
Hardware Read-Write Lock Elision

Pascal Felber
University of Neuchâtel
pascal.felber@unine.ch

Shady Issa
INESC-ID / Instituto Superior
Técnico, University of Lisbon
shadi.issa@tecnico.ulisboa.pt

Alexander Matveev
MIT

amatveev@csail.mit.edu

Paolo Romano
INESC-ID / Instituto Superior Técnico, University of Lisbon

paolo.romano@tecnico.ulisboa.pt

Abstract
Hardware Lock Elision (HLE) represents a promising tech-
nique to enhance parallelism of concurrent applications re-
lying on conventional, lock-based synchronization. The idea
at the basis of current HLE approaches is to wrap critical
sections into hardware transactions: this allows critical sec-
tions to be executed in parallel using a speculative approach,
while leveraging on conflict detection capabilities provided
by hardware transactions to ensure equivalent semantics to
pessimistic lock-based synchronization.

In this paper we present RW-LE, the first HLE approach
targeting read-write locks. RW-LE introduces an innovative
hardware-software co-design that exploits two recent micro-
architectural features of POWER8 processors: suspending/re-
suming transaction execution and rollback-only transactions.
RW-LE’s original design provides two major benefits with
respect to existing HLE techniques: i) eliding the read lock
without resorting to the use of hardware transactions, and ii)
avoiding to track read memory accesses issued in the write
critical section.

We evaluate RW-LE by means of an extensive experi-
mental study based on a variety of benchmarks and real-life,
complex applications. Our results demonstrate that RW-LE
can provide striking performance gain of up to one order of
magnitude with respect to state of the art HLE approaches.

1. Introduction
Over the last few years, hardware supports for transactional
memory (TM) have been integrated in several mainstream
commercial processors employed in a variety of computing

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org or Publications Dept., ACM, Inc.,
fax +1 (212) 869-0481.

EuroSys ’16, April 18-21, 2016, London, United Kingdom
Copyright c© 2016 ACM 978-1-4503-4240-7/16/04. . . $15.00
DOI: http://dx.doi.org/10.1145/http://dx.doi.org/10.1145/2901318.2901346

platforms, ranging from commodity systems (Intel’s Haswell
[33]), to servers (IBM’s POWER8 [20]) and super computers
(IBM zEC12 [17]).

Processors equipped with hardware transactional memory
(HTM) include assembly instructions that provide support
for demarcating code blocks, which are guaranteed to be exe-
cuted as atomic transactions. The HTM system is responsible
for ensuring semantics equivalent to sequential execution
of transactions. In order to maximize parallelism, though,
transactions are executed in a speculative fashion, exploiting
hardware facilities (typically extensions of the processor’s
cache coherency protocol) to detect conflicts at run-time and
abort/restart transactions that would violate consistency.

The availability of HTM in commercial processors enables
a range of novel applications, ranging from transactional
programming [1] to thread-level speculation [30] and security
[12]. Hardware lock elision (HLE) is probably among the
most exciting ones, as well as, arguably, one of the main
drivers motivating the commercial adoption of HTM.

HLE allows for enhancing the concurrency of legacy lock-
based code in a simple, yet effective way: by executing critical
sections as speculative hardware transactions. Several recent
studies, e.g., [10, 20], have demonstrated the potentiality of
HLE to boost the parallelism of complex legacy applications
[8, 29]. However, these studies also highlighted some relevant
limitations of HLE approaches, which are inherently rooted
to the restricted nature of current HTM implementations. In
particular, existing HTM systems can only guarantee the
correctness (and hence allow the commit) of transactions that
perform a limited number of memory accesses. Transactions
that exceed the hardware capacity have to be aborted and
re-executed using a pessimistic lock-based synchronization.
This can severely hamper performance and limit the current
scope of applicability of HLE techniques.

This paper investigates, to the best of our knowledge
for the first time in the literature, the design of a hard-
ware elision technique for read-write locks. The resulting

r-lock r-unlockr(x) r(?)

w-lock w-unlockw(x) w(y)

Delayed commit

Reader

Writer

Figure 1: The write back of shared variables updated by a
writer must be delayed until after all readers have completed
their critical sections to preserve consistency.

technique, which we call RW-LE, introduces an innovative
hardware-software co-design that exploits two recent micro-
architectural features of POWER8 processors:
1. Suspend/resume: the ability to suspend and resume a

transaction, allowing, between the suspend and resume
calls, for the execution of instructions/memory accesses
that escape from the transactional context.

2. Rollback-only transaction (ROT): a lightweight form of
transaction that has lower overhead than regular transac-
tions but also weaker semantics. In particular ROTs avoid
tracing load operations—hence having virtually unlimited
capacity for memory accesses in read mode—but ensures
the atomicity of the stores issued by a transaction, which
appear to be all executed, as a unit, or not executed at all.1

RW-LE exploits the suspend/resume mechanism to elide
read locks without resorting to the use of hardware trans-
actions. This provides the key benefit of ensuring strong
progress guarantees for the read critical sections, which are
spared by spurious (and repeated) aborts caused by the un-
derlying HTM implementation. However, unlike classical
read-write lock implementations, RW-LE allows writers to
execute concurrently with readers. Providing this concurrency
is the key challenge in RW-LE and it works as follows.

First, writers execute using either HTM or ROT, which
speculatively buffer their actual memory writes until the
point of commit. This allows readers to proceed concurrently,
because any read of a concurrent speculative write will
abort the writer. However, it is unsafe for writers to commit
when there are concurrent non-speculative reads. This is
illustrated in Figure 1 where two threads, a reader and a
writer, concurrently access two shared variables. As the writer
executes its critical section fully between two read accesses, it
cannot detect the concurrent execution of the non-speculative
reader and committing immediately would expose the latter
to an inconsistent snapshot, with a mix of old and new values
(e.g., if r(?)≡r(y) in the figure). To overcome this problem,
the key idea in RW-LE is to suspend the hardware speculation
of a writer, and then wait for all current readers to complete
by using an RCU-like (epoch-based) quiescence mechanism
[14, 15, 24]. This suspend-wait sequence has a two-fold
effect. First, it drains all current readers that may read a

1 The IBM POWER8 specification states that ROT commit may not provide
aggregate store semantics (atomic store). However, in practice, current
POWER8 chips do.

r-lock r-unlockr(x) r(y)

w-lock w-unlock abortw(x)

suspend resume

Conflict
Reader

Writer

Figure 2: A new reader accessing a shared variable updated
by a suspended writer will abort the suspended hardware
speculation of the writer upon resume.

write location of the writer, and therefore, could become
inconsistent due to the commit of this writer. Second, any
new reader that tries to read a write location of this writer will
abort the suspended hardware speculation of the writer, as
illustrated in Figure 2. As a result, after the wait is complete,
it is safe to commit the writer, so RW-LE simply resumes
hardware speculation and commits the writer.

RW-LE employs ROTs for write critical sections as an
alternative synchronization scheme to plain hardware trans-
actions. First, it attempts to execute write critical sections
concurrently as plain hardware transactions. Next, when a
write critical section repeatedly fails to commit, it activates
the ROT-based synchronization path. The benefit of using
ROTs is the reduced hardware speculation: they do not track
memory reads and only track memory writes. This makes
ROTs free from hardware capacity limitations due to read
memory accesses, which usually compromise 80%-90% of
the assembly code for read-dominated workloads. As a result,
ROTs can successfully support a much larger class of (write)
critical sections, which can still be executed concurrently
with readers—waiting for the quiescence of any concurrent
reader before committing, just as like for the plain hardware
transactions. However, due to their limited isolation guaran-
tees, a ROT cannot run concurrently with other ROTs, i.e.,
they need to be serialized. In other words, the ROT-based syn-
chronization scheme trades off concurrency among writers to
enhance the chance of successfully supporting concurrency
between readers and writers.

We conducted an extensive experimental evaluation aimed
at assessing the effectiveness of RW-LE with a variety of
workloads, generated by a number of benchmarks and real-
life, complex applications. We start by using a set of synthetic
benchmarks that allow us to generate intensive and diverse
usage patterns of the Virtual Memory (VM) system. We ex-
ploit these benchmarks to perform a sensitivity analysis on
the efficiency of RW-LE when varying several key workload
characteristics, such as the length and the ratio of the read-
/write critical sections, as well as the likelihood of conflicts
among writers and among readers and writers. Next, we con-
sider three complex applications, namely STMBench7 [13],
a standard benchmark for TM systems that mimics a cooper-
ative CAD environment, Kyoto Cabinet [11], a commercially
used database management library, and a porting of the well
known TPC-C [31] benchmark.

The experimental results show that RW-LE achieves strik-
ing performance gains, up to 10× speedups compared to HLE
and lock-based schemes, in a wide range of workloads. These
include not only workloads in which HLE fails frequently
due capacity exceptions, but also applications that, despite ex-
ecuting short critical sections, generate intensive load for the
virtual memory subsystem (e.g., paging)—another potential
cause of spurious aborts for HTM. Interestingly, our study
shows also that, although being optimized for read-intensive
workloads, RW-LE is competitive, and sometimes even out-
performs, alternative synchronization schemes in a range of
write-dominated workloads.

The remainder of this paper is structured as follows. Sec-
tion 2 introduces related work. Section 3 presents the RW-LE
algorithm. Section 4 reports the results of our experimental
study. Finally, Section 5 concludes the paper.

2. Related Work
In a seminal paper, Rajwar and Goodman [27] proposed hard-
ware lock-elision (HLE), an automatic way to introduce con-
currency into lock-based critical sections, by executing these
sections in a fast path as hardware transactions. However,
hardware transactions are best-effort on current Intel Haswell
[32] and IBM POWER8 [5] processors, which means that
they provide no progress guarantee. A hardware transaction
may always fail due to hardware limitation such as L1 cache
capacity limitation, an unsupported instruction, or a page pro-
tection or scheduler interrupt. In all such cases it may never
commit [10, 26]. Therefore, to ensure progress in HLE, a criti-
cal section that repeatedly fails to commit in hardware reverts
to execute in a fallback path that acquires the original serial
lock. This fallback path is expensive because it aborts all
current fast-path hardware transactions and executes serially.

Afek et al. [2] recently proposed SCM for HLE, a conflict-
management scheme that reduces the probability for hard-
ware conflicts. It uses an auxiliary lock to serialize conflict-
ing hardware transactions, so that each one still executes
in hardware and can run concurrently with non-conflicting
hardware transactions. In addition, Diegues and Romano [9]
proposed an adaptive HLE conflict-management scheme that
uses learning techniques to identify the best hardware retry
configuration in a workload-oblivious manner.

Recent work by Afek et al. [2] and Calciu et al. [6]
introduced the lock removal or lazy subscription lock elision
schemes. Lock-removal sacrifices safety guarantees in favor
of limited concurrency. The fast path can execute concurrently
with the fallback path, but it cannot commit as long as there
is a fallback path in progress and can observe inconsistent
memory states. These inconsistent states can lead to executing
illegal instructions or to memory corruption. Dice et al. [7]
showed that complex software-side support is necessary to
detect and handle all possible inconsistencies due to lock-
removal, slowing down the lock-removal approach to a point
that eliminates the advantages of using it in the first place.
Therefore, in the same work it is proposed instead to rely

on hardware extensions that can provide a fully safe HTM
sandboxing capability.

Roy, Hand, and Harris [28] proposed a software-only im-
plementation of the lock-elision approach in which transac-
tions run speculatively and, when they fail or cannot execute,
e.g., due to system calls, the application defaults to the origi-
nal lock. Their system instruments all object accesses, both
memory reads and writes, and employs a special kernel-based
thread signaling mechanism. This software-based design pro-
vides better concurrency than HLE, but requires complex
support and introduces severe overheads that make critical
sections slow. Afek, Matveev and Shavit [4] proposed PLE,
another software-only version of the lock-elision scheme for
read-write locks, which uses a fully pessimistic STM. While
the PLE algorithm is optimized for read-write locks, it still re-
quires to instrument each memory read and write in software,
which slows down critical sections and requires compiler
support. Finally, a recent paper by Dice et al. [8] proposes
ALE, an adaptive scheme that integrates both hardware and
software for efficient lock elision, but it only works for spe-
cific access patterns and requires compiler support (as well
as manually hand-crafted code modifications to avoid exces-
sive software instrumentation costs). Also, unlike RW-LE,
ALE is a general scheme and does not take advantage of the
read-write lock semantics to optimize HLE’s efficiency.

In addition to the work done on lock elision, several other
approaches have been proposed to design synchronization
mechanisms for read dominated workloads. The most famous
one is the pthread implementation of read-write locks (RWL),
which uses two counters to synchronize both readers and writ-
ers. RWL has an internal mutex that is used to synchronize
the changes to these counters. The values of the counters are
used to ensure fairness between readers and writers.

Another well-known synchronization mechanism is the
big reader lock (BRLock), which was part of the linux kernel
at one point [19]. The key idea behind BRLock is to trade off
write throughput for read throughput. A thread acquiring
BRLock in read mode will only lock one private mutex,
whereas acquiring BRLock in write mode entails locking
all private mutexes of running threads.

Recently, Liu et. al [21] introduced passive reader-writer
lock (PRWL), a synchronization mechanism that tries to
reduce the cost imposed by most reader-writer locks on the
writer mode. PRWL leverages a version-based consensus
protocol between readers and writers. Writers increment the
lock version and wait for readers to signal that they have read
the latest version. This approach was designed for total store
order systems where an upper bound on the memory staleness
can be guaranteed, i.e., on the time until readers see the latest
version without a memory barrier.

Read-Copy-Update (RCU) [25] and Read-Log-Update
(RLU) [22] represent an alternative paradigm for building
read-dominated parallel software. The main idea behind RCU
and RLU is to allow both read and write critical sections to

execute concurrently. In RCU, this is achieved by making
writers modify a copy of the data structure while readers read
the unmodified version. The new copy is only installed once
all concurrent readers have finished their critical sections.
RLU follows a similar approach but, instead of writers
modifying a copy of the data structure, it uses per object
logs that enable multiple writers to modify the same data
structure. Despite being very efficient for read-dominated
workloads, both techniques require tailored code for each
application to handle the copying or logging of modifications.
In our work, we target the elision of read-write locks without
requiring any code modifications, unlike RCU and RLU.

Afek et al. [3] were the first to suggest the use of ROTs
to hide writes from concurrent reads. This was an intial step
towards RW-LE, which, in addition, incorporates an RCU-
like quiescence scheme into the design.

3. The RW-LE Algorithm
In this section we describe our read-write lock elision (RW-
LE) algorithm. We first introduce the key idea underlying
RW-LE before discussing in depth its operating principles,
implementation details, and various optimizations.

3.1 Basic Algorithm
The objective of RW-LE is to replace a traditional read-write
lock (RWL) by a speculative variant that uses HTM. Yet,
RW-LE uses HTM in ways unlike any other lock elision
algorithms proposed so far.

The goal of lock elision is to avoid threads to have to
“physically” acquire locks (or register as part of a reader list in
the context of read-write locks). This is usually implemented
by having threads, readers and writers alike, execute their
critical sections in the context of hardware transactions. In
contrast, RW-LE is optimized for read-dominated workloads
and aims at supporting readers with (almost) no overhead. In
particular, this means that readers should not even have to
execute in the context of a hardware transaction, which would
add non-negligible overheads.2 To achieve this goal, RW-LE
puts additional burden on writers as shown in Algorithm 1
and explained next.

To ensure proper synchronization with writers, RW-LE
must keep track of which readers execute in a critical section.
This is achieved by having every thread maintain a simple
counter, or a logical clock, that is incremented in the RWLE -
READ LOCK() and RWLE READ UNLOCK() functions when
respectively entering and leaving a read-side critical section—
hence a clock has an odd value if the reader is in a critical
section.3

As readers are not transactional, they might read inconsis-
tent data if a concurrent writer modifies that data. Therefore,

2 The begin and commit operations of transactions require tens to a few
hundreds of cycles, and overheads become much more significant when they
repeatedly abort and restart.
3 Note that we do not consider here the nesting of critical sections (which
can be supported using a simple counter to keep track of the nesting level).

Algorithm 1 — RW-LE: basic algorithm (HTM only)
1: Shared variables:
2: clocks[N]← {0, 0, . . . , 0} . One counter per thread
3: wlock ← FREE . Spin lock to serialize writers

4: Local variables:
5: tid ∈ [0..N] . Identifier of current thread

6: function RWLE_SYNCHRONIZE
7: c[N]← clocks . Read all clocks
8: for i← 0 to N−1 do . Wait until all threads...
9: if c[i] is odd thenthat are in critical section...

10: wait until clocks[N] 6= c[i]cross barrier

11: function RWLE_READ_LOCK
12: clocks[tid]← clocks[tid]+1 . Enter critical section
13: MEM_FENCE . Make sure writers see reader

14: function RWLE_READ_UNLOCK
15: clocks[tid]← clocks[tid]+1 . Exit critical section

16: function RWLE_WRITE_LOCK
17: repeat . Simple spin lock to serialize writers
18: wait until wlock = FREE . Test and...
19: until CAS(wlock, FREE, HTM-LOCKED)test and set
20: repeat until TX_BEGIN = SUCCESS . Start transaction

21: function RWLE_WRITE_UNLOCK
22: TX_SUSPEND . Suspend transaction
23: wlock ← FREE . We can already release lock
24: RWLE_SYNCHRONIZE . Let readers drain
25: TX_RESUME . Resume transaction
26: TX_COMMIT . Write back updates

writers execute speculatively in the context of transactions
and do not publish their updates unless it is safe to do so.

Writers protect their critical sections by calling the RWLE -
WRITE LOCK() and RWLE WRITE UNLOCK() functions. Let
us initially assume that there is a single writer. When entering
the critical section, the writer starts a new hardware transac-
tion. From that point on, and for the whole duration of the
critical section, memory writes are speculative and hidden
from non-transactional readers.

Consider a concurrent thread with a read-side critical sec-
tion that overlaps with the writer’s transaction and accesses
the same shared variable. If the memory access of the reader
occurs after the writer has updated the variable, then the
writer’s transaction will immediately abort and restart (or
take an alternative fall-back path). If however the read occurs
before the start of the write transaction, then no conflict will
be detected and the reader will be serialized before the writer.

When a writer successfully reaches the end of its critical
section, it must commit its transaction to write back its
(speculative) updates. Yet, as readers are not transactional,
doing so without precaution would break consistency. Indeed,
a reader might see a mix of old and new data (prior and after
the writer’s transaction) whereas the read-side critical section
should guarantee a consistent snapshot.

Therefore, before commit, the writer must wait for all
readers that might have read some of the updated (yet un-
committed) data to have left their read-side critical section.
Since we do not keep track of which memory locations have

been accessed by readers (no software instrumentations of
memory accesses), we rely on lightweight, RCU-like, qui-
escence mechanism that simply waits for each active reader
to end its critical section. This is implemented in the RWLE -
SYNCHRONIZE() function by reading the clocks of each
thread once and wait for all odd clocks to change value. Note
that this quiescence mechanism does not prevent readers to
start new critical sections as a read-after-write conflict will
be handled as described above by aborting the writer.

An additional challenge is that the quiescence barrier
cannot be implemented straightforwardly in the context of
the writer’s transaction, as the readers would abort the writer
when incrementing their clocks. The key idea in our design
is to exploit the suspend/resume feature of the POWER8
micro-architecture that allows us to temporarily suspend the
active transaction, perform non-transactional operations, and
later resume the transaction. Hence the quiescence barrier
can execute non-transactionally.

Note that any conflict occurring while a transaction is
suspended will trigger an abort upon resume, hence protect-
ing concurrent readers from seeing inconsistent snapshots.
Indeed, consider a reader that enters its critical section af-
ter the call to RWLE SYNCHRONIZE(), i.e., it has not been
seen by the writer and will execute concurrently with the
write-back phase. If the reader accesses any memory location
that has been updated by the writer before the write-back
phase (which is atomic), then the latter will abort; otherwise
the reader will see the new version. Hence consistency is
preserved in all cases and the reader never blocks. It is also
worth pointing out that we can already release the lock when
suspending the transaction: letting another writer execute can
at worse trigger an abort of the suspended transaction.

Algorithm 1 presents the pseudo-code of this basic ver-
sion of RW-LE, where writers are serialized with a simple
spin lock. In this version, we do not consider the cause of
transaction aborts and instead blindly retry failed transac-
tions. The TX BEGIN() operation on line 20 returns a status
code that indicates success (in which case the transaction
can start executing speculatively) or error. If an abort hap-
pens during execution of the transaction, then controls jumps
back to just after the call to TX BEGIN() and the status code
contains information about the failure cause. For the sake of
simplicity, we assume in this paper that the status code can
be SUCCESS, ABORT-TRANSIENT, or ABORT-PERSISTENT to
respectively indicate if the transaction executes speculatively,
or has aborted due a problem that is unlikely (e.g., contention)
or likely (e.g., disallowed instruction, capacity) to be encoun-
tered again in a subsequent attempt.

3.2 Complete Algorithm with Fallback Paths

After giving the intuition of RW-LE, we now explain how
we turn it into a practical algorithm with fallback paths to
support transactions that repeatedly abort and to allow for
concurrent writers. The complete pseudo-code is shown in

Algorithm 2 and details of these extensions are explained in
the rest of the section.
Non-Speculative Fallback. HTM has limitations that may
prevent speculative execution to succeed, even in absence
of contention. The most common scenario of non-contended
abort is when a transaction reads or writes too many memory
locations and exceeds the tracking limit for transactional
storage accesses.4 Other common causes of abort include
execution of disallowed instructions within a transaction, or
nesting transactions beyond the maximum level.

We therefore need to have a fallback path that can take
over when speculative execution of an RW-LE writer repeat-
edly fails. A typical strategy consists in analyzing the abort
reason and, depending on whether the failure cause is persis-
tent or not, switching to a non-speculative path immediately
or after a few unsuccessful retries. In our implementation,
we delegate the selection of the path to the PATH() function
(lines 23 and 28–40). This function retries the same path sev-
eral times, until reaching a maximum number of attempts or
experiencing an ABORT-PERSISTENT failure, in which case
it switches to the next fallback path (ultimately defaulting to
non-speculative execution).

As RW-LE has been designed to be lightweight and
fast, we rely on a lock-based fallback path designed to
be simple yet coexist seamlessly with speculative HTM-
based transactions running concurrently. In its most basic
version, the non-speculative fallback path serializes both
readers and writers. The lock is set to FREE if only speculative
writers execute and to NS-LOCKED if a non-speculative writer
executes (only one at a time). The downside of integrating
the fallback path is that readers now have to check the status
of the lock and possibly wait if a non-speculative writer holds
the lock (lines 12).
Rollback-Only Transactions. The POWER8 micro-
architectures provides a lightweight form of transaction,
called rollback-only transaction (ROT), that has lower
overhead than regular transactions but also weaker semantics.

A ROT leverages transactional speculation and rollback
mechanisms to ensure atomicity (i.e., the a sequence of
instructions is executed, or not, as a unit), but there are fewer
barriers (no barrier for transaction begin/end nor integrated
cumulative barrier for reads and writes) and ROTs themselves
are not serialized. Furthermore, ROT eliminates speculation
on reads, i.e., there is no monitoring of storage locations
specified by loads for modification by other processors,
nor mechanisms between the performing of the loads and
the completion of the ROT. As a result, a ROT hardware
transaction only tracks memory stores. Nevertheless, updates
within the ROTs are still hidden from other threads and follow
the same rules for read and write conflicts as normal HTM
transactions.

4 Note that resources for tracking transactional storage accesses may be
shared by multiple programs/threads executing concurrently.

Algorithm 2 — RW-LE: complete algorithm with fallback paths
. . . . Same as basic algorithm

11: function RWLE_READ_LOCK
12: wait until wlock 6= NS-LOCKED . Let writer finish
13: clocks[tid]← clocks[tid]+1 . Enter critical section
14: if wlock = NS-LOCKED then . New writer?
15: RWLE_READ_UNLOCK . Defer to writer...
16: go to 12and retry acquiring lock
17: MEM_FENCE . Make sure writers see reader

18: function RWLE_READ_UNLOCK
19: clocks[tid]← clocks[tid]+1 . Exit critical section

20: function RWLE_WRITE_LOCK
21: aborts← 0 . Keep track of failures
22: status← SUCCESS . Assume success for first trial
23: path← PATH(status, aborts) . Which path?
24: status← RWLE_WRITE_LOCKPATH . Execute path
25: if status 6= SUCCESS then . Success?
26: aborts← aborts+1 . No: register failure...
27: go to 23and retry

28: function PATH(status, aborts)
29: if aborts = 0 then . First trial?
30: path← HTM . Start with HTM path
31: trials← MAX-HTM . Number of trials left
32: if status = ABORT-PERSISTENT then . Worth retrying?
33: trials← 0 . No: give up with current path
34: if path = HTM and trials = 0 then . Done with HTM?
35: path← ROT . Switch to ROT path
36: trials← MAX-ROT . Reset number of trials left
37: if path = ROT and trials = 0 then . Done with ROT?
38: path← NS . Switch to NS path
39: trials← trials−1 . One less trial
40: return path . Retry with selected path

41: function RWLE_WRITE_LOCKHTM
42: wait until wlock = FREE . Let non-HTM writers finish
43: status← TX_BEGIN . Start transaction
44: if status = SUCCESS and wlock 6= FREE then
45: TX_ABORT . Defer to non-HTM writer
46: return status . Return status code

47: function RWLE_WRITE_LOCKROT
48: repeat . Simple spin lock to serialize writers
49: wait until wlock = FREE . Test and...
50: until CAS(wlock, FREE, ROT-LOCKED)test and set
51: status← TX_BEGIN_ROT . Start ROT (return status)
52: if status 6= SUCCESS then . If ROT failed
53: wlock ← FREE . Handle abort
54: return status . Return status code

55: function RWLE_WRITE_LOCKNS
56: repeat . Acquire global lock
57: wait until wlock = FREE . Test and...
58: until CAS(wlock, FREE, NS-LOCKED)test and set
59: RWLE_SYNCHRONIZE . Let readers drain
60: return SUCCESS . Always succeeds

61: function RWLE_WRITE_UNLOCK
62: if wlock = NS-LOCKED then . NS path?
63: wlock ← FREE . Release lock
64: else if wlock = ROT-LOCKED then . ROT path?
65: RWLE_SYNCHRONIZE . Let readers drain
66: TX_COMMIT . Write back updates
67: wlock ← FREE . Release lock
68: else . HTM path
69: TX_SUSPEND . Suspend transaction
70: RWLE_SYNCHRONIZE . Let readers drain
71: TX_RESUME . Resume transaction
72: TX_COMMIT . Write back updates

Finally, the POWER ISA transactional memory specifica-
tion states that the stores that are included in the ROT need
not appear to be performed as an aggregate store [16], yet
it also indicates that implementations are likely to provide
an aggregate store appearance. We have conducted a broad
range of experiments on our test machine and our findings
confirm that current POWER8 chips do provide aggregate
store for ROT commits.

Interestingly, we found that we could use ROT in an
innovative way to provide a speculative fallback algorithm
that can substitute to the slow lock-based path, while still
preserving most of the benefits of the HTM-only base version,
namely by allowing concurrent readers. The key insight in our
use of ROTs is that, if they only protect the write-side critical
sections and we do not allow concurrent writers, their weaker
semantics are sufficient to still exploit their speculative
properties and isolate writes from readers. Furthermore,
since loads are not tracked, the likelihood of capacity aborts
decreases and we do not need to use the relatively costly
suspend/resume mechanism upon commit (lines 64–67).

To introduce this third code path to our algorithm, we use
another state for the global lock, ROT-LOCKED, indicating
that a writer executes in ROT mode.
Concurrent Writers. The final extension to make RW-LE
truly scalable is to allow for concurrent writers in contention-
free cases. This is achieved via a simple modification of the
RWLE WRITE LOCK() function. Instead of serializing writers
using the global lock, as in Algorithm 1 (lines 17–19), we
try to continue executing speculatively but we check the
status of the global lock as first operation of the transaction
(Algorithm 2, line 44). By doing so, we can abort if the lock
is not free and, at the same time, we also add the lock in the
read set of the transaction. This essentially guarantees that
another writer that takes the lock in a fallback path will abort
immediately the transaction, hence preserving consistency.

Note that, as discussed above, ROT transactions cannot
be used for concurrent writers and they are thus serialized
(lines 48–50).

3.3 Discussion
We briefly discuss the properties and correctness of our
algorithm, as well as some optimizations that are not shown
in the pseudo-code but are part of our implementation.
Fairness Properties Unlike most of the read write lock
algorithms that prioritize readers over writers, Algorithm 2
gives priority to non-speculative writers (i.e., writers that
resort to acquiring the lock in NS-LOCKED) over readers.
Indeed, a reader may be repeatedly overtaken by a writer at
line 12 and at lines 14–16. While this might not be a problem
in read-dominated workloads, which are our primary target,
it still goes against our objective to optimize performance for
the readers.

We have implemented a variant of our algorithm that
embeds a version number in the global lock. When entering
its critical section, a reader first increments its local clock,
and then copies the global lock in a per-thread local lock. If
the global lock is busy, the reader waits until the current lock
owner releases the lock, before entering its critical section.

Upon acquiring the global lock, a writer increments the
version number and only waits for readers that are in their
critical section (odd local counter) and have started before
the writer (local lock version smaller than the global lock
version).5 Therefore reader cannot be overtaken by writers,
yet a writer that enter its critical section gets priority over
new readers. Similar liveness properties are provided in most
fair implementation of read-write locks (e.g., in Java [18]).

Experiments shown in Section 4 were conducted with the
version of RW-LE shown in Algorithm 2. For completeness,
we still compare both variants in separate experiment.
Correctness Argument. An RW-LE writer can protect its
critical section using (1) HTM, (2) ROT, or (3) a full software
write lock. In (1), writers execute concurrently and preserve
consistency thanks to the hardware tracking mechanisms of
HTM and because they eagerly subscribe the lock acquired
by ROTs and non-speculative writers. In (2) and (3), writers
simply execute serially. Therefore, the key for correctness
of RW-LE is to ensure that read-side critical sections always
execute on a consistent memory view (a snapshot). In other
words, locations read by a read-side critical section must not
be overwritten by a concurrent writer. To see why this is
the case, let us analyze the commit process of each possible
writer.
1. HTM. When it arrives to the commit, the writer first

(a) suspends the HTM, and then (b) initiates the RCU-
like quiescence loop. In this way, step (a) ensures that no
updates become visible to readers at this point, while
step (b) waits for current readers to finish (those that
started before step (b)). Notice that these readers are the
only ones whose snapshot could be invalidated by the
commit of the writer. This is the case because any new
reader that starts after step (b) and tries to read a memory

5 Note that, as for the global lock, the version numbers of local locks only
increase.

location updated by the suspended writer will abort the
latter. Therefore, after step (b) completes, if the HTM
writer successfully resumes and commits, this implies that
any other concurrent reader can be safely serialized after
the writer—as, so far, no concurrent reader accessed any
of the locations updated by the writer. Therefore the writer
simply commits.

2. ROT. The commit works in a similar way: the writer just
executes the RCU-like quiescence call. There is no need
for suspend and resume calls in a ROT writer because it
speculates only on writes.

3. Full software write lock. The writer simply executes as
the original read-write lock without any readers. Therefore
no readers can be overwritten.

Optimizations. We added several optimizations to RW-LE
in order to improve performance. While they are not shown in
the pseudo-code, they have been implemented and evaluated
in our experiments. We have notably optimized our code as
follows.
• The quiescence mechanism in RWLE SYNCHRONIZE()

traverses the array of per-thread clocks twice, first to copy
it, then to wait for readers (lines 7 and 8 of Algorithm 1).
When calling this function from the non-speculative path
(lines 70 and 59 of Algorithm 2) we can optimize it by
performing a single traversal of the array since readers are
known to be blocked by the global lock.
• By moving the loop at line 12 of Algorithm 2 to just after

line 15, we can optimize entry in the read-side critical
section for uncontended cases, i.e., if the global lock is
free we essentially save one comparison.
• By splitting the global lock in two variables, one acting as

ROT lock and the other one as NS lock, we can modify the
HTM path to eagerly subscribe to the NS lock (as at line 44
of Algorithm 2 to ensure that a non-speculative transaction
aborts competing HTM transactions) and lazily subscribe
to the ROT lock in the commit phase. This optimization
enables concurrent execution of ROTs and HTM transac-
tions, potentially improving performance when conflicts
are infrequent.

4. Evaluation
This section reports the results of an extensive experimental
evaluation that aims at quantifying the performance gains
achievable by RW-LE with respect to state of the art solu-
tions, based both on hardware lock-elision or pessimistic
synchronization schemes, when faced with heterogeneous
workloads.

We start by using synthetic benchmarks to generate diverse
workloads that stress three key factors that are expected to
impact the efficiency of RW-LE, namely:
1. Critical section length, which has a strong impact on the

likelihood of capacity aborts for HLE-based solutions.
2. Contention, i.e., the likelihood of conflicting memory

accesses from two critical sections.
3. Update ratio, i.e., the percentage of read vs. write locks.

We compare the performance of RW-LE to the follow-
ing baselines: (1) a HLE scheme [27], which does not take
advantage of the read-write lock semantics, (2) an implemen-
tation of the big reader lock (BRLock) that uses compare and
swap for mutex acquisition, (3) the read-write lock (RWL)
implementation of Linux pthreads’ library, and (4) a plain
single global lock (SGL). We do not include the passive
reader-writer lock as it is designed for total store order ar-
chitectures, which is not the case of PowerPC that provides
weaker guarantees [23]. Furthermore, the source code that
has been released by the authors is a kernel patch that is not
compatible with our experimental platform.

Next, we evaluate RW-LE using two realistic, complex
applications, namely STMBench7 [13] and KyotoCabinet
Cache DB [11].

All presented results were obtained by executing on an
80-way IBM Power8 8284-22A processor with 10 physical
cores, where each core can execute 8 hardware threads. The
OS installed is Fedora 21 with Linux 3.17.3 and the compiler
used is GCC 4.9.2 with -O2 optimization level. The reported
results represent the average of 10 runs.

In order to ensure reproducibility of results, the authors
will open source both the RW-LE implementation and the
benchmarks used in this study. This has not been done yet, in
order to ensure the double-blindness of the reviewing process.

4.1 Sensitivity Study
In order to assess the effectiveness of RW-LE in diverse,
yet clearly identifiable workload settings, we rely on a syn-
thetic benchmark based on a hashmap synchronized via a
single read-write lock (which we elide, when we use RW-LE
and HLE). The hashmap is composed of l buckets, each one
pointing to a linked list. We choose this benchmark since by
varying l and the number of elements initially inserted in the
hashmap, we can exert precise control on the workload char-
acteristics and gain deeper understanding of the performance
dynamics of the considered synchronization schemes.

We consider four different workload scenarios, differing
by the likelihood of inducing HTM capacity exceptions and
conflicting memory accesses. We control capacity exceptions
by populating the hashmap with either l·200 or l·50 items,
which lead, respectively, to about 50% (high-capacity) and 2%
(low-capacitiy) probability of capacity exception (in absence
of concurrency). As for conflict likelihood, we consider a low
contention, where l =100,000 buckets, and a high contention
scenario, where l =1 bucket.

We include in our sensitivity analysis two additional
independent parameters, namely the ratio of write locks
(w) requested by the application and the thread count. We
consider three different values for the write lock probability,
w: 1%, 10%, and 90%. We also performed experiments with
50% write locks but, as results were similar to the 90% case,
they are not shown in the plots.

We stress that read-write locks are typically employed
in read-dominated workloads. Hence, the inclusion of write

 0.001

 0.01

 0.1

 1

 16 32 64 80

1% write locks

T
im

e
 (

s
)

 16 32 64 80

10% write locks

Number of threads

RW-LE
OPT

RW-LE
PES

 16 32 64 80

90% write locks

HLE
BRLock

RWL
SGL

 0

 20

 40

 60

 80

 100
1% write locks

A
b

o
rt

s
 (

%
)

HTM tx
HTM non-tx
HTM capacity
Lock aborts
ROT conflicts
ROT capacity

HLERW-LE
PES

RW-LE
OPT

10% write locks

Number of threads (2,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

 0

 20

 40

 60

 80

 100
1% write locks

C
o

m
m

it
s
 (

%
)

HTM ROT SGL Uninstrumented

HLERW-LE
PES

RW-LE
OPT

10% write locks

Number of threads (2,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

Figure 3: High capacity-high contention scenario: execution
time, abort rate, and breakdown of commit types.

dominated workloads (w=90%) allow us to evaluate also
worst-case scenarios for the proposed technique, in order to
identify its actual limitations. Also, it should be noted that by
considering hashmaps of diverse sizes, ranging from just 50
up to 200,000 items in total, combined with heterogeneous
read/write ratios, we are not only stressing the HTM conflict
and capacity exceptions, but also stressing the VM subsystem
with intensive and heterogeneous memory access patterns,
in terms of data access locality, page faults, and memory
mappings.

Regarding the number of retries for hardware transactions
and ROTs, we conducted experiments to explore a wide range
of values for different workloads. We found out 5 to be the
best value on average and in the majority of workloads, with
only small differences in cases where it was not the best..
Also, this number range is the recommended value in other
studies that recently evaluated HTM retry policies, e.g., [33].
As for RW-LE, we consider two variants (based on a writer-
path policy):
• RW-LEOPT: an optimistic version of RW-LE that attempts

first 5 times executing with HTM, and then 5 times with
the ROT-based path.
• RW-LEPES: a pessimistic version of RW-LE that serializes

writers and retries execution up to 5 times using the ROT-
based path.

High capacity-high contention scenario. Figure 3 (top) re-
ports the execution time for the scenario with high likelihood
of contention and capacity exceptions, while varying the
number of threads. The plots show remarkable gains for both
RW-LE variants in the read-dominated workloads (first two
columns with w={1%,10%}), with gains that extend up to
5× vs. BRLock (at 80 threads), 10× vs. HLE (at 16 threads)
and up to 15× (at 64 threads) vs. the pthreads RWL. The
reasons underlying these gains can be found in Figure 3(bot-
tom), which reports the breakdown of the various paths used
to commit transactions by the two RW-LE variants and by
HLE. With HLE, due to the high probability of incurring
capacity exceptions, only a limited fraction of critical sec-
tions is successfully elided via hardware transactions, and at
high thread counts the non-speculative fallback path is acti-
vated more than 90% of the times. Conversely, RW-LE avoids
instrumenting read critical sections. Further, even for write
critical sections, it avoids activating the non-speculative path
by falling back to the ROT-based path—which does not track
read memory accesses, hence avoiding capacity exceptions
and successfully eliding the write critical sections.

Figure 3 (middle) allow us to gain other interesting in-
sights on the reasons underlying the performance gains
of RW-LE vs. HLE, by reporting their abort rates broken
down by the following abort causes: aborts of a hardware or
rollback-only transaction caused by a conflict with a hard-
ware transaction (“HTM tx” or “ROT conflicts”), by a capac-
ity exception (“HTM/ROT capacity”), due to encountering
the global lock busy upon its subscription (“Lock aborts”)
and due to a conflict with non-transactional code (“HTM
non-tx”). With HLE, the latter class of abort causes typically
corresponds to a conflict caused by a different thread acquir-
ing the global lock or induced by the VM subsystem (e.g.,
paging). With RW-LE, it also includes the case of conflicts
between a read critical section, which runs uninstrumented,
and a writer using HTM or ROT. The data shows clearly that
both RW-LE variants achieve a much lower abort rate than
HLE. As expected, RW-LEPES eliminates almost all capacity
exceptions (avoids tracking memory reads). Conversely, with
HLE, the abort rate grows quickly above 80% as the thread
count grows. In fact, even despite the read dominated nature
of these workloads, HLE falls pray of capacity aborts, which,
as the thread count increase, lead to the frequent activation of
the non-speculative fallback path and to the extermination of
any concurrent hardware transaction.

Moving to the write-intensive workload, we can observe in
Figure 3 (bottom) that, even in these unfavorable conditions,
RW-LE exhibits a performance similar to HLE at a low thread
count. Surprisingly, RW-LEPES consistently outperforms
HLE up to 8 threads, with speed-ups of approximately
20%. Thanks to the use ROTs (and to the serialization of
writers), this variant of RW-LE exhibits very low abort rates
even in this challenging scenario, unlike RW-LEOPT and
HLE. Indeed, RW-LEOPT and HLE have similar total abort

 0.1

 1

 16 32 64 80

1% write locks

T
im

e
 (

s
)

RW-LE
OPT

RW-LE
PES

 16 32 64 80

10% write locks

Number of threads

BRLock
RWL

 16 32 64 80

90% write locks

HLE
SGL

 0

 20

 40

 60

 80

 100
1% write locks

A
b

o
rt

s
 (

%
)

HTM tx
HTM non-tx
HTM capacity
Lock aborts
ROT conflicts
ROT capacity

HLERW-LE
PES

RW-LE
OPT

10% write locks

Number of threads (2,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

 0

 20

 40

 60

 80

 100
1% write locks

C
o

m
m

it
s
 (

%
)

HTM ROT SGL Uninstrumented

HLERW-LE
PES

RW-LE
OPT

10% write locks

Number of threads (2,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

Figure 4: High capacity-low contention scenario: execution
time, abort rate, and breakdown of commit types.

rates, as they are both very likely to fail executing a write
critical section using a hardware transaction, and fall back,
respectively, to ROT and GL (serial global lock). Unlike
HLE, though, RW-LEOPT can still execute readers in parallel
with writers when it falls backs to ROT. The corresponding
gains, however, are reduced in this write dominated workload,
and appear to be counterbalanced by the additional costs
associated with the quiescence call that RW-LE needs to
execute for HTM and ROT based writers.
High capacity-low contention scenario. Let us now ana-
lyze a low contention scenario, while preserving a high prob-
ability of capacity exceptions. Also in this case, see Figure 4,
we observe analogous performance trends: in the read inten-
sive workloads, both RW-LE variants outperform all alterna-
tive synchronization schemes with remarkable gains (up to
4× speed-up when w=10%), while in the write dominated sce-
nario, HLE exhibits performance very similar to RW-LEOPT.
As expectable, in this low contention workload, the pes-
simistic variant of RW-LE is slightly penalized with respect
to the optimistic one, which can parallelize non-conflicting
write critical sections thanks to the HTM-based path.
Low capacity-high contention scenario. Let us now dis-
cuss Figure 5, which reports results for scenario with low
probability of incurring capacity exceptions and high con-
tention (single linked list populated initially with 50 ele-

 0.01

 0.1

 1

 10

 16 32 64 80

1% write locks

T
im

e
 (

s
)

RW-LE
OPT

RW-LE
PES

 16 32 64 80

10% write locks

Number of threads

 16 32 64 80

90% write locks

HLE
BRLock

RWL
SGL

 0

 20

 40

 60

 80

 100
1% write locks

A
b

o
rt

s
 (

%
)

HTM tx
HTM non-tx
HTM capacity
Lock aborts
ROT conflicts
ROT capacity

HLERW-LE
PES

RW-LE
OPT

10% write locks

Number of threads (2,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

 0

 20

 40

 60

 80

 100
1% write locks

C
o

m
m

it
s
 (

%
)

HTM ROT SGL Uninstrumented

HLERW-LE
PES

RW-LE
OPT

10% write locks

Number of threads (2,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

Figure 5: Low capacity-high contention scenario: execution
time, abort rate, and breakdown of commit types.

ments). Scenarios with low likelihood of capacity exceptions
are supposedly favorable for HLE, which can commit most
of the times using the HTM-based path. Nonetheless, in the
read-dominated workloads, both RW-LE variants incur much
lower abort rates than HLE at high thread counts, achieving
significant performance benefits with respect to HLE: aver-
age speed-up of approximately 60% for w=1% and 50% for
w=10%, when using 16 threads or more.

In this high contention scenario, in fact, HTM transactions
are likely to exhaust their retry budget due to conflicts with
other hardware transactions. This causes the acquisition of
the non-speculative fall-back path, which serializes also the
execution of concurrent read critical sections. Conversely,
RW-LE can fall-back to ROTs, which are serialized and hence
protected from conflicts with concurrent writers. Also, ROTs
are much less prone to suffer from capacity exceptions as
they do not track reads, and, most importantly, can execute in
parallel with readers.

Finally, as expected, the write dominated workload
(w=90%) does not scale due to high contention with any
of the considered synchronization primitives. Yet, it is note-
worthy to mention that both RW-LE variants are competitive
with HLE (the best performing of the baselines) and that
RW-LEPES indeed outperforms HLE by around 35% at 80
threads.

 0.1

 1

 10

 100

 16 32 64 80

1% write locks

T
im

e
 (

s
)

RW-LE
OPT

RW-LE
PES

 16 32 64 80

10% write locks

Number of threads

BRLock
RWL

 16 32 64 80

90% write locks

HLE
SGL

 0

 20

 40

 60

 80

 100
1% write locks

A
b

o
rt

s
 (

%
)

HTM tx
HTM non-tx
HTM capacity
Lock aborts
ROT conflicts
ROT capacity

HLERW-LE
PES

RW-LE
OPT

10% write locks

Number of threads (2,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

 0

 20

 40

 60

 80

 100
1% write locks

C
o

m
m

it
s
 (

%
)

HTM ROT SGL Uninstrumented

HLERW-LE
PES

RW-LE
OPT

10% write locks

Number of threads (2,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

Figure 6: Low capacity-low contention scenario: execution
time, abort rate, and breakdown of commit types.

Low capacity-low contention scenario. Figure 6 shows re-
sults for scenario with low probability of capacity exceptions
and low contention. Recall that this scenario uses a hashmap
composed of 100,000 linked lists, initially populated with 50
elements each. This setting is the only one where HTM trans-
actions succeed well, but fail due to sparse memory access
patterns induced by the large number of buckets. As a result,
HTM also suffers from page fault interrupt aborts of the VM
subsystem.

Results are shown in Figure 6(middle).As one can see,
HLE shows virtually no capacity exceptions, yet a spiking
number of non-transactional aborts that are related to page
faults. This introduces a severe trashing effect for high thread
counts. On the other hand, in read dominated workloads, both
RW-LE variants seldom rely on HTM, and hence suffer much
less from page faults aborts. This allows them to scale up to 16
threads.At 80 threads, the gains of the RW-LEOPT variant vs.
HLE (which is also in this case the best alternative baseline)
extend to an impressive factor of over 10× in both the w=1%
and w=10% cases. On the other hand, as expected, in low
contention scenario, RW-LEPES is penalized by the need
for serializing writers and pays a significant performance
toll to the optimistic variant, with an average slowdown of
approximately 2×.

 0.01

 0.1

 16 32 64 80

10% write locks

T
im

e
 (

s)

RW-LE

 16 32 64 80

50% write locks

Number of threads

RW-LEFAIR

 16 32 64 80

90% write locks

 0

 20

 40

 60

 80

 100
10% write locks

A
b

o
rt

s
 (

%
)

HTM tx
HTM non-tx
HTM capacity
Lock aborts
ROT conflicts
ROT capacity

RW-LE
FAIR

RW-LE

50% write locks

Number of threads (2,4,8,16,32,64,80)

RW-LE
FAIR

RW-LE

90% write locks

RW-LE
FAIR

RW-LE

 0

 20

 40

 60

 80

 100
10% write locks

C
o

m
m

it
s
 (

%
)

HTM ROT SGL Uninstrumented

RW-LE
FAIR

RW-LE

50% write locks

Number of threads (2,4,8,16,32,64,80)

RW-LE
FAIR

RW-LE

90% write locks

RW-LE
FAIR

RW-LE

Figure 7: Fairness stress scenario: execution time, abort rate,
and breakdown of commit types.

Finally, when analyzing the write dominated workload
(w=90%), we find a scenario in which even the best RW-
LE variant, RW-LEOPT, incurs a non-negligible performance
penalty of approximately 25% compared to HLE. This is not
surprising, as 90% of the critical sections in this scenario
are executed using HTM by both HLE and RW-LEOPT. As
such, they have the same likelihood of incurring an abort due
to paging—the predominant abort cause with this workload.
RW-LEOPT, however, suffers from additional overheads due
eliding, suspending and resuming hardware transactions. The
pessimistic variant of RW-LE has poorer performance, as
expected, given that it serializes 90% of the critical sections,
which can, instead, be successfully parallelized using HTM
by HLE and RW-LEOPT (at least at low/moderate thread
counts).
Fairness Finally, we ran an experiment to demonstrate the
performance of the fair variant of the algorithm (RW-LEFAIR)
that we described previously in Section 3.3. In this experiment
we use a different configuration of RW-LE where we disable
ROTs as a fallback path, in order to stress the non-speculative
fallback path that represents the main cause of unfairness. We
use the same scenario as above (high probability of capacity
exceptions and high contention) to increase likelihood of
executing the fallback path. In Figure 7, we can see that the
fair variant of the algorithm performs better at high numbers

of threads and low update percentages. This is the case when
readers may starve because of the non-speculative fallback
path. Other than that, the performance of both variants is very
similar. As the update percentage increases, the number of
readers decreases and thus the effect of readers’ starvation
becomes less prominent.
Conclusions. Summing up, the above sensitivity study high-
lighted that:
• RW-LE’s performance excels with workloads that are

likely to induce capacity exceptions, achieving peak gains
of up to 10× compared to the best of the considered
baselines.
• The larger the dominance of read critical sections, the

larger the gains. This is particularly beneficial for legacy
code, where read-write locks are normally employed in
read intensive workloads.
• Surprisingly, RW-LE can largely outperform (by up to

10×) all the considered baselines also in scenarios that
rarely exhibit capacity exceptions. This is due to two main
reasons: by running readers without any instrumentations
and hardware speculation, RW-LE is less prone to spuri-
ous aborts caused by the HTM and the VM subsystem;
and, in high contention workloads, the usage of the serial
path significantly alleviates contention on the global lock.
It is worth noting here that, consequently, RW-LE will still
excel even if the underlying platform does not guarantee
aggregate store for ROTs.
• Although RW-LE is optimized for read-intensive work-

loads, it can still deliver competitive performance in write-
dominated workloads. In fact, in 3 of the 4 considered
scenarios RW-LE has close, and sometimes even better
(up to 25%), performance than the best alternative scheme
(HLE), even with workloads that activate write critical
section with 90% probability.
• Although RW-LE showed, overall, very robust perfor-

mance in all the considered scenarios, it does have limita-
tions. In particular, in write dominated workloads where
HTM can elide critical sections with a high success rate
(e.g., workloads with rare capacity exceptions, limited
contention and paging frequency), RW-LE does pay per-
formance tolls to HLE (up to 25% in our study).
• The fair variant of RW-LE can be beneficial in cases where

readers starve due to the non-speculative fallback path and
it does not introduce significant overheads.

4.2 Complex Applications
In this section, we evaluate RW-LE’s performance using three
complex applications, which are commonly used to assess
the efficiency of speculative lock elision and TM systems.
STMBench7. STMBench7 [13] is a complex benchmark
that simulates a cooperative CAD environment, with many
heterogeneous transactions over a large and complex graph
of objects. Originally designed for TM applications, we
adapted it to use a read-write lock interface, by having
read-only transactions acquiring a read-write lock in read

 0

 2

 4

 6

 8

 10

 16 32 64 80

10% write locks

T
h

ro
u

g
h

p
u

t
(1

0
3
 T

x
/s

)

 16 32 64 80

50% write locks

Number of threads

 RW-LE
OPT

 RW-LE
PES

 16 32 64 80

90% write locks

 HLE
 BRLock

 RWL
 SGL

 0

 20

 40

 60

 80

 100
10% write locks

A
b

o
rt

s
 (

%
)

HTM tx
HTM non-tx
HTM capacity
Lock aborts
ROT conflicts
ROT capacity

HLERW-LE
PES

RW-LE
OPT

50% write locks

Number of threads (2,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

 0

 20

 40

 60

 80

 100
10% write locks

C
o

m
m

it
s
 (

%
)

HTM ROT SGL Uninstrumented

HLERW-LE
PES

RW-LE
OPT

50% write locks

Number of threads (2,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

Figure 8: STMBench7 using different percentages of update
operations: throughput, abort rate, and breakdown of commit
types.

mode, and update transactions in write mode. We evaluate the
benchmarks using a standard workload, which we configured
to use a medium size database and generate 24 different
operations using default mixes (disabling long traversals and
maintenance structural modifications).

Figure 8 (top) reports the throughput achieved by both
RW-LE’s variants and by the considered baselines, as the
thread count and the percentage of update operations vary.
The plots highlight that, up to about 50% of write operations,
both RW-LE variants outperform the best baseline (RWL)
with average gains around 2× that extend up to more than
4× in some scenarios, e.g., w=10% and 64 threads. The gains
compared to HLE is even larger, extending to around one
order of magnitude.

The gains over HLE can be explained by analyzing the
abort rate and commit type breakdowns in Figure 8 (mid-
dle) and (bottom). STMBench7, as typical of many real-life
applications, has relatively large read/write critical sections,
which often fail to execute as speculative hardware transac-
tions due to capacity exceptions (this is better seen with a
low number of threads, where capacity exceptions are nor-
mally the only main abort cause). The need for executing
frequently operations in a non-speculative way generates
high contention levels on the lock-based fallback path, espe-

 0

 2

 4

 6

 8

 16 32 64

<1% write locks

T
h

ro
u

g
h

p
u

t
(1

0
6
 T

x
/s

)

 16 32 64

5% write locks

Number of threads

 RW-LE
OPT

 RW-LE
PES

 16 32 64

10% write locks

HLE
BRLock

Orig
SGL

 0

 10

 20

 30

 40

 50
<1% write locks

A
b

o
rt

s
 (

%
)

HTM tx
HTM non-tx
HTM capacity
Lock aborts
ROT conflicts
ROT capacity

HLERW-LE
PES

RW-LE
OPT

5% write locks

Number of threads (1,4,8,16,32,64)

HLERW-LE
PES

RW-LE
OPT

10% write locks

HLERW-LE
PES

RW-LE
OPT

 0

 20

 40

 60

 80

 100
<1% write locks

C
o

m
m

it
s
 (

%
)

HTM ROT SGL Uninstrumented

HLERW-LE
PES

RW-LE
OPT

5% write locks

Number of threads (1,4,8,16,32,64)

HLERW-LE
PES

RW-LE
OPT

10% write locks

HLERW-LE
PES

RW-LE
OPT

Figure 9: Kyoto Cabinet (wicked benchmark): throughput,
abort rate, and breakdown of commit types.

cially in read-dominated workloads. As a consequence, only
very few transactions commit using HTM, which hinders
performance severely.

Interestingly, and quite unexpectedly, with STMBench7,
both RW-LE variants represent the most competitive synchro-
nization schemes even in a strongly write dominated work-
load (90% write operations) up to 64 threads. Also in these
settings, HLE’s performance continue to be crippled by capac-
ity exceptions, which enforces serialization of almost every
transaction, yielding worst performance than non-speculative
approaches.
Kyoto Cabinet. Next, we consider Kyoto Cabinet [11], a
commercial C++ database management library. Here we
focus on the in-memory variant KyotoCacheDB. Internally,
it breaks the database into slots, where each slot is composed
of buckets and each bucket is a search tree. To synchronize
database operations, it uses a single global read-write lock,
which contains nested per-slot mutexes. When using RW-LE,
we elide the external read-write lock, preserving the internal
mutex. This is only possible because RW-LE is aware (and
takes advantage) of the read write lock semantics. With HLE,
we instead elide both the inner and outer lock using HTM.

We use the wicked benchmark, which comes with Kyoto
Cabinet, to execute a random set of database operations and
control the frequency with which the external read-write lock

is acquired either in read or in write mode. Figure 9 reports
the results obtained using three workload mixes that generate
different rates of acquisitions of the external read-write lock,
i.e., 10%, 5%, and < 1%.

Looking at the read-dominated workload, left column
of Figure 9, we see that both RW-LE variants scale up to
16 threads before starting to suffer from contention on the
inner mutex locks (which we do not elide with RW-LE),
while BRLock scales only up to 8 threads. This is due to
the fact that, upon write, BRLock must acquire as many
mutexes as there are running threads and meanwhile block
the readers, which is not the case of RW-LE. By analyzing
the abort and commit breakdown plots, we can deduce that
RW-LE’s gains, in this scenario, are due to its ability to
avoid instrumentation for read critical sections—which in
this workload are executed with more than 99% probability.

As the rate of acquisition of the read write lock in exclusive
mode grows (see the center and right columns of Figure 9),
as expected, scalability decreases. In particular, the aborts’
breakdown of RW-LEPES highlights that writers executing
with ROTs suffer of non-negligible conflict rates: this sug-
gests that this workload generates high contention between
readers and writers, which in turn explains why scalability de-
grades as the percentage of writers increases. Further, in such
a conflict prone scenario, the optimistic variant of ALG suf-
fers of larger abort rates, which induce a small performance
penalty compared to RW-LEPES.

Yet, it is interesting to note that, even when faced with
such a challenging workload, both RW-LE variants continue
to outperform all other alternatives, achieving speed-ups
with a peak of approx. 2× with respect to the best alternative
scheme.
TPC-C. The last application we consider is TPC-C [31], a
well-known benchmark for relational database management
systems that generates OLTP workloads, representative of a
wholesale supplier. We ported the benchmark to operate on
an in-memory data store and, just like with STMBench7, we
replaced read-only transactions with a read critical section
and update transactions with a write critical section.

Figure 10 shows the results obtained when considering
three workloads that have, respectively, 1%, 10%, and 50%
of update transactions. Note that, to enhance visualization,
we report in this case speedups with respect to an execution
using one thread and a single mutex (SGL), and not absolute
performances6.

Also this benchmark confirms that RW-LE’s performances
excel in read-dominated workloads, while remaining com-
petitive even in write-intensive, and inherently non-scalable
workloads. In the read dominated workloads, both RW-LE
variants achieve gains that extend up to 6× over BRLock (the
best alternative synchronization scheme) and up to 36× over

6 This choice is due to the fact that, with the write-intensive workload,
absolute throughput drops by more than order of magnitude, hindering
visualization.

 0.1

 1

 10

 100

 16 32 64 80

1% write locks

S
p

e
e

d
u

p
 (

v
s
.

S
G

L
 1

 t
h

r.
)

 16 32 64 80

10% write locks

Number of threads

RW-LE
OPT

RW-LE
PES

 16 32 64 80

50% write locks

 HLE
 BRLock

 RWL
 SGL

 0

 20

 40

 60

 80

 100
1% write locks

A
b

o
rt

s
 (

%
)

HTM tx
HTM non-tx
HTM capacity
Lock aborts
ROT conflicts
ROT capacity

HLERW-LE
PES

RW-LE
OPT

10% write locks

Number of threads (1,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

50% write locks

HLERW-LE
PES

RW-LE
OPT

 0

 20

 40

 60

 80

 100
1% write locks

C
o

m
m

it
s
 (

%
)

HTM ROT SGL Uninstrumented

HLERW-LE
PES

RW-LE
OPT

10% write locks

Number of threads (1,4,8,16,32,64,80)

HLERW-LE
PES

RW-LE
OPT

90% write locks

HLERW-LE
PES

RW-LE
OPT

Figure 10: TPC-C: throughput, abort rate, and breakdown of
commit types.

HLE (at 80 threads, 1% write probability). Also in this case,
RW-LE’s benefits in read-intensive workloads derive from
its ability to execute readers uninstrumented. This is crucial
with this benchmark, in which read critical sections fall prey
of capacity exceptions in about 45% of the cases when using
HLE.

In the write intensive workload, none of the synchro-
nization mechanisms scale beyond 4 threads. Yet, RW-LE
emerges as the (relatively) most efficient solution, with aver-
age gains of 25% with respect to the second best alternative
(HLE). In this case, ROTs are crucial for RW-LE’s efficiency,
as they avoid capacity exceptions affecting update transac-
tions and alleviate the risk of conflicts among writers (given
that they are serialized).

5. Conclusion

In this paper we presented RW-LE, the first HLE approach
targeting read-write locks, which exploits POWER8 HTM
suspend/resume and rollback-only hardware transactions,
in order to provide two major benefits over HLE: i) read-
side critical sections execute without any instrumentation
or hardware speculation, and ii) write-side critical sections
use rollback-only hardware transactions to avoid tracking
memory reads.

By means of an extensive experimental study, we have
demonstrated that RW-LE can provide striking performance
gains, i.e., up to one order of magnitude speed-ups, with
respect to state of the art HLE approaches in a wide range of
workloads.

Our work shows that special hardware transactional fea-
tures, like rollback-only transactions and suspend/resume,
can be used in new and unexpected ways to improve hard-
ware lock elision, which deviate from their original intentions.
We hope that the introduction of RW-LE will motivate other
CPU manufacturers, besides IBM, to integrate such features
in their future CPU generations.

Acknowledgements
This work was supported by Portuguese funds through
Fundação para a Ciência e Tecnologia via projects
UID/CEC/50021/2013 and EXPL/EEI-ESS/0361/2013.

References
[1] ADL-TABATABAI, A.-R., KOZYRAKIS, C., AND SAHA, B.

Transactional programming in a multi-core environment. In
Proceedings of the 12th ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming (New York, NY,
USA, 2007), PPoPP ’07, ACM, pp. 272–272.

[2] AFEK, Y., LEVY, A., AND MORRISON, A. Software-
improved hardware lock elision. In ACM Symposium on Princi-
ples of Distributed Computing, PODC ’14, Paris, France, July
15-18, 2014 (2014), M. M. Halldórsson and S. Dolev, Eds.,
ACM, pp. 212–221.

[3] AFEK, Y., MATVEEV, A., AND SHAVIT, N. Reduced hardware
lock elision. 6th Workshop on the Theory of Transactional
Memory EuroTM WTTM 2014.

[4] AFEK, Y., MATVEEV, A., AND SHAVIT, N. Pessimistic
software lock-elision. In DISC (2012), M. K. Aguilera, Ed.,
vol. 7611 of Lecture Notes in Computer Science, Springer,
pp. 297–311.

[5] CAIN, H. W., MICHAEL, M. M., FREY, B., MAY, C.,
WILLIAMS, D., AND LE, H. Robust architectural support
for transactional memory in the power architecture. SIGARCH
Comput. Archit. News 41, 3 (June 2013), 225–236.

[6] CALCIU, I., SHPEISMAN, T., POKAM, G., AND HERLIHY,
M. Improved single global lock fallback for best-effort
hardware transactional memory. 9th ACM SIGPLAN Wkshp.
on Transactional Computing (2014).

[7] DICE, D., HARRIS, T. L., KOGAN, A., LEV, Y., AND MOIR,
M. Hardware extensions to make lazy subscription safe. CoRR
abs/1407.6968 (2014).

[8] DICE, D., KOGAN, A., LEV, Y., MERRIFIELD, T., AND

MOIR, M. Adaptive integration of hardware and software
lock elision techniques. In Proceedings of the 26th ACM
Symposium on Parallelism in Algorithms and Architectures
(New York, NY, USA, 2014), SPAA ’14, ACM, pp. 188–197.

[9] DIEGUES, N., AND ROMANO, P. Self-tuning intel transac-
tional synchronization extensions. In 11th International Con-
ference on Autonomic Computing, ICAC ’14, Philadelphia, PA,
USA, June 18-20, 2014. (2014), X. Zhu, G. Casale, and X. Gu,
Eds., USENIX Association, pp. 209–219.

[10] DIEGUES, N., ROMANO, P., AND RODRIGUES, L. Virtues and
limitations of commodity hardware transactional memory. In
Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation (New York, NY, USA, 2014),
PACT ’14, ACM, pp. 3–14.

[11] FAL LABS. Kyoto cabinet: A straightforward implementation
of DBM, 2011. http://fallabs.com/kyotocabinet/.

[12] GUAN, L., LIN, J., LUO, B., JING, J., AND WANG, J.
Protecting private keys against memory disclosure attacks
using hardware transactional memory. In Security and Privacy
(SP), 2015 IEEE Symposium on (May 2015), pp. 3–19.

[13] GUERRAOUI, R., KAPALKA, M., AND VITEK, J. Stmbench7:
A benchmark for software transactional memory. In Proceed-
ings of the 2Nd ACM SIGOPS/EuroSys European Conference
on Computer Systems 2007 (New York, NY, USA, 2007), Eu-
roSys ’07, ACM, pp. 315–324.

[14] HARRIS, T. L. A pragmatic implementation of non-blocking
linked-lists. In Proceedings of the International Conference on
Distributed Computing (DISC) (2001), pp. 300–314.

[15] HART, T. E., MCKENNEY, P. E., BROWN, A. D., AND

WALPOLE, J. Performance of memory reclamation for lockless
synchronization. J. Parallel Distrib. Comput. 67, 12 (2007),
1270–1285.

[16] IBM. Power ISA transactional memory, Dec. 2012. Version
2.07.

[17] JACOBI, C., SLEGEL, T., AND GREINER, D. Transactional
memory architecture and implementation for ibm system z. In
Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture (Washington, DC, USA,
2012), MICRO-45, IEEE Computer Society, pp. 25–36.

[18] JAVADOCS. Reentrant Read Write Lock. https:
//docs.oracle.com/javase/7/docs/api/java/util/
concurrent/locks/ReentrantReadWriteLock.html, 2016.

[19] JONATHAN CORBET. Big reader locks. http://lwn.net/
Articles/378911/, 2010.

[20] LE, H., GUTHRIE, G., WILLIAMS, D., MICHAEL, M., FREY,
B., STARKE, W., MAY, C., ODAIRA, R., AND NAKAIKE, T.
Transactional memory support in the ibm power8 processor.
IBM Journal of Research and Development 59, 1 (Jan 2015),
8:1–8:14.

[21] LIU, R., ZHANG, H., AND CHEN, H. Scalable read-mostly
synchronization using passive reader-writer locks. In 2014
USENIX Annual Technical Conference (USENIX ATC 14)
(Philadelphia, PA, June 2014), USENIX Association, pp. 219–
230.

[22] MATVEEV, A., SHAVIT, N., FELBER, P., AND MARLIER, P.
Read-log-update: A lightweight synchronization mechanism
for concurrent programming. In Proceedings of the 25th
Symposium on Operating Systems Principles (New York, NY,
USA, 2015), SOSP ’15, ACM, pp. 168–183.

[23] MCKENNEY, P. E. Memory ordering in modern microproces-
sors, part i. Linux Journal 2005, 136 (2005), 2.

[24] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-copy-
update: Using execution history to solve concurrency problems.
In Parallel and Distributed Computing and Systems (Oct.
1998), pp. 509–518.

http://fallabs.com/kyotocabinet/
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/locks/ReentrantReadWriteLock.html
http://lwn.net/Articles/378911/
http://lwn.net/Articles/378911/

[25] MCKENNEY, P. E., AND SLINGWINE, J. D. Read-Copy Up-
date: Using Execution History to Solve Concurrency Problems.
In Parallel and Distributed Computing and Systems (Las Vegas,
NV, Oct. 1998), pp. 509–518.

[26] NAKAIKE, T., ODAIRA, R., GAUDET, M., MICHAEL, M. M.,
AND TOMARI, H. Quantitative comparison of hardware trans-
actional memory for blue gene/q, zenterprise ec12, intel core,
and power8. In Proceedings of the 42Nd Annual International
Symposium on Computer Architecture (New York, NY, USA,
2015), ISCA ’15, ACM, pp. 144–157.

[27] RAJWAR, R., AND GOODMAN, J. R. Speculative lock
elision: Enabling highly concurrent multithreaded execution.
In Proceedings of the 34th Annual ACM/IEEE International
Symposium on Microarchitecture (Washington, DC, USA,
2001), MICRO 34, IEEE Computer Society, pp. 294–305.

[28] ROY, A., HAND, S., AND HARRIS, T. A runtime system for
software lock elision. In Proceedings of the 4th ACM European
Conference on Computer Systems (New York, NY, USA, 2009),
EuroSys ’09, ACM, pp. 261–274.

[29] SPEAR, M., RUAN, W., LIU, Y., AND VYAS, T. Case
study: Using transactions in memcached. In Transactional
Memory. Foundations, Algorithms, Tools, and Applications,
R. Guerraoui and P. Romano, Eds., vol. 8913 of Lecture Notes
in Computer Science. Springer International Publishing, 2015,
pp. 449–467.

[30] STEFFAN, J. G. Hardware Support for Thread-level Specula-
tion. PhD thesis, Pittsburgh, PA, USA, 2003. AAI3159472.

[31] TPC COUNCIL. TPC-C Benchmark. http://www.tpc.org/
tpcc, 2011.

[32] YOO, R. M., HUGHES, C. J., LAI, K., AND RAJWAR, R.
Performance evaluation of intel transactional synchronization
extensions for high-performance computing. In International
Conference for High Performance Computing, Networking,
Storage and Analysis, SC’13, Denver, CO, USA - November
17 - 21, 2013 (2013), W. Gropp and S. Matsuoka, Eds., ACM,
pp. 19:1–19:11.

[33] YOO, R. M., HUGHES, C. J., LAI, K., AND RAJWAR, R.
Performance evaluation of intel® transactional synchro-
nization extensions for high-performance computing. In Pro-
ceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis (New York, NY,
USA, 2013), SC ’13, ACM, pp. 19:1–19:11.

http://www.tpc.org/tpcc
http://www.tpc.org/tpcc

	Introduction
	Related Work
	The RW-LE Algorithm
	Basic Algorithm
	Complete Algorithm with Fallback Paths
	Discussion

	Evaluation
	Sensitivity Study
	Complex Applications

	Conclusion

