(x)

I Smaller ϵ → stricter goal → need more samples
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First attempt: Safe-UCB

I Keep set St of certified safe points (starting with S0)

I Use Lipschitz property with GP lower bounds to certify safety

I xt = argmaxx∈St
ut(x)
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Safe-UCB example (t = 0)

S0
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Safe-UCB example (t = 5)

St
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Safe-UCB example (t = 10)

St
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Safe-UCB example (t = 20)

St
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Safe-UCB example (t = 50)

St

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 57



SafeOpt

I Encourage expansion of St→ keep setGt ⊆St of potential expanders

I Encourage locating the maximumwithin St→ keep setMt ⊆St of potential
maximizers

I Pick most uncertain point withinGt ∪Mt

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 58



SafeOpt

I Encourage expansion of St→ keep setGt ⊆St of potential expanders

I Encourage locating the maximumwithin St→ keep setMt ⊆St of potential
maximizers

I Pick most uncertain point withinGt ∪Mt

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 59



SafeOpt

I Encourage expansion of St→ keep setGt ⊆St of potential expanders

I Encourage locating the maximumwithin St→ keep setMt ⊆St of potential
maximizers

I Pick most uncertain point withinGt ∪Mt

Safe Exploration for Optimization with Gaussian Processes Alkis Gotovos 60



SafeOpt example (t = 0)

S0
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SafeOpt example (t = 5)

Mt

St
Gt
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SafeOpt example (t = 10)

Mt

St
Gt
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SafeOpt example (t = 20)

Mt

St
Gt
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SafeOpt example (t = 30)

Mt

St
Gt
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SafeOpt example (t = 35)

Mt

St
Gt
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SafeOpt example (t = 40)

Mt

St
Gt
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SafeOpt example (t = 50)

Mt

St
Gt
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SafeOpt pseudocode

Input: sample setD,
kernel k,
Lipschitz constantL,
seed set S0,
safety threshold h

for t = 1, 2, . . . do
Update St,Gt, andMt

xt← argmaxx∈Gt∪Mt
(ut(x)− ℓt(x))

yt← f(xt) + nt

Update GP estimates
end for
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Theorem

Assumptions

I f has bounded norm in the RKHS defined by k

I f isL-Lipschitz continuous

I nt is a uniformly bounded martingale difference sequence

Under suitable scaling of the GP confidence intervals, the following jointly hold w.h.p.

I ∀t ≥ 1, f(xt) ≥ h

I ∀t ≥ t∗, f(x̂t) ≥ f∗
ϵ − ϵ
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Experiment 1: Synthetic

I Draw 100 random 2-D functions from GP prior (sq. exponential kernel)

I Use random singleton seed set S0 per function

I Run 100 iterations of each algorithm
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Experiment 1: Synthetic

rt := f∗
ϵ −maxτ≤t f(xτ )
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Experiment 2: Spinal cord therapy

I Electrode configurations are
represented by points inR4

I Fit sq. exponential ARD kernel

I Run 300 iterations of each
algorithm
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Experiment 2: Spinal cord therapy

SafeOpt Safe-UCB GP-UCB
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Conclusion

Recap

I We formulated safe optimization using the concept of reachability

I We proposed SafeOpt, an algorithm with theoretical guarantees

What we skipped here

I Rigorous theoretical setup and analysis

I Another application: safe movie recommendation
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