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Challenge: High Dimensionality (“Data-Poor” Regime)

o Large p, small n regime (p > n)
@ Sample Complexity: Required # of samples to achieve consistency

Challenge: Computational Complexity

Goal: Address above challenges and provide provable guarantees
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Maximum likelihood learning of tree structure
@ Proposed by Chow and Liu (68)

@ Max. weight spanning tree

n
T = log P(xv).
ML = arg mq?}X ; og (Xv )

TML = argmj@x Z ITL(XﬁXj)'
(i,§)€T

@ Pairwise statistics suffice for ML

1
@ n samples and p nodes: Sample complexity: o8P O(1).
n

What other classes of graphical models are tractable for learning?
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Learning Graphical Models Beyond Trees

Challenges
@ Presence of cycles
» Pairwise statistics no longer suffice

» Likelihood function not tractable

1
P(X) = E exXp Z \I/Z‘,j(l‘i,l'j)
(1,7)eG
@ Presence of high-degree nodes
» Brute-force search not tractable

Can we provide learning guarantees under above conditions?

Our Perspective: Tractable Graph Families
@ Characterize the class of tractable families
@ Incorporate all the above challenges

@ Relevant for real datasets, e.g., social-network data



Related Work in Structure Learning

Algorithms for Structure Learning
@ Chow and Liu (68)
@ Meinshausen and Buehlmann (06)
@ Bresler, Mossel and Sly (09)
@ Ravikumar, Wainwright and Lafferty (10)

Approaches Employed
@ EM/Search approaches
@ Combinatorial /Greedy approach

@ Convex relaxation,
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Intuitions: Conditional Mutual Information Test

Separators in Graphical Models

?
Xi L Xj|Xs = I(Xi; X;|Xs) =0

Observations
o A-separator for graphs with maximum degree A

> Brute-force search for the separator: | argmin I(X;; X;|Xg)
|S|<A

» Computational complexity scales as O(p*)

@ Approximate separators in general graphs?



Tractable Graph Families: Local Separation

7-Local Separator S, (3, j)

Minimal vertex separator with respect to paths of
length less than

(n,~y)-Local Separation Property for Graph G
|5y(i,5)] < mforall (i,5) ¢ G

Locally tree-like Small-world Graphs
@ Erdés-Rényi graphs @ Watts-Strogatz model
@ Power-law/scale-free graphs @ Hybrid/augmented graphs

[ —
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Setup: Ising and Gaussian Graphical Models

@ n i.i.d. samples available for structure estimation

@ Ising and Gaussian Graphical Models
1 T T J
P(x) o exp 35X Jex+h'x|, xe{-1,1}".
1
f(x) o< exp [—ngJGx + th] , x€RP

o For (Z,j) € G, Jmin S ’JiJ’ S Jmax
@ Graph G satisfies (7),) local separation property

Tradeoff between 1,7, Jmin, Jmax for tractable learning
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Regime of Tractable Learning

Efficient Learning Under Approximate Separation

@ Maximum edge potential Jpax of Ising model satisfies
Imax < J*.

J* is threshold for phase transition for conditional uniqueness.

@ Gaussian model is a-walk summable

IRa

<a<l.
R is absolute partial correlation matrix.

Jo=1-Re.

Tractable Parameter Regime for Structure Learning
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Tractable Graph Families and Regimes

@ Graph G satisfies (7),y)-local separation
property where

n=0(1).

@ Maximum edge potential Jy.x satisfies

tanh JIII‘LX o
=————<lor[|[Rg|| <a<1.
tanh J* IRe < a
@ Minimum edge potential Jyiy, is sufficiently
strong
Jmin ~
e w(l).

@ Edge potentials are generic.



Example: girth g, maximum degree A
@ Structural criteria: (n,)-local separation property is satisfied

n=1 v=g.
@ Parameter criteria: The maximum edge potential satisfies

* —~ tanh J,
Tows < J* = atanh(871), - a = BRI

@ Tradeoff: The minimum edge potential satisfies
Jmin? = w(1).
For example, when
Join = O(A™Y) = Aa? = o(1).

Learnability regime involves a tradeoff between degree and girth.
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@ Method and Guarantees
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Algorithm for Structure Learning

Conditional Mutual Information Thresholding (CMIT)

@ Empirical Conditional Mutual Information from samples

@ Attempt to search for approx. separator of size n

(i,4)

~

eGif

min
ScV\{i,j}
[S|<n

f(XL; XJ |XS) > gn,p

Threshold &, ,,

@ Depends only on # of samples n

and # of nodes p

gn,p - O(JI2IIIII) ( 27)QQ <1ng>

n

Conditional mutual information

~.,
.
.

Non-edge

No. of nodes

Local Test Using Low-order Statistics



Guarantees on Conditional Mutual Information Test

7)€ G if in 1(Xi;: X1 Xg) > &,
(4,7) i gomin ( i1Xs) > &np
ISI<n

@ Ising/Gaussian graphical model on p nodes

@ No. of samples n such that

n = Q(J_ logp).

min

Theorem
CMIT is structurally consistent
lim P {@; # Gp} =0.

P,N—500
4
n=Q(J ., logp)

b

@ Probability measure on both graph and samples



Improved Guarantees via Total Variation Distances
Vijjis 1= 0.5 P(X;, Xs|X; = +) — P(X;, X[ X = —)|l;-

@ Sample complexity for graph estimation improves to Q(,]I;izn log p).

@ Bound for non-neighbors: v ;M) = max min  v;;.g.
& max (75 7) )gGy IS|<n P8
SCV\{i,j}
@ Choose threshold &, 5, as &, = Vmax(p; 1) + 0.
@ Min. node marginal Py, := mijrtll P(X; = x;j).
Tj= 5
JeV

Theorem: PAC Learning Guarantees

All edges with v;;.5 > Vmax(p; 1) + 20 of a graph with n-local separators
are recovered with probability at least 1 — ¢, when the number of samples is

(6+2)2[, (1
>252T log +(n+2)logp+ (n+4)log2| .

: €
min



Non-asymptotic Bounds on v, (p)

( ) . tanh JIII'(LX < 1

1% , = Imax min Vil s o= .

max P DeG, isigy S tanh J*
SCV\{irj}

Bounds on vy, (p; 1) for Graph Families
© For degree-bounded ensemble, v, (p; A) = 0.
© For girth-bounded ensemble vy, (p; 1) < 9.
© For A-random regular graphs , choose any [ € N such that
1 < 0.5(0.25pA + 0.5 — A?): with prob. at least
1— A81—2(pA —4A2 — 81)_(41_1),
Vinax(p; 2) < ol
© For Erdds-Rényi ensemble with average degree ¢ > 1, choose any
I € N such that [ < -%8P: with prob. at least

4logc

1— le\/125p—2.5 _ l!C4l_1p_l,

Vmax(p; 2) < 4130/ log p.



Lower Bound on Sample Complexity
@ Erdés-Rényi random graph G ~ G(p,c/p)

Theorem

For any estimator G, it is necessary that

clogsp

@ Discrete distribution over X: n > ———=—
~ 2log, | X

clogyp
log, [27‘(6 (1 1@ + 1)}

o Gaussian with a-walk summability: n >

hmP[G";AG}

n—o0

Q(clog p) samples needed for random graph structure estimation.



Lower Bound on Sample Complexity
@ Erdés-Rényi random graph G ~ G(p,c/p)

Theorem

For any estimator G, it is necessary that

clogsp

@ Discrete distribution over X: n > ———=—
~ 2log, | X

clogyp
log, [2779 (1 1@ + 1)}

lim PGy £ G| =0.

n—o0

o Gaussian with a-walk summability: n >

Proof Techniques
@ Fano's inequality over typical graphs

@ Characterize typical graphs for Erdés-Rényi ensemble

Q(clog p) samples needed for random graph structure estimation.
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Proof ldeas

.7) € G if in 1(Xi;: X1 Xg) > &,
(4,7) i gcmin ( i1Xs) > &np
ISI<n

@ Correctness of algorithm under exact statistics
@ Consistency under prescribed sample complexity
» Concentration bounds for empirical quantities

Analysis for non-neighbors

@ Conditional mutual information upon conditioning by local separator
@ Derive rate of decay for conditional mutual information

Self-avoiding walk tree analysis for Ising models
Walk-sum analysis for Gaussian models

Analysis for neighbors

@ Lower bound under generic edge potentials

Consistent Graph Estimation Under Local Separation
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Conditional Uniqueness Regime

Correlation Decay in Residual Self-Avoid Walk Tree upon Separation

Bounds on J*
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Summary and Outlook

Summary
@ Local algorithm based on low-order statistics

@ Transparent assumptions

@ Logarithmic sample complexity

Outlook
@ Is structure learning beyond this regime hard?
@ Connections with incoherence conditions

@ Structure learning with latent variables

A. Anandkumar, V. Tan and Alan Willsky, “High-Dimensional Structure Learning
of Ising Models: Tractable Graph Families” ArXiv 1107.1736.
A. Anandkumar, V. Tan and Alan Willsky, “High-Dimensional Gaussian Graphical
Model Selection: Tractable Graph Families” ArXiv 1107.1270.
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