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Constraint Satisfaction Problem

Let D = {1, 2, . . . , d} be a domain.

A language is a finite set of predicates Γ = {Θ1, . . . ,Θh}.

An instance of #CSP(Γ) consists of a set of variables
x1, . . . , xn and a set of constraints from Γ, each applied to
a subset of variables. It defines an n-ary relation R , where
(x1, . . . , xn) ∈ R if all constraints are satisfied.
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Examples

3-coloring: D = {1, 2, 3} and Γ = {Θ}, where

Θ =
{

(i , j) : i , j ∈ D and i 6= j
}

.

Independent set: D = {1, 2} and Γ = {Θ}, where

Θ =
{

(1, 1), (1, 2), (2, 1)
}

.

2SAT: D = {0, 1} and

Γ =
{

x1 ∨ x2,¬x1 ∨ x2, x1 ∨ ¬x2,¬x1 ∨ ¬x2
}

3SAT . . .
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Constraint Satisfaction Problem

One of the most important classes of problems in TCS:

Decision: whether a solution exists?

[ Schaefer 78, Hell and Nesetril 90, Feder and Vardi 98,
Bulatov 06, Kun and Szegedy 09, . . . ]

The CSP dichotomy conjecture of Feder and Vardi is open

Optimization: satisfy as many constraints as possible

[ Hastad 01, Khot, Kindler, Mossel and O’Donnell 07,
Austrin and Mossel 08, Raghavendra 08, Dinur, Mossel and
Regev 09, Tulsiani 09, Raghavendra and Steurer 09, . . . ]

Counting: count the solutions
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Unweighted Counting CSP (#CSP)

Let D = {1, 2, . . . , d} be a domain.

A language is a finite set of predicates Γ = {Θ1, . . . ,Θh}.

An instance of #CSP(Γ) consists of a set of variables
x1, . . . , xn and a set of constraints from Γ, each applied to
a subset of variables. It defines an n-ary relation R , where
(x1, . . . , xn) ∈ R if all constraints are satisfied.

Compute |R |.
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Examples

Counting 3-colorings: D = {1, 2, 3} and Γ = {Θ}, where

Θ =
{

(i , j) : i , j ∈ D and i 6= j
}

.

Counting independent sets: D = {1, 2} and Γ = {Θ}, where

Θ =
{

(1, 1), (1, 2), (2, 1)
}

.

#2SAT: D = {0, 1} and

Γ =
{

x1 ∨ x2,¬x1 ∨ x2, x1 ∨ ¬x2,¬x1 ∨ ¬x2
}

#3SAT . . .
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Weighted #CSP

A weighted constraint language L =
{

f1, . . . , fh
}

:

fi : D
ri → C

An instance of #CSP(L) consists of variables x1, . . . , xn over
D and a finite set of constraint functions from L, each applied
to a subset of these variables. It defines a new n-ary function
F : for any assignment x = (x1, . . . , xn) ∈ Dn, F (x) is the
product of the constraint function evaluations.

Given an input instance F , compute:

∑

x∈Dn F (x)
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A Complexity Dichotomy

Theorem (Main)

Given any domain set D and any finite set L of complex-valued

functions, #CSP(L) is either in polynomial time or #P-hard.
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Tractability Criteria

If L satisfies the following three conditions, we give a polynomial

time algorithm for #CSP(L); otherwise we show it is #P-hard.

1 the Block Orthogonality condition

2 the Mal’tsev condition

3 the Type Partition condition
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Some Notation

Let F : Dn → C be the function defined by an input instance

For each t ∈ [n], let F [t] : Dt → C be

F [t](x1, . . . , xt) =
∑

xt+1,...,xn

F (x1, . . . , xt , xt+1, . . . , xn)

Consider F [t] as a d t−1 × d matrix:

1 Rows: x = (x1, . . . , xt−1) ∈ Dt−1 and columns: a ∈ D

2 The (x, a)th entry of the matrix is F [t](x, a)

3 Use F [t](x, ∗) to denote the d-dim row vector indexed by x

Jin-Yi Cai and Xi Chen Complexity of #CSP with Complex Weights



With a Little Help from an Oracle

An oracle that provides information about F [2], . . . ,F [n]:

1 send any x ∈ Dt−1 to the oracle

2 return a vector v that is linearly dependent with F [t](x, ∗):

v = 0 if F [t](x, ∗) = 0;

otherwise, v is normalized: its first nonzero entry = 1.
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A Framework for Solving #CSP(L)

To compute F [1](a1) for some a1 ∈ D:

1 send a1 to the oracle

2 receive a vector v that is linearly dependent with F [2](a1, ∗)

3 if v = 0, then F [1](a1) = 0

4 otherwise, let va2 be the first nonzero entry (so va2 = 1)

F [1](a1) =
∑

b∈D

F [2](a1, b) = F [2](a1, a2) ·
∑

b∈D

vb
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A Framework for Solving #CSP(L)

To compute F [2](a1, a2):

1 send (a1, a2) to the oracle

2 receive w that is linearly dependent with F [3]((a1, a2), ∗)

3 if w = 0, then F [2](a1, a2) = 0

4 otherwise, let wa3 be the first nonzero entry (so wa3 = 1)

F [2](a1, a2) =
∑

b∈D

F [3]
(

(a1, a2
)

, b) = F [3](a1, a2, a3) ·
∑

b∈D

wb
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A Framework for Solving #CSP(L)

After n − 1 steps, we reduce

F [1](a1) −→ F [n](a1, a2, . . . , an)

for some appropriate a2, . . . , an, with the help of the oracle.

Note that F = F [n] can be evaluated efficiently

Almost the whole proof of the theorem is trying to understand

how and when we can implement this oracle efficiently?
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What does the Oracle Need

Fix t ∈ [n]. Compute a set of d -dimensional vectors

v1, v2, . . . , vh

s.t. every row F [t](x, ∗) is linearly dependent with one of them

Also need to “know”:

S1,S2, . . . ,Sh ⊆ Dt−1

s.t. x ∈ Si iff F [t](x, ∗) is linearly dependent with vi
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Two Difficulties

1 In general, an m × d matrix may have m pairwise linearly

independent rows. For F [t], a d t−1 × d matrix, we cannot

afford to keep track of d t−1 many such vectors vi .

2 In general, the sets Si ’s may be exponentially large in t.
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Counting Graph Homomorphisms (or Partition Function)

With real weights [Goldberg, Grohe, Jerrum and Thurley ]

and with complex weights [Cai, C and Lu ]









1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1









and













1 1 1 1 1
1 ζ ζ−1 ζ2 ζ−2

1 ζ2 ζ−2 ζ−1 ζ

1 ζ−1 ζ ζ−2 ζ2

1 ζ−2 ζ2 ζ ζ−1













If any two rows of F [t] are either linearly dependent or orthogonal

then it can have no more than d pairwise independent rows.
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The Block Orthogonality Condition

The Block Orthogonality condition

Let F : Dn → C be a function defined by an input instance of
#CSP(L), and t ∈ [n]. Every two rows of F [t] are either linearly
dependent or orthogonal.

Lemma

If L does not satisfy the Block Orthogonality condition, then the

problem #CSP(L) is #P-hard.
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Unweighted #CSP

[Bulatov ] and [Dyer and Richerby ]: Mal’tsev polymorphism

Witness Function (or Frame) [Dyer and Richerby ]

Let R ⊆ Dn. If R has a Mal’tsev polymorphism ϕ, then it has a
succinct representation, called a witness function. A witness
function ω of R is of linear size in n. Given ω and x ∈ Dn, one
can decide whether x ∈ R efficiently.
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The Mal’tsev Condition

The Mal’tsev condition

Let F : Dn → C be a function defined by an input instance of
#CSP(L), and t ∈ [n]. Then every Si ⊆ Dt−1 has a Mal’tsev
polymorphism. Indeed the condition requires all such sets to share
a common Mal’tsev polymorphism.

Lemma

If L does not satisfy the Mal’tsev condition, then the problem

#CSP(L) is #P-hard.
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The New Plan

Let F : Dn → C denote the function defined by the input

For each t ∈ [n]:

1 compute v1, . . . , vh, for some h ≤ d , such that every

F [t](x, ∗) is linearly dependent with one of the vi ’s

2 compute a witness function ωi for each Si

How to compute these objects efficiently?
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New Difficulty

Consider t = n and F [n] = F : need v1, . . . , vh and ωi for Si

1 By [Dyer and Richerby ] and the Mal’tsev condition, one

can construct a witness function ω for R ⊆ Dn−1:

x ∈ R ⇐⇒ ∃b ∈ D, F (x, b) 6= 0.

2 By definition, R = S1 ∪ S2 ∪ · · · ∪ Sh

Can we use ω to compute a witness function ωi for each Si
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Wanted: The Splitting Operation

The setting:

Let R ⊂ Dn and S1, . . . ,Sh be an h-way partition of R . It is
known that all these sets share a Mal’tsev polymorphism ϕ.

We DO NOT know h, though it is guaranteed that h ≤ d .

We have a witness function ω of R .

There is a black box we can query: Upon receiving an x ∈ R ,
it returns the unique index j ∈ [h] such that x ∈ Sj .

Can we compute h and a witness function ωi for Si efficiently?
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Algorithm for the Splitting Operation

If R and the S1, . . . ,Sh satisfy the following condition:

For any y ∈ Dℓ, ℓ ∈ [n], let

type(y) =
{

j ∈ [h] : ∃z ∈ Dn−ℓ such that y ◦ z ∈ Sj

}

⊆ [h]

The partition condition: For any y, y′ ∈ Dℓ, type(y) and

type(y′) are either disjoint or the same.

we have an efficient algorithm for splitting.
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Algorithm for the Splitting Operation

1 A recursive algorithm that, given x ∈ Dℓ, computes

type(x). Here the partition condition is crucial!

2 A recursive algorithm that, given x ∈ Dℓ and j ∈ type(x),

finds a y ∈ Dn−ℓ such that x ◦ y ∈ Sj .

3 Finally, construct a witness function ωi for each Si
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The Type Partition Condition

The Type Partition condition

Essentially it requires that, every time we need to apply the
splitting operation when implementing the oracle, the sets R
and S1, . . . ,Sh satisfy the partition condition.

Lemma

If L does not satisfy the Type Partition condition, then the

problem #CSP(L) is #P-hard.
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Putting the Pieces Together

Let F : Dn → C denote the function defined by the input

Inductively, for t from n to 2:

Use the oracles for F [t+1],F [t+2] . . . ,F [n] to

1 compute v1, . . . , vh, where h ≤ d , such that every

F [t](x, ∗) is linearly dependent with one of the vi ’s

2 compute a witness function ωi for each Si ,

3 both done by using the algorithm for splitting

Finally, compute
∑

x F (x) using these oracles
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Open Problem

Determine the decidability of these tractability conditions:

Given a finite set of complex-valued functions L, can we

decide whether L satisfies these conditions in finite time?
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Thank you!
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