Safe Exploration for Optimization with Gaussian Processes

Yanan Sui Caltech Alkis Gotovos ETH Zurich Joel W. Burdick Caltech Andreas Krause ETH Zurich

International Conference on Machine Learning

Better safe than sorry

youtube.com/user/mattessons

Therapeutic spinal cord stimulation

girardgibbs.com

►

- Find electrode configurations that maximize muscle activity
- Bad configurations may cause pain or have negative effects on treatment

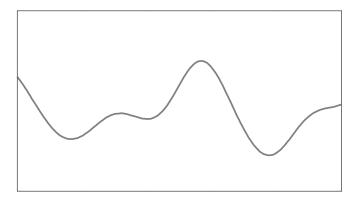
Optimize an unknown reward function via sequential sampling

AND

remain "safe" throughout the process

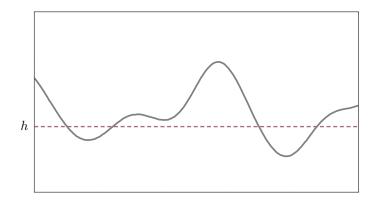
Problem statement

- ▶ Finite decision set D
- Unknown reward function $f: D \to \mathbb{R}$



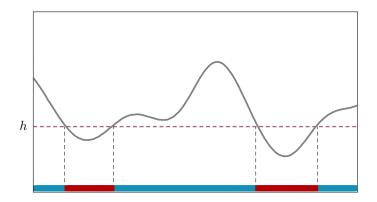
Problem statement

- ▶ Finite decision set D
- Unknown reward function $f: D \to \mathbb{R}$
- Safety threshold $h \in \mathbb{R}$

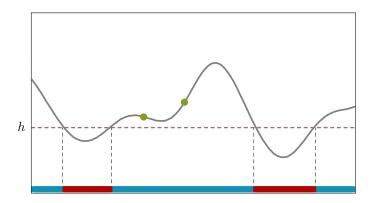


Problem statement

- ▶ Finite decision set D
- Unknown reward function $f: D \to \mathbb{R}$
- Safety threshold $h \in \mathbb{R}$



- Finite decision set D
- Unknown reward function $f: D \to \mathbb{R}$
- $\blacktriangleright \ \, \text{Safety threshold} \ h \in \mathbb{R}$
- Seed set S_0 of safe decisions ($\forall x \in S_0, f(x) \ge h$)



Sequential sampling

- For t = 1, 2, ...
 - select $x_t \in D$
 - observe $f(x_t) + n_t$

Sequential sampling

- For t = 1, 2, ...
 - select $x_t \in D$
 - observe $f(x_t) + n_t$

Goal

- Find $x^* \in \operatorname{argmax}_{x \in D} f(x)$
- Remain safe: $\forall t \geq 1, \ f(x_t) \geq h$

Sequential sampling

- For t = 1, 2, ...
 - ▶ select $x_t \in D$
 - observe $f(x_t) + n_t$

Goal

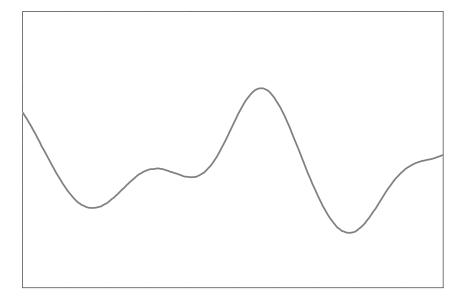
- $\blacktriangleright \ \operatorname{Find} x^* \in \operatorname{argmax}_{x \in D} f(x)$
- Remain safe: $\forall t \ge 1, f(x_t) \ge h$

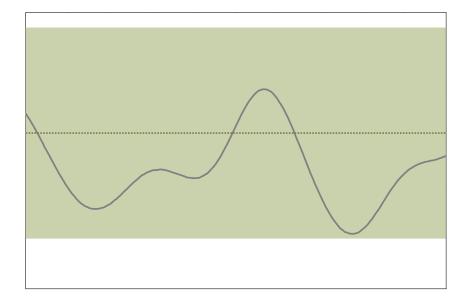
Bayesian optimization: function evaluation is expensive

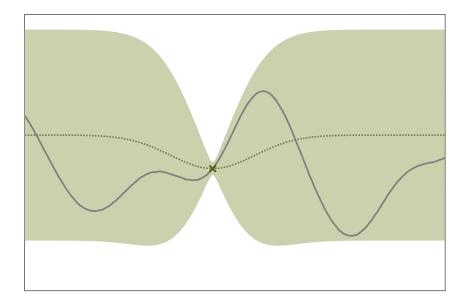
- Bayesian optimization: function evaluation is expensive
- Various proposed criteria, e.g.,
 - Expected improvement [Mockus et al., 1974]
 - UCB [Auer, 2002] [Srinivas et al., 2010]

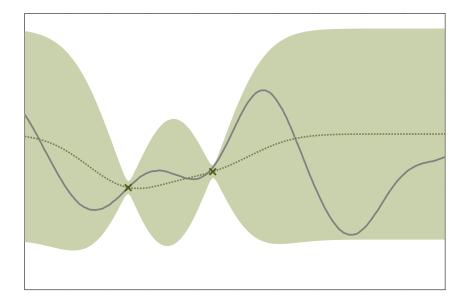
- Bayesian optimization: function evaluation is expensive
- Various proposed criteria, e.g.,
 - Expected improvement [Mockus et al., 1974]
 - UCB [Auer, 2002] [Srinivas et al., 2010]
- Related variants
 - Level set estimation [Gotovos et al., 2013]
 - Bayesian optimization with constraints [Gardner et al., 2014]

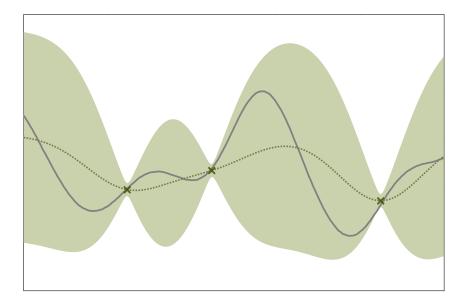
- Bayesian optimization: function evaluation is expensive
- Various proposed criteria, e.g.,
 - Expected improvement [Mockus et al., 1974]
 - UCB [Auer, 2002] [Srinivas et al., 2010]
- Related variants
 - Level set estimation [Gotovos et al., 2013]
 - Bayesian optimization with constraints [Gardner et al., 2014]
- Gaussian processes popular for modeling the unknown function

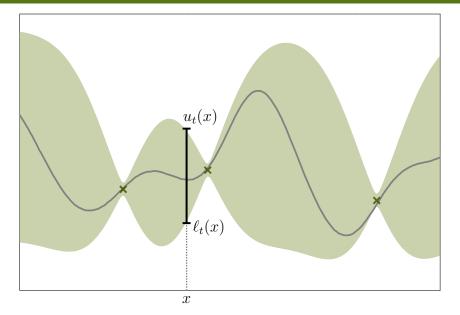








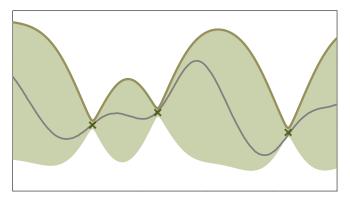




Use upper confidence bounds for optimistic sampling

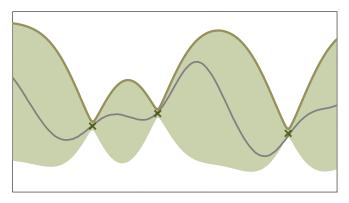
GP-UCB

- Use upper confidence bounds for optimistic sampling
- ► $x_t = \operatorname{argmax}_{x \in D} u_t(x)$



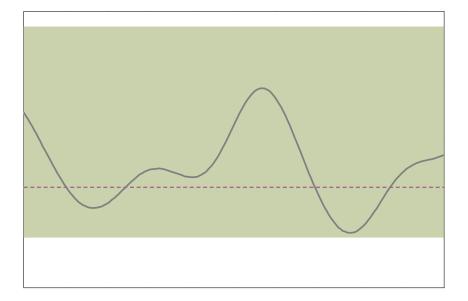
GP-UCB

- Use upper confidence bounds for optimistic sampling
- ► $x_t = \operatorname{argmax}_{x \in D} u_t(x)$

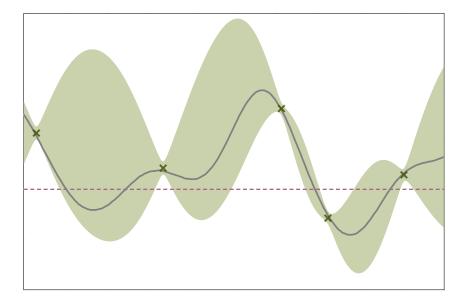


▶ Sublinear regret under suitable conditions on *f* [Srinivas et al., 2010]

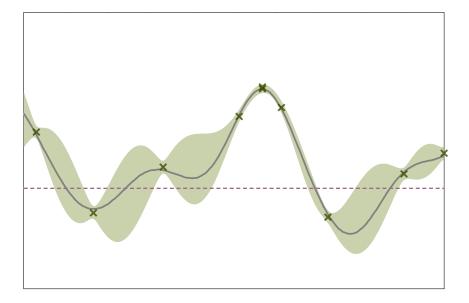
GP-UCB example (t = 0)



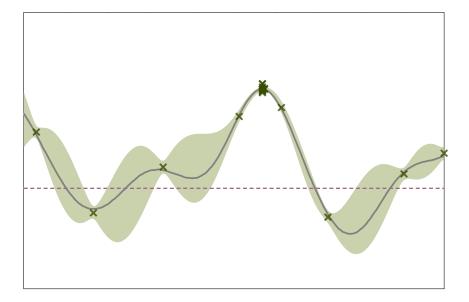
GP-UCB example (t = 5)



GP-UCB example (t = 10)



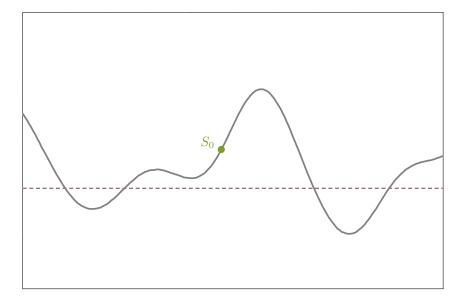
GP-UCB example (t = 20)



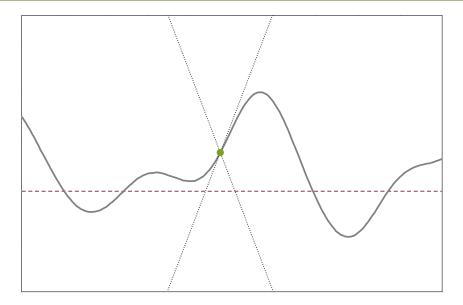
• Assume that f is L-Lipschitz continuous w.r.t. a metric d

- ► Assume that *f* is *L*-Lipschitz continuous w.r.t. a metric *d*
- If for some safe x we know f(x), then a safety certificate for x' is

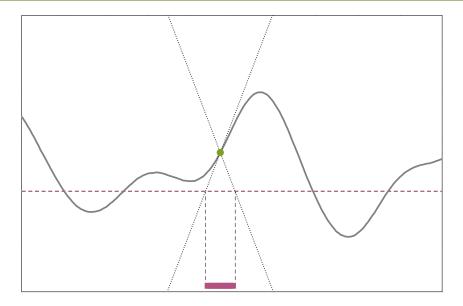
$$f(x) - L d(x, x') \ge h$$

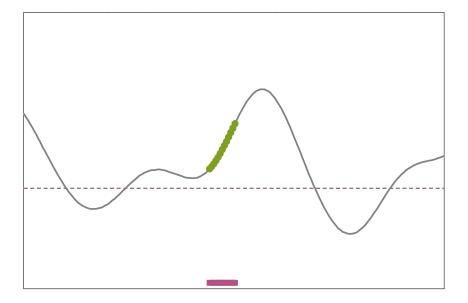


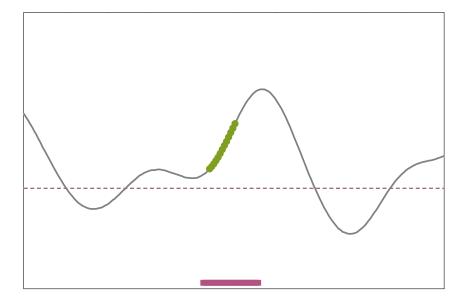
Certifying safety

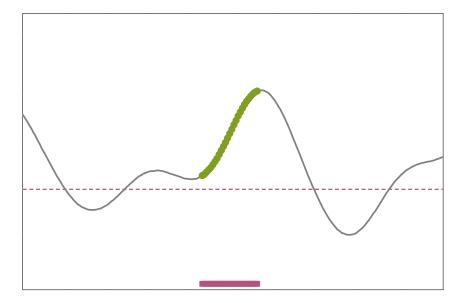


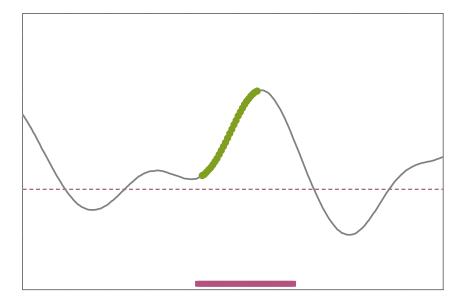
Certifying safety

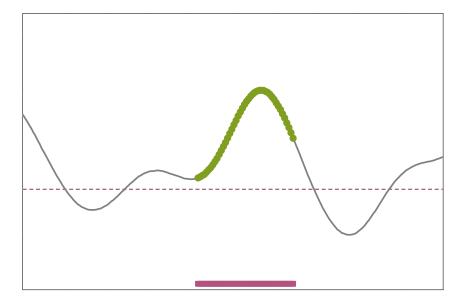


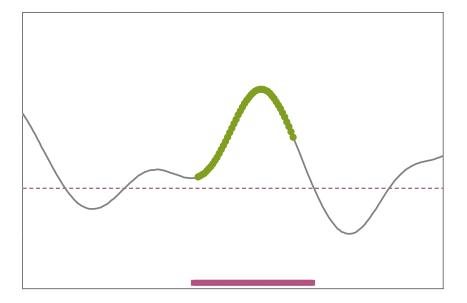


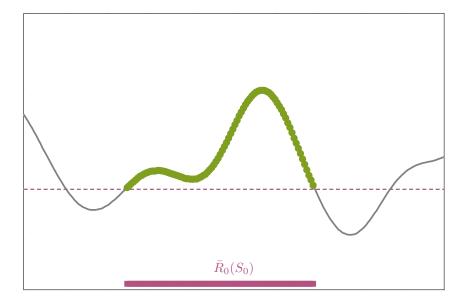


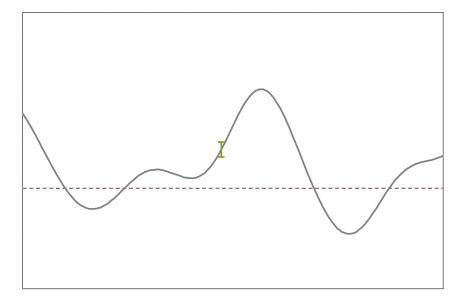




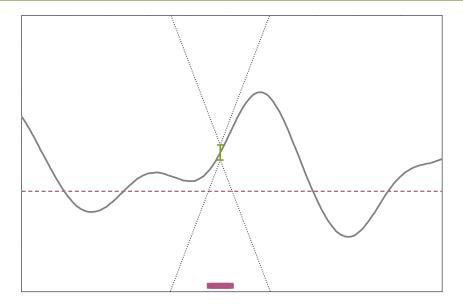


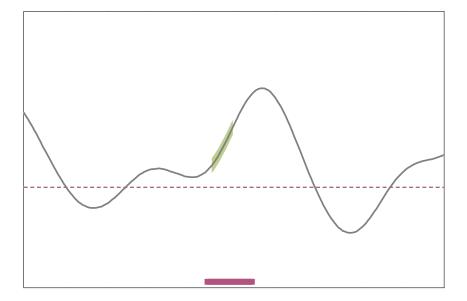


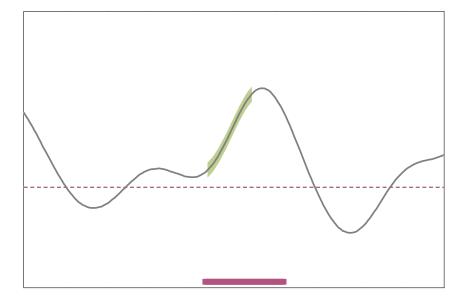


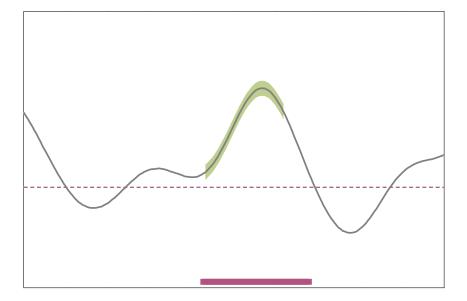


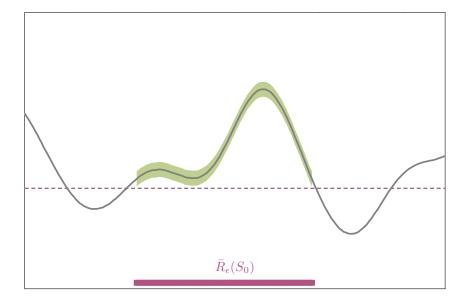
Certifying safety











▶ Initial goal of finding $f^* = \max_{x \in D} f(x)$ is unrealistic

- Initial goal of finding $f^* = \max_{x \in D} f(x)$ is unrealistic
- Instead, aim for the ϵ -reachable maximum

$$f_{\epsilon}^* = \max_{x \in \bar{R}_{\epsilon}(S_0)} f(x)$$

- ► Initial goal of finding $f^* = \max_{x \in D} f(x)$ is unrealistic
- Instead, aim for the ϵ -reachable maximum

$$f_{\epsilon}^* = \max_{x \in \bar{R}_{\epsilon}(S_0)} f(x)$$

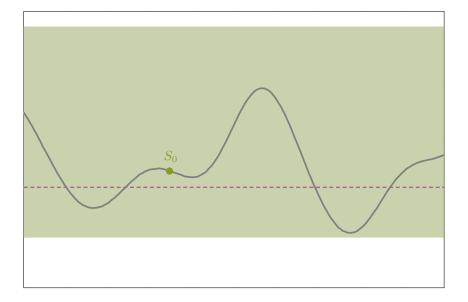
• Smaller $\epsilon \rightarrow$ stricter goal \rightarrow need more samples

• Keep set S_t of certified safe points (starting with S_0)

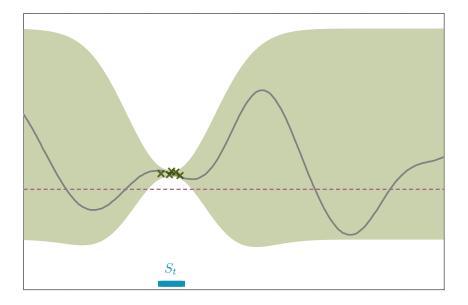
- Keep set S_t of certified safe points (starting with S_0)
- Use Lipschitz property with GP lower bounds to certify safety

- Keep set S_t of certified safe points (starting with S_0)
- Use Lipschitz property with GP lower bounds to certify safety
- $\blacktriangleright x_t = \operatorname{argmax}_{x \in S_t} u_t(x)$

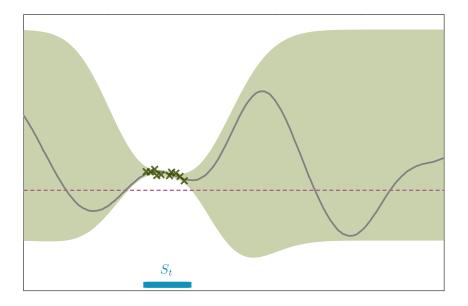
Safe-UCB example (t = 0)



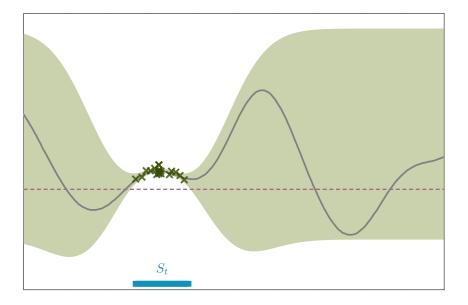
Safe-UCB example (t = 5)



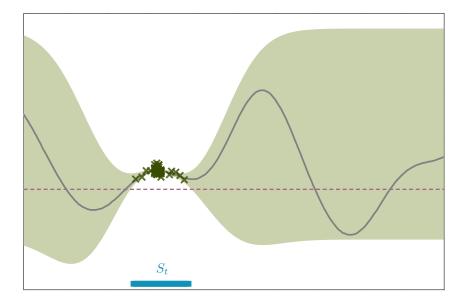
Safe-UCB example (t = 10)



Safe-UCB example (t = 20)



Safe-UCB example (t = 50)

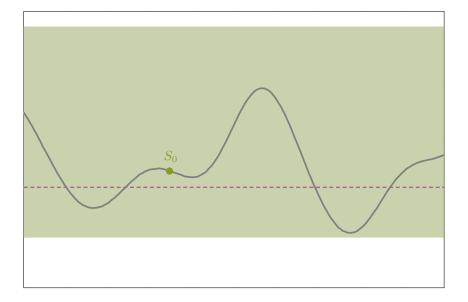


• Encourage expansion of $S_t \rightarrow \text{keep set } G_t \subseteq S_t$ of potential expanders

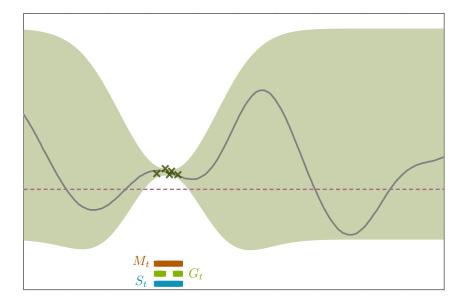
- Encourage expansion of $S_t \rightarrow \text{keep set } G_t \subseteq S_t$ of potential expanders
- \blacktriangleright Encourage locating the maximum within $S_t \rightarrow {\rm keep}$ set $M_t \subseteq S_t$ of potential maximizers

- Encourage expansion of $S_t \rightarrow \text{keep set } G_t \subseteq S_t$ of potential expanders
- \blacktriangleright Encourage locating the maximum within $S_t \rightarrow {\rm keep}$ set $M_t \subseteq S_t$ of potential maximizers
- Pick most uncertain point within $G_t \cup M_t$

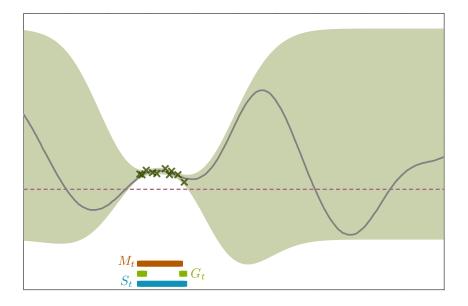
SafeOpt example (t = 0)



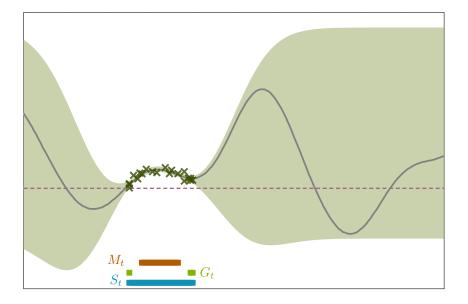
SafeOpt example (t = 5)



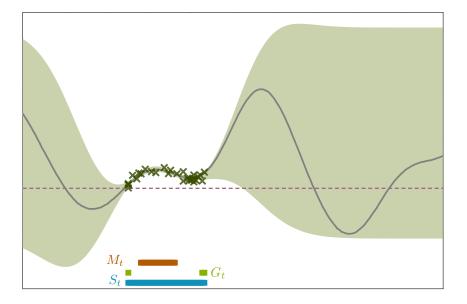
SafeOpt example (t = 10)



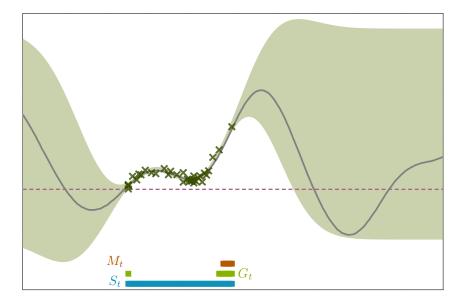
SafeOpt example (t = 20)



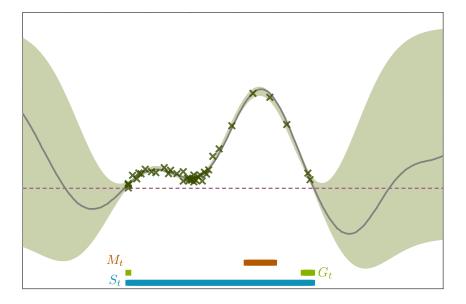
SafeOpt example (t = 30)



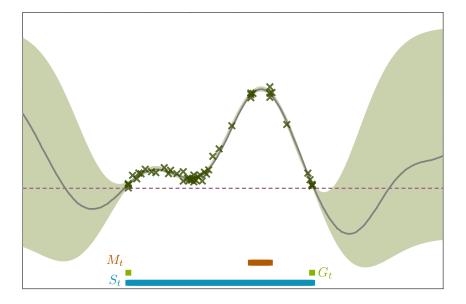
SafeOpt example (t = 35)



SafeOpt example (t = 40)



SafeOpt example (t = 50)



```
Input: sample set D,
kernel k,
Lipschitz constant L,
seed set S_0,
safety threshold h
```

```
\begin{array}{l} \text{for } t=1,2,\dots \text{do} \\ \text{Update } S_t, G_t, \text{and } M_t \\ x_t \leftarrow \operatorname{argmax}_{x \in G_t \cup M_t}(u_t(x)-\ell_t(x)) \\ y_t \leftarrow f(x_t)+n_t \\ \text{Update GP estimates} \\ \text{end for} \end{array}
```

Assumptions

- $\blacktriangleright f$ has bounded norm in the RKHS defined by k
- ► *f* is *L*-Lipschitz continuous
- \triangleright n_t is a uniformly bounded martingale difference sequence

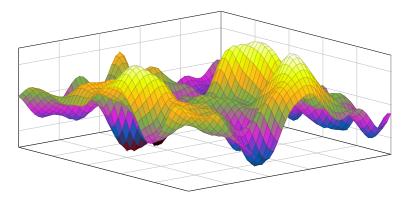
Assumptions

- $\blacktriangleright f$ has bounded norm in the RKHS defined by k
- ► *f* is *L*-Lipschitz continuous
- \triangleright n_t is a uniformly bounded martingale difference sequence

Under suitable scaling of the GP confidence intervals, the following jointly hold w.h.p.

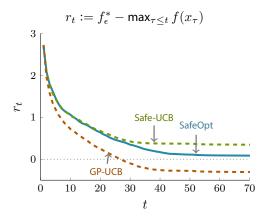
- $\blacktriangleright \ \forall t \ge 1, f(x_t) \ge h$
- $\blacktriangleright \ \forall t \geq t^* \text{, } f(\hat{x}_t) \geq f_{\epsilon}^* \epsilon$

Experiment 1: Synthetic

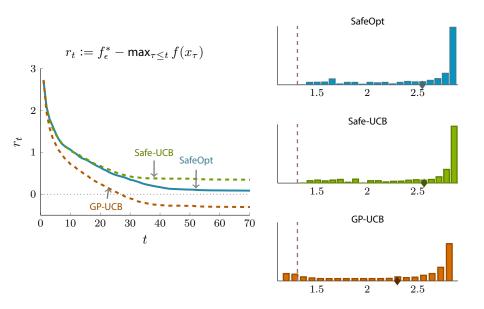


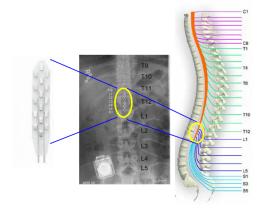
- Draw 100 random 2-D functions from GP prior (sq. exponential kernel)
- Use random singleton seed set S_0 per function
- Run 100 iterations of each algorithm

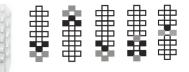
Experiment 1: Synthetic



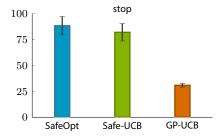
Experiment 1: Synthetic

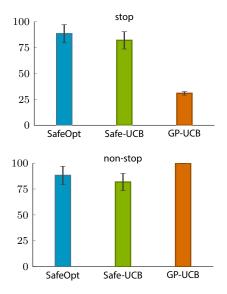


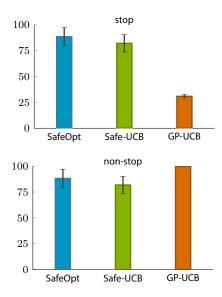




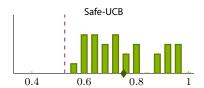
- Electrode configurations are represented by points in R⁴
- Fit sq. exponential ARD kernel
- Run 300 iterations of each algorithm

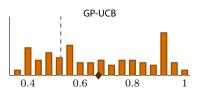












Conclusion

Recap

- We formulated safe optimization using the concept of reachability
- We proposed SafeOpt, an algorithm with theoretical guarantees

Conclusion

Recap

- We formulated safe optimization using the concept of reachability
- We proposed SafeOpt, an algorithm with theoretical guarantees

What we skipped here

- Rigorous theoretical setup and analysis
- Another application: safe movie recommendation

