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Abstract
Because of hardware TM limitations, software fallbacks are
the only way to make TM algorithms guarantee progress.
Nevertheless, all known software fallbacks to date, from
simple locks to sophisticated versions of the NOrec Hybrid
TM algorithm, have either limited scalability or weakened
semantics.

We propose a novel reduced-hardware (RH) version of
the NOrec HyTM algorithm. Instead of an all-software slow
path, in our RH NOrec the slow-path is a “mix” of hard-
ware and software: one short hardware transaction executes
a maximal amount of initial reads in the hardware, and the
second executes all of the writes. This novel combination of
the RH approach and the NOrec algorithm delivers the first
Hybrid TM that scales while fully preserving the hardware’s
original semantics of opacity and privatization.

Our GCC implementation of RH NOrec is promising
in that it shows improved performance relative to all prior
methods, at the concurrency levels we could test today.

Categories and Subject Descriptors C.1.4 [Computer Sys-
tem Organization]: Parallel Architectures; D.1.3 [Software]:
Concurrent Programming

General Terms Algorithms, Design

Keywords Transactional Memory

1. Introduction
Transactional memory (TM) is an alternative to using locks
for shared-memory synchronization. In TM, the program-
mer marks code regions as transactions, and the TMs inter-
nal implementation ensures a consistent execution of those
regions. Transactions provide external consistency, that is,
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a transaction can successfully commit only when it can be
totally ordered relative to other (possibly concurrent) trans-
actions without violating their real time order. This is the
safety property called serializability. Transactions also pro-
vide internal consistency: a transaction cannot see inconsis-
tent views of the system state, that is, ones that result from
intermediate modifications of another transaction, since this
may cause the current transaction to fail unexpectedly or en-
ter an infinite loop. Internal consistency is captured by the
safety properties opacity [13] and privatization [17]. Opac-
ity, which we will refer to many times in this paper, is the
property that every transaction sees a snapshot of all the
variables it accesses at any time. Given internal and exter-
nal consistency, the programmer can think of a transaction
as one ”atomic” (i.e. indivisible) sequence of operations.

Hardware transactional memory (HTM) is currently sup-
ported by the mainstream Intel Haswell [14, 21] and the IBM
Power8 [3] processors. Intel and IBM provide best-effort
HTM implementations that are much faster than software
transactions, providing serializability, opacity, and privatiza-
tion, but not providing any progress guarantee. CPU cache
capacity limitations, interrupts, page faults, system calls or
unsupported instructions, may all cause a hardware trans-
action to repeatedly fail. To overcome this problem, a soft-
ware fallback (a slow-path) is provided for the cases when
the hardware transaction (the fast-path) fails. The ability to
fall back to the slow-path allows one to provide some form
of progress guarantee. The simplest of these software fall-
backs is a lock, which provides progress and provides all of
the hardware’s internal and external consistency properties.
However, the lock serializes all of the software and hardware
attempts to complete the transaction, and therefore does not
scale.

Thus, developers have been looking for alternative soft-
ware slow-paths that will scale while providing all the con-
sistency properties of the hardware. The approach of choice
is hybrid transactional memory (HyTM), in which the slow
path is a software transaction that can run concurrently with
the hardware ones. Preserving internal consistency, in par-
ticular opacity and privatization, in the software slow-path,
requires complex coordination protocols that impose non-



trivial penalties on the more common hardware fast-path.
This is the limitation recent HyTM research is trying to over-
come, and for which our new algorithm provides what we
believe is the most complete and scalable solution to date.

1.1 HyTM Background
The first HyTM [8, 15] algorithms supported concurrent
execution of hardware and software transactions by instru-
menting the hardware transactions’ shared reads and writes
to check for changes in the software path’s metadata. This
approach, which is the basis of all the generally applicable
HyTM proposals, imposes severe overheads on the hardware
transaction.

One way to overcome these overheads is through a
PhasedTM [16] approach: transactions are executed in phases,
each of which is either all hardware or all software. This ap-
proach performs well when all hardware transactions are
successful, but has poor performance if even a single trans-
action needs to be executed in software because it must
switch all transactions to a slower all-software mode of ex-
ecution. This is a good approach for some workloads, but
in others it is not clear how to overcome frequent switches
between phases.

The leading HyTM algorithm to-date is the Hybrid NOrec
HyTM of Dalessandro et al. [7], a hybrid version of the
Norec STM of Dalessandro, Spear, and Scott [6]. In this al-
gorithm, the commits of write transactions are executed se-
quentially, and a shared global clock is used to notify con-
current transactions about the updates to memory. The write
commits trigger the necessary re-validations and aborts of
the concurrently executing transactions. The great benefit the
NOrec HyTM scheme over prior HyTM proposals is that no
metadata per memory location is required and instrumenta-
tion costs are reduced significantly. However, it suffers from
limited scalability because it uses a shared clock to ensure
serializability and opacity. All hardware transactions must
read the clock when they start, which adds this clock loca-
tion to the HTMs tracking set and causes them to frequently
abort; essentially every time the clock gets updated by a soft-
ware slow-path transaction that writes.

Riegel et al. [19] were aware of this drawback of the
Hybrid NOrec algorithm and suggested a way to reduce
these overheads by using non-speculative operations inside
the hardware transactions. These operations are supported
by AMD’s proposed ASF transactional hardware [5] but are
not supported in the best-effort HTMs that Intel and IBM are
bringing to the marketplace 1 .

The original authors of the NOrec HyTM, and the re-
cent work by Calciu et al. [4], both state that it is a chal-
lenging task to improve the scalability of the NOrec HyTM
on existing architectures unless one gives up opacity. They

1 IBM Power8 supports a suspend-resume feature that allows to execute
non-speculative operations in hardware transactions. The problem is that
suspend-resume is intended for debugging and is expensive to use. It cannot
be used frequently, for every shared read and write.

thus propose to sacrifice opacity by implementing efficient
but unsafe HyTM protocols that allow non-opaque hardware
transactions, ones that may read inconsistent system states.
The idea is to use the built-in HTM sandboxing mechanisms
to protect non-opaque hardware transactions from runtime
errors. If the inconsistent hardware transaction performs a
“bad” action that causes it to abort, the hardware together
with the runtime can detect and recover from the error. The
problem with HTM sandboxing is that it does not protect
from all possible errors. The authors identify a set of pos-
sible scenarios in which transactions might still incorrectly
commit in an inconsistent state, and suggest how they can be
handled by extending compiler and runtime support.

However, recent work by Dice et al. [10] identifies many
additional scenarios of bad executions that escape the HTM
sandboxing mechanism. These additional cases rise con-
cerns about the HTM sandboxing approach since on existing
hardware they would require a much more complex com-
piler and runtime support to be handled, overshadowing the
advantages of using HTM sandboxing in the first place. Fig-
uring out what hardware modifications and new algorithms
would make sandboxing a viable approach is an interesting
topic for future research.

We henceforth focus on the performance of HyTM algo-
rithms that can provide the same consistency properties as
pure hardware transactions on todays new commodity mul-
ticore architectures.

1.2 The RH Approach
In a recent paper, we proposed the reduced hardware ap-
proach to HyTM design [18] as a way of minimizing the
overhead of the hardware fast-path without restricting con-
currency between hardware and software transactions. The
idea was that instead of the all-software slow-path used in
HyTMs, part of the slow-path will be executed using a re-
duced size hardware transaction, making the slow path a
software-hardware mixed slow-path. To show the benefit of
this approach [18], we proposed a reduced hardware ver-
sion of the classic TL2 STM of Dice, Shalev and Shavit [9].
The RH-TL2 algorithm eliminated the instrumentation over-
heads of the shared reads from the hardware fast-path, and
therefore provided a more efficient HyTM fast-path which
improved on all prior TL2-style HyTM algorithms. How-
ever, there still remain several fundamental problems with
the RH-TL2 algorithm which this paper sets out to solve:

• The RH-TL2 fast-path required instrumentation:
There was no need to instrument the hardware fast-path
reads, but there was a need to instrument its writes and
update the software metadata for every write location
of the fast-path before it performs the HTM commit.
Though reads are more frequent than writes, this was still
far from the performance of having a fully pure uninstru-
mented hardware transaction.



• The RH-TL2 mixed slow-path had high chances of
failure: The mixed slow-path small hardware transac-
tion required a verification phase of the read locations
before their write-back. As a result, the chances of the
small hardware transaction failing were still high since it
included both the read and write locations in HTM.
• The RH-TL2 algorithm did not provide privatiza-

tion: Privatization [17] is a feature provided by hard-
ware transactions, guaranteeing that the modifications
of ongoing transactions are not visible to correctly syn-
chronized non-transactional operations. This would be a
serious limitation if the algorithm were to be deployed in
a commercial setting.

1.3 Our New Reduced Hardware NOrec Algorithm
In this paper, we show how to apply the RH approach of [18]
to the NOrec HyTM algorithm, resulting in a new HyTM
algorithm that overcomes all the drawbacks of RH TL2
mentioned above, and more importantly, all the scalability
limitations of the NOrec HyTM. It provides the first scalable
HyTM that has complete internal and external consistency;
the same as a pure hardware TM.

Our RH NOrec algorithm, which we describe in detail
in the next section, uses two short hardware transactions
in the mixed slow-path, to eliminate NOrec HyTM scala-
bility bottlenecks. Both of these bottlenecks are caused by
reading of the shared clock too early. In one case too early
in the hardware fast-path, and in the other too early in the
software slow-path. We execute two hardware transactions,
in the mixed slow path, to overcome these problems. One
hardware transaction encapsulates all the slow path writes at
commit point and executes them all together. This change
to the mixed software slow-path enables the fast-path hard-
ware transaction to read the shared NOrec clock at the end
of the transaction, just before committing, instead of read-
ing it when it starts, avoiding the frequent false-aborts of the
original Hybrid NOrec. The other hardware transaction, in
the mixed slow path, executes the largest possible prefix of
slow-path reads in a hardware transaction. In other words, it
starts the mixed slow-path with a hardware transaction, and
as long as it does not encounter a write it keeps on execut-
ing in hardware. This hardware prefix allows us to defer the
reading of the global clock in the mixed slow-path itself to
the end of the sequence of reads, which as we will explain,
significantly reduces the chances it will have to restart. We
believe it is algorithmically surprising that with the hardware
support in the mixed path, moving the clock-reads back pre-
serves opacity, enables a pure uninstrumented fast-path, and
allows full privatization as in the original Hybrid NOrec al-
gorithm. Finally, we note that if the mixed slow-path fails to
commit, the algorithm reverts to the original Hybrid NOrec.

We integrated our new RH NOrec HyTM into the GCC
compiler, and performed empirical testing on 16-way Intel
Haswell processor. Though one must be cautious given the

limited concurrency we could test, our results are rather
encouraging: we show that RH NOrec is able to reduce
the number of HTM conflicts from 8-20 fold compared to
NOrec HyTM for the RBTree microbenchmark, and 2-5 fold
for the STAMP applications. Though the reduction in HTM
conflicts does not always lead to better throughput results
(sometimes the dominant factor is the level of HTM capacity
aborts, and sometimes the HTM conflicts are already very
low, so reducing them more does not make too much of
a difference), in benchmarks that suffer from high HTM
conflict rates, RH-NOrec shows a significant improvement
over the best previous schemes.

2. Reduced Hardware NOrec
We begin by explaining the Hybrid NOrec algorithm on
which RH NOrec is based.

2.1 Hybrid NOrec Overview
The original NOrec STM, that is, the all software one, coor-
dinates transactions based on a global clock that is updated
every time a write transaction commits, and also serves as a
global lock. It keeps a read set and a write set, that is, logs of
all the locations read and written, and their values. A trans-
action reads the global clock value when it starts, and stores
it in a local clock variable. To perform a read, the transac-
tion (1) reads the location, (2) logs its value to a read-set
log, and (3) performs a consistency check that ensures opac-
ity: it checks that the local clock value is the same as the
global clock value. If the clocks differ, then it means that
some writer has committed and maybe even overwrote the
current transaction. Thus, the current transaction must per-
form a full read-set revalidation in order to rule out a possi-
ble overwrite. To execute a write, the NOrec algorithm can
work in two possible ways: (1) write to a local write-set, de-
ferring the writes to the commit, or (2) write directly to the
memory. In both cases, to ensure opacity, the NOrec algo-
rithm locks the global clock before making the actual mem-
ory writes (when they are encountered or eventually when
commiting), and releases it after the actual writes are done.
While the global clock is locked, other transactions are de-
layed, spinning until it is released.

The original Hybrid NOrec has each transaction start
to execute in hardware, and if it repeatedly fails to com-
mit, it falls back to executing the NOrec STM in software.
Of course, one must coordinate among the hardware and
software to guarantee serializability and opacity. Figure 1
presents a problematic scenario in a hybrid TM execution
that one must solve in order to provide opacity. The sce-
nario is a concurrent execution of one hardware fast-path
transaction and one software slow-path transaction. We omit
many of the hybrid protocol’s details and focus only on di-
rect memory reads and writes. In the scenario, the slow-path
updates shared variables X and Y and the fast-path reads X
and Y. Now, if the slow-path updates X, and before it updates
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Figure 1. The problematic scenario that a hybrid protocol
must handle to provide opacity.

Y, the fast-path reads X and Y, then the fast-path has now a
view of a new X and an old Y relative to the slow-path trans-
action, which is an inconsistent memory view. To avoid this
problem, in Hybrid NOrec, when a hardware fast-path trans-
action starts, it reads the global clock in hardware and veri-
fies it is not locked. Thus, the hardware tracks the clock loca-
tion from the very start of its execution and will abort when-
ever any software slow-path that writes to memory locks the
global clock to perform its actual memory writes. This cre-
ates many false-aborts: aborts by software threads writing to
completely unrelated locations.

The way to overcome this problem is to move the verifi-
cation of the global clock from the start of the hardware fast-
path to its end, eliminating the excessive false-aborts. How-
ever, as mentioned earlier, doing so in the Hybrid NOrec al-
gorithm requires perfect HTM sandboxing to protect against
the inconsistent executions that may corrupt memory and
crash the program. Such sandboxing unfortunately does not
exist.

2.2 RH NOrec Overview
We now explain our new RH NOrec algorithm. In this algo-
rithm we will move the access and verification of the global
clock back in both the hardware and software transactions,
while maintaining consistency. We will do so by adding two
small hardware transactions to the software slow-path of the
Hybrid NOrec. The new slow-path executes using both hard-
ware and software, so we call it the mixed slow-path.

The first hardware transaction is HTM postfix. It encap-
sulates all the mixed slow path writes and executes them
in one hardware transaction. Executing the writes as an
atomic hardware transaction guarantees the fast-path hard-
ware transaction cannot see partial writes of the mixed slow-
path, and this enables the fast-path to read the shared NOrec
clock at the end of the transaction, just before committing,
instead of reading it when it starts. Figure 2 depicts this
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Figure 2. The RH NOrec provides opacity and concurrency
between the fast-path and the slow-path by encapsulating the
writes in the HTM.

change and shows how it solves the problematic scenario of
the previous Figure 1. Recall, the issue is that the the slow-
path may update X, and before it updates Y, the fast-path
may read X and Y, where X is new and Y is old relative
to the slow-path execution. In the new algorithm, the mixed
slow-path writes X and Y together in the HTM postfix trans-
action, so any concurrent hardware fast-path transaction will
see a consistent view.

The second hardware transaction is HTM prefix. It tries to
execute the largest possible prefix of mixed slow-path reads
in a single hardware transaction. In other words, it starts the
mixed slow-path with a hardware transaction, and as long
as it does not encounter a write it keeps on executing in
hardware. The HTM prefix uses the HTM conflict-detection
mechanism to detect overwrites of the slow-path reads. This
replaces the reading of the shared NOrec clock on the mixed
slow-path and validating that it is still the same for each
read. In this way, the RH NOrec algorithm defers the read
of the shared NOrec clock to the commit point of the HTM
prefix, significantly reducing the execution window during
which it is possible to abort the mixed slow-path. To make
this approach efficient and reduce the false-abort window
as much as possible, the length of the HTM prefix adjusts
dynamically during the runtime, based on the HTM abort
rate feedback, so that the largest amount of mixed slow-path
reads can execute in the hardware.

Figure 3 shows an execution example of the RH NOrec
mixed slow-path with the two small hardware transactions.
The figure presents two fast-path hardware transactions and
a one mixed slow-path transaction that are able to execute
concurrently (assume no real conflicts) and preserve opacity.
The mixed slow-path starts by executing its first reads in
the HTM prefix hardware transaction. The first fast-path
transaction has this advantage: it executes concurrently with
the mixed slow-path HTM prefix, and performs a commit
and update of the global clock without forcing the mixed
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Figure 3. Execution example of RH NOrec that reveals the
concurrency advantages of using small hardware transac-
tions in the mixed slow-path: the HTM prefix, for the first
reads, and the HTM postfix, for all of the writes. The fig-
ure presents two fast-path hardware transactions and a one
mixed slow-path transaction, that are able to execute con-
currently and preserve opacity.

slow-path to restart. When the HTM prefix commits, it reads
the global clock to a local clock variable and proceeds to
execute the rest of the reads in the software. Upon the first
mixed slow-path write, it starts the HTM postfix hardware
transaction, and this executes concurrently with the second
fast-path transaction. When the HTM postfix commits, it
updates the global clock without aborting the second fast-
path, and later the fast-path commits successfully.

Finally, when some mixed slow-path small hardware
transaction repeatedly fails to commit, the RH NOrec mixed
slow-path reverts back to the Hybrid NOrec full software
slow-path counterpart. For the HTM prefix, it reads the
shared NOrec clock on the slow-path start and validates it is
still the same for each read. For the HTM postfix, it aborts
all current hardware transactions and executes the writes in
the software.

2.3 RH NOrec Algorithm
For clarity, in this section we present a mixed slow-path that
uses only the HTM postfix transaction, that encapsulates the
writes. In the next section, we add the necessary modifi-
cations to support the second, HTM prefix short hardware
transaction.

Algorithm 1 and Algorithm 2 show the pseudo-code for
the hardware fast-path and the mixed slow-path.

The hybrid protocol coordinates fast-paths and slow-
paths by using three global variables:

1. global clock: Implements the conflict-detection mecha-
nism. Every hardware fast-path increments the clock be-

Algorithm 1 RH NOrec hardware fast-path transaction
1: function FAST PATH START(ctx)
2: label: retry
3: HTM Start()
4: if HTM failed then

. Handle HTM abort
5: ... retry policy ...
6: if no retry then
7: fallback to mixed slow-path
8: end if
9: goto retry

10: end if
. HTM started; subscribe to HTM lock

11: if global htm lock 6= 0 then
12: HTM Abort()
13: end if
14: end function
15:
16: function FAST PATH READ(ctx, addr)

. no instrumentation - simple load
17: return load(addr)
18: end function
19:
20: function FAST PATH WRITE(ctx, addr, value)

. no instrumentation - simple store
21: store(addr, value)
22: end function
23:
24: function FAST PATH COMMIT(ctx)
25: if HTM is read only then

. Detected by compiler static analysis
26: HTM Commit()
27: return
28: end if
29: if num of fallbacks > 0 then

. Notify mixed slow-paths about the update
30: if is locked(global clock) then
31: HTM Abort()
32: end if
33: global clock ← global clock + 1
34: end if
35: HTM Commit()
36: end function

fore it commits to notify mixed slow-paths about the
memory update, and every mixed slow-path does the
same to notify other mixed slow-paths.

2. global htm lock: Allows to abort all hardware fast-paths
when the hardware component of the mixed slow-path
fails. Every fast-path subscribes to the htm lock by read-
ing it and verifying it is free on its start. This allows a
failed mixed slow-path to abort all of them by setting the
htm lock, and execute the mixed slow-path writes as is
(in full software) while still ensuring opacity.

3. num of fallbacks: Represents the current number of
mixed slow-paths. Hardware fast-paths use this counter



Algorithm 2 RH NOrec mixed slow-path transaction that supports only HTM postfix.
1: function MIXED SLOW PATH START(ctx)
2: atomic fetch and add(num of fallbacks, 1)
3: ctx.is write detected← 0
4: ctx.tx version← global clock
5: if is locked(ctx.tx version) then
6: restart(ctx)
7: end if
8: end function
9:

10: function MIXED SLOW PATH READ(ctx, addr)
11: cur value← load(addr)
12: if ctx.tx version 6= global clock then
13: restart(ctx)
14: end if
15: return cur value
16: end function
17:
18: function MIXED SLOW PATH WRITE(ctx, addr, value)
19: if ¬ctx.is write detected then
20: handle first write(ctx)
21: end if
22: store(addr, value)
23: end function
24:
25: function HANDLE FIRST WRITE(ctx)

. Lock the clock and start HTM. If the HTM fails, then set
the HTM lock to abort all hardware fast-paths.

26: ctx.is write detected← 1
27: acquire clock lock(ctx)
28: if ¬ start rh htm postfix(ctx) then
29: global htm lock ← 1
30: end if
31: end function
32:
33: function START RH HTM POSTFIX(ctx)
34: label: retry
35: HTM Start()
36: if HTM failed then
37: ... retry policy ...

38: if no retry then
39: return false
40: end if
41: goto retry
42: end if
43: ctx.is rh active← true
44: return true
45: end function
46:
47: function ACQUIRE CLOCK LOCK(ctx)
48: new ← set lock bit(ctx.tx version)
49: expected← ctx.tx version
50: is locked← atomic CAS(global clock, expected, new)
51: if ¬is locked then
52: restart(ctx)
53: end if
54: ctx.tx version← new
55: return true
56: end function
57:
58: function MIXED SLOW PATH COMMIT(ctx)

. If read-only, then do nothing
59: if ¬ctx.is write detected then
60: atomic fetch and sub(num of fallbacks, 1)
61: return
62: end if

. If RH is on, then commit it
63: if ctx.is rh active then
64: HTM Commit()
65: ctx.is rh active← false
66: end if

. If HTM lock is taken, then release it
67: if global htm lock 6= 0 then
68: global htm lock ← 0
69: end if

. Update the clock: clear the lock bit and increment
70: global clock ← clear lock bit(global clock) + 1
71: atomic fetch and sub(num of fallbacks, 1)
72: end function

to avoid updating the global clock when there is no slow-
path executing.

Algorithm 1 shows the hardware fast-path implementa-
tion. On start, it initiates a hardware transaction (line 3)
and subscribes to the global htm lock (line 11). If the HTM
fails, the abort handling code (lines 4 - 9) executes and de-
cides when to perform the fallback. During the HTM execu-
tion, reads and writes execute without any instrumentation
(line 17 and 21), making them as efficient as pure HTM.
Upon commit, a read-only HTM commits immediately. Oth-
erwise, the HTM checks if there are mixed slow-path fall-
backs, and if there are, then it increments the global clock
to notify the fallbacks about the writer. It then commits the
hardware transaction (lines 29-35). The detection of read-

only fast-paths is currently based on the GCC compiler static
analysis that provides this information to the GCC TM li-
brary.

Algorithm 2 shows the mixed slow-path implementation
that uses only the HTM postfix short hardware transaction.
Upon start, it increments the fallback counter, sets the writer
detection flag to 0, and reads the global clock to a local vari-
able called tx version (lines 2 - 7). During the mixed slow-
path execution, the reads and writes are performed directly
to/from the memory. To execute a read, it loads the mem-
ory location, and then verifies that global clock version is
still the same as the local version. If there is a change, then
this means that some write transaction committed, possibly
overwriting the current transaction, and therefore the current
transaction restarts (lines 11 - 15). To execute a write, it first



Algorithm 3 RH NOrec mixed slow-path transaction that supports both HTM prefix and HTM postfix.
1: function MIXED SLOW PATH START(ctx)
2: if start rh htm prefix(ctx) then
3: return
4: else
5: ... original code (of Algorithm 2) ...
6: end if
7: end function
8:
9: function START RH HTM PREFIX(ctx)

10: label: retry
11: HTM Start()
12: if HTM failed then
13: ... retry policy and prefix length adjustment ...
14: if no retry then
15: return false
16: end if
17: goto retry
18: end if
19: ctx.is rh prefix active← true

. HTM prefix started; subscribe to HTM lock
20: if global htm lock 6= 0 then
21: HTM Abort()
22: end if

. Set the prefix expected length
23: ctx.max reads← ctx.expected length
24: ctx.prefix reads← 0
25: return true
26: end function
27:
28: function MIXED SLOW PATH READ(ctx, addr)
29: if ctx.is rh prefix active then
30: ctx.prefix reads← ctx.prefix reads+ 1
31: if ctx.prefix reads < ctx.max reads then

32: return load(addr)
33: else
34: commit rh htm prefix(ctx)
35: end if
36: end if
37: ... original code (of Algorithm 2) ...
38: end function
39:
40: function MIXED SLOW PATH WRITE(ctx, addr, value)
41: if ctx.is rh prefix active then
42: commit rh htm prefix(ctx)
43: end if
44: ... original code (of Algorithm 2) ...
45: end function
46:
47: function COMMIT RH HTM PREFIX(ctx)
48: num of fallbacks← num of fallbacks+ 1
49: ctx.is write detected← 0
50: ctx.tx version← global clock
51: if is locked(ctx.tx version) then
52: HTM Abort()
53: end if
54: HTM Commit()
55: ctx.is rh prefix active← false
56: end function
57:
58: function MIXED SLOW PATH COMMIT(ctx)
59: if ctx.is rh prefix active then
60: HTM Commit()
61: return
62: end if
63: ... original code (of Algorithm 2) ...
64: end function

checks if this is the first write (line 19). If so, it sets the writer
detected flag to 1, and then locks the global clock by atom-
ically (1) setting its lock-bit to 1 and (2) verifying that the
global clock is still the same as the local clock (line 26 and
lines 48 - 55). Then, it initiates a hardware transaction that is
going to perform the rest of the transaction, which includes
all of its writes. If this hardware transaction fails to commit,
then it sets the global htm lock, aborting all current hard-
ware fast-paths, and executes the rest of the transaction as is,
with the software NORec algorithm providing full opacity
(lines 28 - 30). Upon commit, it checks if the transaction is
read-only. If so, then it decrements the fallback counter and
it is done (lines 59 - 62). Otherwise, it commits the writes’
hardware transaction if it is active, and then releases all locks
being held and decrements the fallback counter (lines 63 -
71).

2.4 Reducing Mixed Slow-Path Restarts
In the mixed slow-path using an eager approach (that writes
in place as opposed to maintaing a write set that is written

upon commit) is lightweight and efficient: It has no read-
set or write-set logging and performs direct memory reads
and writes. However, eliminating the write-set logs forces a
mixed slow-path restart every time the global clock is up-
dated by a concurrent write transaction. In this section, we
significantly reduce the amount of these restarts by extend-
ing the mixed slow-path to use the second, HTM prefix, short
hardware transaction.

A mixed slow-path may perform a restart in any point be-
tween the start of the transaction and its first shared memory
write. This is because the mixed slow-path reads the global
clock upon starting, and only locks it on the first write. So
the initial reads, the ones before the first write, execute with a
consistency check that may result in a restart. The idea of the
HTM prefix short hardware transaction is to execute maxi-
mal amount of these reads in the HTM, which effectively
eliminates the need to read the global clock on the start and
allows to defer it to the commit point of the HTM prefix.
To make this effective, the length of the HTM prefix adjusts
dynamically based on the HTM abort feedback: at first, the



algorithm tries to execute a long prefix, and if this fails to
commit in the hardware, then it reduces the length until it
finds the right length that will commit with high probability
(the adjustment algorithm is similar to that used in [2]).

Algorithm 3 shows modified mixed slow-path that sup-
ports the HTM prefix hardware transaction. Upon start, it
initiates the prefix hardware transaction (lines 2 - 3). If it
fails, then it executes the original start code (of Algorithm 2),
and otherwise it skips the original code and proceeds in
the HTM. The prefix initiation procedure is implemented in
the start rh htm prefix function. It starts a hardware trans-
action, sets the is rh prefix active flag to 1, subscribes to
the global htm lock to ensure opacity (in a similar way
to the fast-paths), and initializes the prefix length parame-
ters (lines 10 - 25). The algorithm adjusts the prefix max-
imum length (line 13), according to the HTM aborts feed-
back, and enforces it by counting the number of reads exe-
cuted (lines 29 - 36). When the maximum number of reads
is reached, or a first write is encountered (lines 41 - 43),
the HTM prefix executes the commit procedure (lines 48 -
55). This essentially performs the original start code includ-
ing the initialization of the local version variable. Finally,
if none of the threshold conditions are met, and the HTM
prefix reaches the mixed slow-path commit, then it simply
commits the transaction and returns (lines 59 - 62).

3. Performance Evaluation
We integrated the new RH NOrec algorithm and the original
Hybrid NOrec algorithm into the GCC 4.8 compiler. GCC
4.8 provides language-level support for transactional mem-
ory (GCC TM) based on the draft specification for C++ of
Adl-Tabatabai et. al [1].

The GCC TM compiler generates two execution paths
for each GCC transaction: (1) a pure uninstrumented fast-
path and (2) a fully instrumented slow-path. In the second
path, every shared read and write is replaced with a dy-
namic function call to the libitm runtime library that provides
an implementation for the various TM algorithms. In addi-
tion, the compiler instrumentation provides the libitm library
with runtime hints about the code read-write, write-write
and write-read dependencies, and allows the libitm library
to identify static read-only transactions. In our implementa-
tions, we use all these hints to improve the performance of
the Hybrid TMs in the same way as the original libitm library
uses the hints to improve the performance of the STMs.

3.1 TM Algorithms
We tested the performance of the following GCC TM algo-
rithms:

Lock Elision: Transactions execute in pure hardware, using
the RTM Haswell mechanism [14], and if a transaction
fails to commit in hardware, then it acquires the global
lock, which aborts all hardware transactions and serial-
izes the execution to ensure progress.

NOrec: All transactions execute as software NOrec [6]
transactions with eager encounter-time writes. Upon a
first write, a transaction locks the global clock and per-
forms the subsequent writes directly to the memory.
In order to perform a read, a transaction reads from
the memory and verifies consistency. In this version of
NOrec, there are no read-set or write-set logging proce-
dures, so a transaction must restart when a write trans-
action commits. We also implemented the lazy design
of NOrec that does require read-set and write-set log-
ging, but we found that for the low concurrency in our
benchmarks, the eager NOrec design delivers better per-
formance.

TL2: All transactions execute in software following the TL2
[9] algorithm with eager encounter-time writes. To write,
a transaction locks the metadata of the write location, and
performs a direct memory write. To read, it logs the loca-
tion in the read-set, reads it from the memory, and verifies
the associated metadata. Upon commit, it revalidates the
read-set, and if successful, releases the locks while ad-
vancing the global clock. The TL2 STM imposes high
constant overheads, but provides better scalability than
the NOrec STM because it uses per location metadata for
conflict-detection.

HY-NOrec: The NOrec HyTM algorithm of Dalessandro
et. al [7]. The coordination between the hardware fast-
path and the software slow-path tries to avoid as many
false-aborts as possible. To achieve this, the coordination
protocol uses 3 global variables: (1) global htm lock, (2)
global NOrec clock, and (3) fallback count. A hardware
fast-path reads the global htm lock upon start and veri-
fies it is free. In the fast-path commit, it increments the
global clock only if the fallback count is not 0. The soft-
ware slow-path executes the eager encounter-time NOrec
STM, which aborts all of the fast-paths only when the
first write is encountered, by setting the global htm lock.
As explained above in the case of NOrec, we found this
eager HyTM design outperforms the lazy HyTM design
for the low concurrency levels available in our bench-
marks.

RH-NOrec: This is our new hybrid TM as described in
Section 2.

3.2 Execution Environment
In our benchmarks, we use the 16-way Intel Core i7-5960X
Haswell processor: It has 8-cores and provides support for
HyperThreading of two hardware threads per core. The new
Haswell chip RTM system provides support for hardware
transactions that can fit into the capacity of the L1 cache.
As an optimization, the hardware internally uses bloom fil-
ters for the read-sets and write-sets, so it can also provide
larger read-only hardware transactions that can fit into the
capacity of the L2 cache. It is important to notice that the
HyperThreading reduces the L1 cache capacity for HTM by



a factor of 2, since it executes two hardware threads on the
same core (same L1 cache). As a result, in many bench-
marks there are significant penalties above the limit of 8
threads, where the HyperThreading executes and generates
an increased amount of HTM capacity aborts.

The operating system we use is a Debian OS 3.14 x86 64
with GCC 4.8. All of the benchmarks are compiled with an
O3 optimization level and inlining enabled. We found that
the malloc/free library provided with the system does not
scale and imposes high overheads and many false aborts
on the HTM mechanism. We thus switched to the scalable
tc-malloc [12] memory allocator that maintains per thread
memory pools and provides good performance inside the
HTM transactions. The GCC libitm library was modified to
include the new Hybrid TMs and compiled with the default
parameters.

3.3 Retry Policy
Both Hybrid NOrec and RH Norec use the same static retry
policy, that we found to perform well for most of the bench-
marks. In the next paragraphs, we describe the retry algo-
rithm for the fast-path and the slow-path. Note that for Lock
Elision only the fast-path applies.

Fast-path: When a hardware fast-path transaction aborts,
the protocol checks the HTM abort flags to see the reason
for the abort. If the HTM flags indicate that retrying in the
hardware may help (the flag NO RETRY is false), then the
transaction restarts in the hardware. Otherwise it falls back to
the software slow-path. The maximum number of hardware
restarts we allow is 10, after which the transaction falls back
to the software. The effect of this policy is that capacity
aborts immediately go to the software, while conflict aborts
retry many times in the hardware, giving the hardware a
chance to complete as many transactions as possible.

Slow-path: The slow-path of the Hybrid TMs may starve
when there are many frequent fast-path write transaction
commits: each such commit updates the clock, and this
forces a slow-path restart. Note that this starvation scenario
is less likely for the RH NOrec, but still may happen when
the HTM prefix fails. Therefore, to avoid this and ensure
progress, we use a special serial lock to serialize the exe-
cution of the problematic slow-paths: each slow-path that
restarts too often acquires this special lock when it starts,
and releases it when it is done. In turn, the HTM fast-paths,
that need to increment the global clock (writers), check this
lock and abort when it is taken. We set the slow-path restart
limit to be 10, since we found this limit to provide the best
overall results for most of the benchmarks.

A recent paper [11] presents a dynamic-adaptive retry
policy for lock elision schemes. Implementing a dynamic
retry policy for Hybrid TMs is an interesting and important
topic for future work.

3.4 Mixed Slow-Path HTM Details
The RH NOrec mixed slow-path uses two small hardware
transactions: one is the HTM prefix that executes the first part
of the mixed slow-path and reduces the software restarts, and
another is the HTM postfix that performs the memory writes
and allows the hardware fast-paths to execute concurrently.
We found out that the best retry policy for these small HTMs
is to try each one only once before using the full software
counterpart. This is because many retries increase the execu-
tion time of the mixed slow-path, and generate more cache
pressure on the HTM fast-paths.

3.5 Red-Black Tree Microbenchmark
The red-black tree we use is derived from the java.util.TreeMap
implementation found in the Java 6.0 JDK. The red-black
tree benchmark exposes a key-value pair interface of put,
delete, and get operations, and allows to control the (1) tree
size and the (2) mutation ratio (the fraction of write trans-
actions). Each run executes for 10 seconds, and reports the
total number of operations completed.

The left to right columns in Figure 4 present results for a
10,000 node red-black tree with 4%, 10% and 40% mutation
ratios. The first row (from the top) shows the throughput of
the various algorithms, while the next rows present an in-
depth execution analysis of the Hybrid NOrec and the RH
NOrec. The second row shows (1) the average number of
HTM conflict and capacity aborts per completed operation.
The third row shows the (2) average number of restarts per
slow-path transaction. The fourth row shows the (3) slow-
path ratio: the relative number of transactions that failed in
the fast-path and made it fall back to the slow-path. The fifth
row shows (4) the success ratios of the two small hardware
transactions that are used by the RH NOrec mixed slow-
path: the HTM prefix that reduces the slow-path restarts, and
the HTM postfix that includes the memory writes to allow
concurrent fast-path executions.

In Figure 4, we can see that the high instrumentation
costs of STMs make them much slower than the HTM-based
schemes. However, the performance of Lock Elision and
Hybrid NOrec drop when the slow-path fallback ratio in-
creases above 8 threads due to the HyperThreading effect.
This performance drop becomes significant with more write
transactions and the TL2 STM becomes faster than the Hy-
brid NOrec for the 40% mutation ratio. In contrast, the new
RH NOrec software-hardware mixed fallback path is able to
maintain the HTM advantages: it is 1.2, 2.4 and 5.0 times
faster than Hybrid NOrec for the respective 4%, 10% and
40% mutation ratios. The execution analysis reveals a sig-
nificant reduction in the HTM conflict aborts and slow-path
restarts for the RH NOrec compared to Hybrid NOrec. This
reduction generates a lower slow-path ratio, and is a result
of the high success ratio of the HTM prefix and HTM post-
fix small hardware transactions that the RH NOrec uses in
its mixed slow-path. Note that in the 40% mutation case, the
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Figure 4. Red-Black tree benchmark. The first (top) row shows the throughput for 4%, 10% and 40% mutation ratios, and the
next rows show the execution analysis for the Hybrid TMs.

HTM prefix has a lower success ratio and this aversly affects
the RH NOrec scalability.

An interesting side-effect that can be seen in the RBTree
analysis is a reduction in HTM capacity aborts for the RH
NOrec. The reason for this side-effect is the ”sensitivity” of
this specific benchmark to the software fallbacks: it executes
many ”cache-friendly” read-only operations, and therefore
the relative L1 cache pressure of the fallbacks is higher com-
pared to benchmarks that execute many write operations.
This is typical of the STAMP benchmarks for which this
side-effect is small to neligable.

3.6 STAMP Applications
The STAMP suite we use is the most recent version [20] of
Ruan et. al, and it includes various real-world applications
with different access patterns and behaviors.

The left to right columns in Figure 5 present results for
Vacation-Low, Intruder and Genome STAMP applications.
The format of the presentation is exactly the same as in
Figure 4.

Vacation-Low simulates online transaction processing,
and it has a good potential to scale since it generates moder-
ately long transactions with low contention. For this appli-

cation, the RH NOrec is twice as fast as the Hybrid NOrec
for 8 threads, and the analysis shows that this is because the
reduction in HTM conflicts. In this case, there is a signifi-
cant reduction in the HTM conflicts and slow-path restarts
just as for the RBTree, but there is no significant difference
in the number of slow-path fallbacks. Still RH NOrec is 1.6
times faster than Hybrid NOrec for 8 threads since the over-
all number of fast-path and slow-path restarts is much lower.
Above 8 threads, RH NOrec still reduces the HTM conflicts,
slow-path restarts, and even the slow-path fallback ratio, but
the HTM capacity aborts increase (due to HyperThreading)
and dominate the performance: they increase the slow-path
fallback ratio to the point where the RH NOrec reductions
are not significant.

Intruder uses transactions to replace coarse-grained syn-
chronization in a simulated network packet analyzer. This
workload generates a large amount of short to moderate
transactions with high contention, and the poor scalability
of the TL2 STM is an indication of this internal behavior.
Despite this, the Hybrid TMs significantly improve over the
STMs, and RH NOrec is 1.2 and 1.5 times faster than the
Hybrid NOrec for 8 and 10 threads. The RH NOrec behav-
ior for 8-16 threads is the opposite of Vacation-Low: there is
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Figure 5. Results for Vacation-Low, Intruder and Genome STAMP applications. The first (top) row shows the throughput, and
the next rows show the execution analysis for the Hybrid TMs.

no difference in the number of slow-path restarts, but there is
much lower slow-path fallback ratio. So in this case the ad-
vantage comes from the HTM postfix small hardware trans-
action that is able to reduce the HTM conflicts by a factor
of 2, and not from the HTM prefix that mostly fails due to
high contention. Note that there is a ”penalty spike” for RH
NOrec at 6 threads. The analysis shows that for more than
4 threads, RH NOrec is not able to reduce slow-path restarts
as before, and this adds the additional overhead that results
in a spike for 6 threads.

The Genome benchmark employs string matching to re-
construct a genome sequence from a set of DNA segments.
This execution generates mostly moderate transactions with
a low to moderate contention level, but the instrumentation
costs in this benchmark are very high. As a result, the HTM-
based schemes that eliminate most of the instrumentation
improve significantly over the STMs for 1-8 threads. RH
NOrec is 1.3 times faster than Hybrid NOrec for 8 threads,
and above 8, the HyperThreading effect significantly in-
creases the HTM capacity aborts, to the point that they dom-
inate the slow-path ratio and eliminate the advantages of the
Hybrid TMs. The analysis shows that RH NOrec has no sig-
nificant effect on the slow-path restarts due to the low suc-

cess ratio of the HTM prefix small hardware transactions.
However, RH NOrec reduces the HTM conflicts by an order
of magnitude, and this provides a lower slow-path fallback
ratio compared to Hybrid NOrec.

Figure 6 presents the additional STAMP applications:
Vacation-High, SSCA2 and Yada. We omit Kmeans and
Labyrinth results, since they are similar to SSCA2, and omit
Bayes due to its inconsistent behavior (as was also noted by
[21]).

Now we explain the results for Figure 6 (from left to
right).

Vacation-High is the more contended version of Vacation-
Low. It generates additional heavier and slower transactions
with moderate contention levels. As a result, all of the HTM-
based schemes suffer penalties. However, RH NOrec be-
haves in the same way as for Vacation-Low: it reduces the
HTM conflicts and slow-path restarts, and this allows the
RH Norec to be 1.3 times faster than the Hybrid NOrec for
8 threads. In this case, RH NOrec provides less advantage
than for Vacation-Low, and the reason for this is the higher
number of HTM capacity aborts.

The SSCA2 kernel performs mostly uncontended small
read-modify-write operations in order to build a directed,
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Figure 6. Results for Vacation-High, SSCA2 and Yada STAMP applications. The first (top) row shows the throughput, and
the next rows show the execution analysis for the Hybrid TMs.

weighted multi-graph. In this case, the slow-path fallback
ratio is very low, so all of the HTM-based schemes provide
good results and scalability, and RH NOrec’s reduction in
HTM conflicts and slow-path restarts is not significant for
the overall performance. However, note that the reduction in
HTM conflicts and slow-path restarts significantly increases
when more threads are added, so for higher concurrency
levels RH NOrec should outperform the Hybrid NOrec.

In Yada, threads cooperate to perform a Delaunay re-
finement, using Ruppert’s algorithm. An initial mesh is pro-
vided as input, and threads iterate through the triangles of the
mesh to identify those whose minimum angle is below some
threshold (i.e., they find triangles that are ”too skinny”).
When such a triangle is found, the thread adds a new point to
the mesh, and then re-triangulates a region around that point
to produce a more visually appealing mesh. In this bench-
mark, most of the transactions are heavy, long and contend-
ing, so the HTM-based schemes suffer from huge overheads,
and the RH-NOrec small hardware transactions only intro-
duce additional overheads, manifested in the low success ra-
tio of the HTM prefix and postfix small hardware transac-
tions.

4. Conclusion
We presented the RH NOrec hybrid TM, a new version of
Hybrid NOrec that provides safety and improved scalability
at the same time. The RH NOrec HTM fast-paths are fully
safe (or opaque), and do not require special code to detect
and handle runtime errors.

The core idea of RH NOrec is the mixed NORec slow-
path that uses two short hardware transactions, the HTM
postfix and HTM prefix, to reduce the HTM conflicts and the
slow-path restarts. Of course, because of the limited concur-
rency available on the Haswell chips and the HyperThread-
ing penalties, one must take our positive results here only as
an indicator of the potential of RH NOrec to scale. Our hope
is that as higher concurrency processors with HTM support
are introduced, this potential will indeed pan out.
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