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P (x) =
∏

i∈V
Pi(xi)

∏

(i,j)∈E

Pi,j(xi, xj)

Pi(xi)Pj(xj)

= P1(x1)P2|1(x2|x1)P3|1(x3|x1)P4|1(x4|x1).
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Graphical model on p nodes

n i.i.d. samples from multivariate
distribution

Output estimated structure Ĝn

B

Structural Consistency: lim
n→∞

P
[
Ĝn 6= G

]
= 0.

Challenge: High Dimensionality (“Data-Poor” Regime)

Large p, small n regime (p � n)

Sample Complexity: Required # of samples to achieve consistency

Challenge: Computational Complexity

Goal: Address above challenges and provide provable guarantees
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În(Xi;Xj).

B



Tree Graphical Models: Tractable Learning

Maximum likelihood learning of tree structure

Proposed by Chow and Liu (68)

Max. weight spanning tree

T̂ML = argmax
T

n∑

k=1

log P (xV ).

T̂ML = argmax
T

∑

(i,j)∈T
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Maximum likelihood learning of tree structure

Proposed by Chow and Liu (68)

Max. weight spanning tree

T̂ML = argmax
T

n∑

k=1

log P (xV ).

T̂ML = argmax
T

∑

(i,j)∈T
În(Xi;Xj).

B

Pairwise statistics suffice for ML

n samples and p nodes: Sample complexity:
log p

n
= O(1).

What other classes of graphical models are tractable for learning?
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I Likelihood function not tractable

P (x) =
1

Z
exp




∑

(i,j)∈G

Ψi,j(xi, xj)


 .

Presence of high-degree nodes
I Brute-force search not tractable

Can we provide learning guarantees under above conditions?

Our Perspective: Tractable Graph Families

Characterize the class of tractable families

Incorporate all the above challenges

Relevant for real datasets, e.g., social-network data



Related Work in Structure Learning

Algorithms for Structure Learning

Chow and Liu (68)

Meinshausen and Buehlmann (06)

Bresler, Mossel and Sly (09)

Ravikumar, Wainwright and Lafferty (10) . . .

Approaches Employed

EM/Search approaches

Combinatorial/Greedy approach

Convex relaxation, . . .
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Intuitions: Conditional Mutual Information Test

Separators in Graphical Models

S

i j

Xi 6⊥⊥ Xj|XS
?

=⇒ I(Xi;Xj |XS) ≈ 0

Observations

∆-separator for graphs with maximum degree ∆

I Brute-force search for the separator: argmin
|S|≤∆

I(Xi;Xj|XS)

I Computational complexity scales as O(p∆)
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Tractable Graph Families: Local Separation

γ-Local Separator Sγ(i, j)

Minimal vertex separator with respect to paths of
length less than γ

(η, γ)-Local Separation Property for Graph G

|Sγ(i, j)| ≤ η for all (i, j) /∈ G

S

i j

Locally tree-like

Erdős-Rényi graphs

Power-law/scale-free graphs

B

Small-world Graphs

Watts-Strogatz model

Hybrid/augmented graphs
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n i.i.d. samples available for structure estimation

Ising and Gaussian Graphical Models

P (x) ∝ exp

[
1

2
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T
JGx+ h

T
x

]
, x ∈ {−1, 1}p.

f(x) ∝ exp

[
−
1

2
x
T
JGx+ h

T
x

]
, x ∈ R

p.

For (i, j) ∈ G, Jmin ≤ |Ji,j | ≤ Jmax

Graph G satisfies (η, γ) local separation property

Tradeoff between η, γ, Jmin, Jmax for tractable learning



Regime of Tractable Learning

Efficient Learning Under Approximate Separation
Maximum edge potential Jmax of Ising model satisfies

Jmax < J∗.

J∗ is threshold for phase transition for conditional uniqueness.



Regime of Tractable Learning

Efficient Learning Under Approximate Separation
Maximum edge potential Jmax of Ising model satisfies

Jmax < J∗.

J∗ is threshold for phase transition for conditional uniqueness.

Gaussian model is α-walk summable

‖RG‖ ≤ α < 1.

RG is absolute partial correlation matrix.

JG = I−RG.



Regime of Tractable Learning

Efficient Learning Under Approximate Separation
Maximum edge potential Jmax of Ising model satisfies

Jmax < J∗.

J∗ is threshold for phase transition for conditional uniqueness.

Gaussian model is α-walk summable

‖RG‖ ≤ α < 1.

RG is absolute partial correlation matrix.

JG = I−RG.

Tractable Parameter Regime for Structure Learning
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Tractable Graph Families and Regimes

Graph G satisfies (η, γ)-local separation
property where

η = O(1).

Maximum edge potential Jmax satisfies

α :=
tanh Jmax

tanh J∗ < 1 or ‖RG‖ ≤ α < 1.

Minimum edge potential Jmin is sufficiently
strong

Jmin

αγ
= ω̃(1).

Edge potentials are generic.



Example: girth g, maximum degree ∆

Structural criteria: (η, γ)-local separation property is satisfied

η = 1, γ = g.

Parameter criteria: The maximum edge potential satisfies

Jmax < J∗ = atanh(∆−1), α :=
tanh Jmax

tanh J∗ .

Tradeoff: The minimum edge potential satisfies

Jminα
g = ω(1).

For example, when

Jmin = Θ(∆−1) ⇒ ∆αg = o(1).

Learnability regime involves a tradeoff between degree and girth.
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Conditional Mutual Information Thresholding (CMIT)

Empirical Conditional Mutual Information from samples

Attempt to search for approx. separator of size η
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Local Test Using Low-order Statistics



Guarantees on Conditional Mutual Information Test

(i, j) ∈ Ĝ if min
S⊂V \{i,j}

|S|≤η

Î(Xi;Xj |XS) > ξn,p

Ising/Gaussian graphical model on p nodes

No. of samples n such that

n = Ω(J−4
min log p).

Theorem

CMIT is structurally consistent

lim
p,n→∞

n=Ω(J−4

min
log p)

P
[
Ĝn

p 6= Gp

]
= 0.

Probability measure on both graph and samples



Improved Guarantees via Total Variation Distances

νi|j;S := 0.5‖P (Xi,XS |Xj = +)− P (Xi,XS |Xj = −)‖1.

Sample complexity for graph estimation improves to Ω(J−2
min log p).

Bound for non-neighbors: νmax(p; η) := max
(i,j)/∈Gp

min
|S|≤η

S⊂V \{i,j}

νi|j;S.

Choose threshold ξn,p as ξn,p = νmax(p; η) + δ.

Min. node marginal Pmin := min
xj=±1,
j∈V

P (Xj = xj).

Theorem: PAC Learning Guarantees

All edges with νi|j;S > νmax(p; η) + 2δ of a graph with η-local separators
are recovered with probability at least 1− ε, when the number of samples is

n >
(δ + 2)2

2δ2P 2
min

[
log

(
1

ε

)
+ (η + 2) log p+ (η + 4) log 2

]
.



Non-asymptotic Bounds on νmax(p)

νmax(p; η) := max
(i,j)/∈Gp

min
|S|≤η

S⊂V \{i,j}

νi|j;S, α :=
tanh Jmax

tanh J∗ < 1.

Bounds on νmax(p; η) for Graph Families

1 For degree-bounded ensemble, νmax(p;∆) = 0.

2 For girth-bounded ensemble νmax(p; 1) ≤ αg.

3 For ∆-random regular graphs , choose any l ∈ N such that
l < 0.5(0.25p∆ + 0.5−∆2): with prob. at least
1−∆8l−2(p∆− 4∆2 − 8l)−(4l−1),

νmax(p; 2) ≤ αl.

4 For Erdős-Rényi ensemble with average degree c > 1, choose any
l ∈ N such that l < log p

4 log c : with prob. at least

1− le
√
125p−2.5 − l!c4l−1p−1,

νmax(p; 2) ≤ 4l3αl log p.



Lower Bound on Sample Complexity

Erdős-Rényi random graph G ∼ G(p, c/p)

Theorem

For any estimator Ĝn
p , it is necessary that

Discrete distribution over X : n ≥
c log2 p

2 log2 |X |

Gaussian with α-walk summability: n ≥
c log2 p

log2

[
2πe

(
1

1−α + 1
)]

lim
n→∞

P
[
Ĝn

p 6= Gp

]
= 0.

Ω(c log p) samples needed for random graph structure estimation.
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Erdős-Rényi random graph G ∼ G(p, c/p)

Theorem

For any estimator Ĝn
p , it is necessary that

Discrete distribution over X : n ≥
c log2 p

2 log2 |X |

Gaussian with α-walk summability: n ≥
c log2 p

log2

[
2πe

(
1

1−α + 1
)]

lim
n→∞

P
[
Ĝn

p 6= Gp

]
= 0.

Proof Techniques

Fano’s inequality over typical graphs

Characterize typical graphs for Erdős-Rényi ensemble

Ω(c log p) samples needed for random graph structure estimation.
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S⊂V \{i,j}

|S|≤η
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Proof Ideas

(i, j) ∈ Ĝ if min
S⊂V \{i,j}

|S|≤η

Î(Xi;Xj |XS) > ξn,p

Correctness of algorithm under exact statistics

Consistency under prescribed sample complexity
I Concentration bounds for empirical quantities

Analysis for non-neighbors

Conditional mutual information upon conditioning by local separator

Derive rate of decay for conditional mutual information
I Self-avoiding walk tree analysis for Ising models
I Walk-sum analysis for Gaussian models

Analysis for neighbors

Lower bound under generic edge potentials

Consistent Graph Estimation Under Local Separation



Self-Avoiding Walk Analysis
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Self-Avoiding Walk Analysis
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i
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D. Weitz, “Counting independent sets up to the tree threshold”, Proc. STOC

2006.
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3 For Erdős-Rényi ensemble with
average degree c and small-world

graph, J∗ = atanh

(
1

c

)
.



Conditional Uniqueness Regime

Correlation Decay in Residual Self-Avoid Walk Tree upon Separation

B

Bounds on J∗

1 For degree-bounded ensemble,
J∗ = ∞.

2 For girth-bounded and
∆-random regular graph

J∗ = atanh

(
1

∆

)
.
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Summary and Outlook

Summary

Local algorithm based on low-order statistics

Transparent assumptions

Logarithmic sample complexity

Outlook

Is structure learning beyond this regime hard?

Connections with incoherence conditions

Structure learning with latent variables

A. Anandkumar, V. Tan and Alan Willsky, “High-Dimensional Structure Learning

of Ising Models: Tractable Graph Families” ArXiv 1107.1736.

A. Anandkumar, V. Tan and Alan Willsky, “High-Dimensional Gaussian Graphical

Model Selection: Tractable Graph Families” ArXiv 1107.1270.
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