StackTrack

An Automated Transactional Approach to
Concurrent Memory Reclamation

Dan Alistarh (MSR Cambridge)
Patrick Eugster (Purdue University)
Maurice Herlihy (Brown University)

Alexander Matveev (MIT)
Nir Shavit (MIT)

Concurrent Data Structures

* Memory Reclamation a big problem for
efficient concurrent data-structures.

e Why?

—To be efficient, operations must be
designed in a certain way.

—Let’s see an example

Concurrent List — First Try

* Consider a hand-over-hand locking design:

6 6 6 6 6

- - -

Very Inefficient
A synchronization operation for
every node visited!

Concurrent List — Second Try

e Consider an optimistic design:

6

6

-

e

E

it

H.

Ef

icient

A synchronization operation
only for target nodes

Concurrent Data Structures

* Efficient concurrent data-structures, no
matter if they use locks or not:

—To be efficient, must avoid synchronizing
while traversing

—Like sequential algs: only read while
traversing

— But, this makes memory reclamation
problematic

e Let’s see an example

Memory Reclamation Problem

Thread P
b = a.next
a.next = c;

// b is disconnected
Free(b);

The Memory Reclamation Problem

The Problem:
__===="1 P cannot detect Q, since

< Q’s reads are invisible

[A C —™D
Thread P Thread O

b = a.next b = a.next

a.next = c;

// b is accessed
// b is disconnected return b.Value + 2

Free(b);
SEGMENTATION FAULT | .

Memory Reclamation
Current Solutions

* The problem: We cannot free an object that
has a reference to it by some thread.

* The known solutions: Actively track
references of the threads to the memory
objects.

— Reads must be visible

— But, we must have invisible reads to get good
performance.

Memory Reclamation
Current Solutions

* Existing Approaches:
1. Reference-counting

[Detlefs et al., Gidenstam et al.]
2. Quiescence-based

[Harris, Hart et al.]
3. Pointer-based

[Michael, Herlihy et al.]

Reference-Counting

 The idea: Add a counter for every object that
counts the number of references to it.

* Advantage:

— Non-blocking
* Disadvantage:

— Very inefficient

* Every read must update a shared counter and do a
memory fence

Quiescence-based

The idea: track method calls.

To reclaim, a thread waits for a quiescent
state, in which all other threads finish their
concurrent operation at least once.

Advantage:
— Efficient if threads are never delayed
Disadvantage:

— Blocking: If a thread blocks, unbounded amount
of memory may be never freed.

11

Quiescence-based CD

%.—f’@

Thread 1

start

‘ Reads X ‘

operation

Disconnects X ‘

finish

|| Reclaim X \

Thread 2

start

Reads X

operation

“ Some work

Thread 3

start

operation

” Reads X ‘

” Some work ‘

12

Pointer-Based

 The idea: Track references by using special
thread-local pointers. For example,

— Hazard Pointers [Michael et al.]
— Pass-The-Buck [Herlihy et al.]
— Drop-The-Anchor [Braginsky et al.]

* Advantage:

— Non-blocking

— More efficient than reference counting.
 Disadvantage:

— To be efficient, requires manual placement and
verification of pointers.

13

| Set of Hazards | | Empty Set | i Empty Set |

, Thread 1 , Thread 2 | Thread 3
| | |
| start /| start 1| start
I I |
| & | & 1| 5
: Reads X and Y : Reads X 5
|5 IS II's
| @ . | @ I| @
I 8" Disconnects X ‘ | & “ Done with X ‘ 1| & “ Reads X ‘
| and Y | I
I I
| |
I Some work I Some work
| I 14

Memory Reclamation
Current Solutions

Bad news for concurrent data-structures

Very inefficient — sha rite for every read

2. Quiescence-based

Memory reclamation is too hard ...

< ¢
JI10 .

3. Pointer-based

No hope? ...

15

Memory Reclamation

 Hardware Transactional Memory is a tool
eliminating the need for locks

* Has been used to make reference counting
faster [Dragojevic et al.].

* New idea: Use Hardware Transactional
Memory (HTM) to track the references:
— HTM is non blocking
— HTM provides visible reads for free — no penalty

16

The StackTrack Algorithm

* Main idea: Use HTM to track thread local
variables dynamically and atomically

— No need to write the information about the
references.

— The reclaiming thread can simply scan the stacks
of other threads (since they update atomically)

17

The StackTrack Algorithm

* Advantage:
— Efficient and Automatic

* Disadvantage:

— Reads must be transactional, so we depend on
HTM performance.

18

Adding HTM to the code

The problem: How to apply HTM to the code?

If we can execute a complete method call as
one hardware transaction, then we are done.

But, it is usually not possible, since HTM is
limited in size.

Solution: Split the operation into multiple
hardware transactions.

19

Splitting Transactions

Operation Operation

m—

.LH

HTM
A
—
.I.H

I/\I.LH

=

Split HTM Execution (1)

HTM Commit

: Thread 1
|
L _HTM S ATOMIC
vy=10 ||l 7= UPDATE
P=0x15| || .
X P - &Objl UPDATE
|
: HTM Commit
STACK : HTM Start
|
1' Y=10
|
I P=&O0bj2
|
|
|

STACK

Split HTM Execution (2)

DISCARDS
SPECULATION

: Thread 1

’ HTM Start

| v
|X'

| P=&O0bjl

I HTM Aborts <€

Aborts Thread 1

STACKS HAVE
CONSISTENT

VIEW (on-the-
fly updates
discarded)

Thread 2

HTM Start
Disconnect Obj1l
HTM Commit

SCAN STACKS

22

StackTrack

All memory reclamation algorithms must
coordinate the freeing of an object with
concurrent reads of this object

StackTrack avoids this!

In StackTrack, concurrent reads of an object

are speculative, and will abort when it is
disconnected

In StackTrack, freeing thread simply scans the
stacks

23

Memory Reclamation Problem

Q transaction discarded

Thread P

b = a.next
a.next = c;

// b is disconnected
Free(b);

Thread O
b = a.next

HTM restart

b = a.next

24

Automation of Splitting

* Do the splitting on the level of basic code
blocks:

— Inject a call to a split checkpoint function for every
basic code block

— The split checkpoint function counts the current
number of blocks encountered

— When its equal to the expected length, the HTM
splits by executing an HTM commit and HTM start.

Splitting Transactions

Operation Operation

.LH

.LH

PREDICT

II\I.LH

Commits! ‘

Performance 1

1.40E+07 e .
™" | SkipList: 100K nodes, 20% mutations
1.20E+07
(%]
S 1.00E+07
= —o— Leaking
© 8.00E+06
S —*%—Hazards
O 6.00E+06
B oooXoo Epoch
(S 4.00E+06
— —StackTrack
2.00E+06
0.00E+00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number of threads
6.00E+05 : .
" | List: 5K nodes, 20% mutations
5.00E+05
m .
é 4.00E+05 Leaking
g —*%—Hazards
Q 3.00E+05
O **¥:+ Epoch
©
E 2008405 —& —StackTrack
1.00E+05 ——DTA
0.00E+00

3

4 5 6 7 8 9 10 11 12 13 14 15 16
number of threads

27

Performance 2

Total Operations

4.00E+07

3.50E+07

3.00E+07

2.50E+07

2.00E+07

1.50E+07

1.00E+07

5.00E+06

0.00E+00

Queue: 20% mutations

1

) T TRV VI VAR VIV v

2 3 45 6 7 8 9 10 11 12 13 14 15 16

number of threads

—o—Leaking
—*—Hazards
+¥- Epoch

— —StackTrack

Total Operations

1.80E+07
1.60E+07
1.40E+07
1.20E+07
1.00E+07
8.00E+06
6.00E+06
4.00E+06
2.00E+06

0.00E+00

Hash: 10K nodes, 20% mutations

1

2

3

;.(n
X"X"X"X")("X"X

4 5 6 7 8 9 10 11 12 13 14 15 16
number of threads

—o— Leaking
—*%—Hazards
**X-- Epoch

—& —StackTrack

28

Performance Analysis

List: HTM average contention aborts
1.80E+05

1.60E+05
1.40E+05
1.20E+05
1.00E+05
8.00E+04

e contention aborts

6.00E+04
o0 4.00E+04
S

Q 2.00E+04

0.00E+00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number of threads

List: HTM average capacity aborts

1.40E+06
1.20E+06
1.00E+06
8.00E+05
6.00E+05

4.00E+05

average capacity aborts

2.00E+05

0.00E+00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number of threads

List: HTM average splits per operation
80.00

70.00

60.00

ts

S 50.00

(V5]

& 40.00

©

| -

@ 30.00

>

< 20.00
10.00

0.00
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number of threads

List: HTM average split lengths

60.00

(%)
o
o
S

average split lengths
]
8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
number of threads

StackTrack

* A New Approach to Memory Reclamation
* Leverages HTM in a new way

e For the 15ttime in concurrent data structure
design, allows

— efficient memory reclamation

— without explicit programmer intervention

Thank You

