Complexity of #CSP with Complex Weights

Xi Chen Joint work with Jin-Yi Cai

Columbia University

Nov 3, 2011

Jin-Yi Cai and Xi Chen Complexity of #CSP with Complex Weights

э

- Let $D = \{1, 2, ..., d\}$ be a domain.
- A language is a finite set of predicates $\Gamma = \{\Theta_1, \dots, \Theta_h\}$.
- An instance of #CSP(Γ) consists of a set of variables x₁,..., x_n and a set of constraints from Γ, each applied to a subset of variables. It defines an *n*-ary relation *R*, where (x₁,...,x_n) ∈ *R* if all constraints are satisfied.

Examples

• 3-coloring: $D = \{1, 2, 3\}$ and $\Gamma = \{\Theta\}$, where

$$\Theta = \{(i,j): i,j \in D \text{ and } i \neq j\}.$$

• Independent set: $D = \{1,2\}$ and $\Gamma = \{\Theta\}$, where

$$\Theta = \left\{ (1,1), (1,2), (2,1)
ight\}.$$

• 2SAT: $D = \{0, 1\}$ and

$$\mathsf{F} = \big\{ x_1 \lor x_2, \neg x_1 \lor x_2, x_1 \lor \neg x_2, \neg x_1 \lor \neg x_2 \big\}$$

• 3SAT ...

One of the most important classes of problems in TCS:

• Decision: whether a solution exists?

[Schaefer 78, Hell and Nesetril 90, Feder and Vardi 98, Bulatov 06, Kun and Szegedy 09, ...]

The CSP dichotomy conjecture of Feder and Vardi is open

• Optimization: satisfy as many constraints as possible

[Hastad 01, Khot, Kindler, Mossel and O'Donnell 07, Austrin and Mossel 08, Raghavendra 08, Dinur, Mossel and Regev 09, Tulsiani 09, Raghavendra and Steurer 09, ...]

• Counting: count the solutions

- Let $D = \{1, 2, ..., d\}$ be a domain.
- A language is a finite set of predicates $\Gamma = \{\Theta_1, \dots, \Theta_h\}$.
- An instance of #CSP(Γ) consists of a set of variables x₁,..., x_n and a set of constraints from Γ, each applied to a subset of variables. It defines an *n*-ary relation *R*, where (x₁,...,x_n) ∈ *R* if all constraints are satisfied.
- Compute |R|.

Examples

• Counting 3-colorings: $D = \{1, 2, 3\}$ and $\Gamma = \{\Theta\}$, where

$$\Theta = \{(i,j) : i,j \in D \text{ and } i \neq j\}.$$

• Counting independent sets: $D = \{1, 2\}$ and $\Gamma = \{\Theta\}$, where

$$\Theta = \{(1,1), (1,2), (2,1)\}.$$

•
$$#2SAT: D = \{0, 1\}$$
 and

$$\mathsf{F} = \left\{ x_1 \lor x_2, \neg x_1 \lor x_2, x_1 \lor \neg x_2, \neg x_1 \lor \neg x_2 \right\}$$

• #3SAT ...

- (同) (目) (目) (目)

• A weighted constraint language $\mathcal{L} = \{f_1, \dots, f_h\}$:

 $f_i: D^{r_i} \to \mathbb{C}$

- An instance of #CSP(L) consists of variables x₁,..., x_n over D and a finite set of constraint functions from L, each applied to a subset of these variables. It defines a new n-ary function F: for any assignment **x** = (x₁,...,x_n) ∈ Dⁿ, F(**x**) is the product of the constraint function evaluations.
- Given an input instance *F*, compute:

$$\sum_{\mathbf{x}\in D^n}F(\mathbf{x})$$

Theorem (Main)

Given any domain set D and any finite set \mathcal{L} of complex-valued functions, $\#CSP(\mathcal{L})$ is either in polynomial time or #P-hard.

🗇 🕨 🖌 🖃 🕨 🖌 🗐 🕨

If \mathcal{L} satisfies the following three conditions, we give a polynomial time algorithm for $\#CSP(\mathcal{L})$; otherwise we show it is #P-hard.

- the Block Orthogonality condition
- 2 the Mal'tsev condition
- the Type Partition condition

Let F : Dⁿ → C be the function defined by an input instance
 For each t ∈ [n], let F^[t] : D^t → C be

$$F^{[t]}(x_1,...,x_t) = \sum_{x_{t+1},...,x_n} F(x_1,...,x_t,x_{t+1},...,x_n)$$

- Consider $F^{[t]}$ as a $d^{t-1} \times d$ matrix:
 - **Q** Rows: $\mathbf{x} = (x_1, \dots, x_{t-1}) \in D^{t-1}$ and columns: $a \in D$

2 The (\mathbf{x}, a) th entry of the matrix is $F^{[t]}(\mathbf{x}, a)$

Solution Use $F^{[t]}(\mathbf{x},*)$ to denote the *d*-dim row vector indexed by \mathbf{x}

An oracle that provides information about $F^{[2]}, \ldots, F^{[n]}$:

- **(**) send any $\mathbf{x} \in D^{t-1}$ to the oracle
- 2 return a vector **v** that is linearly dependent with $F^{[t]}(\mathbf{x}, *)$:

•
$$v = 0$$
 if $F^{[t]}(x, *) = 0$;

• otherwise, \mathbf{v} is normalized: its first nonzero entry = 1.

To compute $F^{[1]}(a_1)$ for some $a_1 \in D$:

() send a_1 to the oracle

2 receive a vector **v** that is linearly dependent with $F^{[2]}(a_1, *)$

$${f 3}$$
 if ${f v}=0$, then $F^{[1]}(a_1)=0$

• otherwise, let v_{a_2} be the first nonzero entry (so $v_{a_2} = 1$)

$${\mathcal F}^{[1]}(a_1) = \sum_{b \in D} {\mathcal F}^{[2]}(a_1,b) = {\mathcal F}^{[2]}(a_1,a_2) \cdot \sum_{b \in D} v_b$$

To compute $F^{[2]}(a_1, a_2)$:

() send (a_1, a_2) to the oracle

2 receive **w** that is linearly dependent with $F^{[3]}((a_1, a_2), *)$

3 if
$$w = 0$$
, then $F^{[2]}(a_1, a_2) = 0$

③ otherwise, let w_{a_3} be the first nonzero entry (so $w_{a_3} = 1$)

$$F^{[2]}(a_1, a_2) = \sum_{b \in D} F^{[3]}((a_1, a_2), b) = F^{[3]}(a_1, a_2, a_3) \cdot \sum_{b \in D} w_b$$

• After n-1 steps, we reduce

$$F^{[1]}(a_1) \longrightarrow F^{[n]}(a_1, a_2, \ldots, a_n)$$

for some appropriate a_2, \ldots, a_n , with the help of the oracle. Note that $F = F^{[n]}$ can be evaluated efficiently

• Almost the whole proof of the theorem is trying to understand how and when we can implement this oracle efficiently? • Fix $t \in [n]$. Compute a set of *d*-dimensional vectors

$$\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_h$$

s.t. every row F^[t](x,*) is linearly dependent with one of them
Also need to "know":

$$S_1, S_2, \ldots, S_h \subseteq D^{t-1}$$

s.t. $\mathbf{x} \in S_i$ iff $F^{[t]}(\mathbf{x}, *)$ is linearly dependent with \mathbf{v}_i

- In general, an m×d matrix may have m pairwise linearly independent rows. For F^[t], a d^{t-1}×d matrix, we cannot afford to keep track of d^{t-1} many such vectors v_i.
- 2 In general, the sets S_i 's may be exponentially large in t.

With real weights [Goldberg, Grohe, Jerrum and Thurley] and with complex weights [Cai, C and Lu]

If any two rows of $F^{[t]}$ are either linearly dependent or orthogonal then it can have no more than d pairwise independent rows.

The Block Orthogonality condition

Let $F : D^n \to \mathbb{C}$ be a function defined by an input instance of $\#CSP(\mathcal{L})$, and $t \in [n]$. Every two rows of $F^{[t]}$ are either linearly dependent or orthogonal.

Lemma

If \mathcal{L} does not satisfy the Block Orthogonality condition, then the problem $\#CSP(\mathcal{L})$ is #P-hard.

[Bulatov] and [Dyer and Richerby]: Mal'tsev polymorphism

Witness Function (or Frame) [Dyer and Richerby]

Let $R \subseteq D^n$. If R has a Mal'tsev polymorphism φ , then it has a succinct representation, called a witness function. A witness function ω of R is of linear size in n. Given ω and $\mathbf{x} \in D^n$, one can decide whether $\mathbf{x} \in R$ efficiently.

The Mal'tsev condition

Let $F : D^n \to \mathbb{C}$ be a function defined by an input instance of $\#CSP(\mathcal{L})$, and $t \in [n]$. Then every $S_i \subseteq D^{t-1}$ has a Mal'tsev polymorphism. Indeed the condition requires all such sets to share a common Mal'tsev polymorphism.

Lemma

If \mathcal{L} does not satisfy the Mal'tsev condition, then the problem $\#CSP(\mathcal{L})$ is #P-hard.

- Let $F : D^n \to \mathbb{C}$ denote the function defined by the input For each $t \in [n]$:
 - Compute v₁,..., v_h, for some h ≤ d, such that every F^[t](x, *) is linearly dependent with one of the v_i's
 - **2** compute a witness function ω_i for each S_i

How to compute these objects efficiently?

Consider t = n and $F^{[n]} = F$: need $\mathbf{v}_1, \ldots, \mathbf{v}_h$ and ω_i for S_i

O By [Dyer and Richerby] and the Mal'tsev condition, one can construct a witness function ω for R ⊆ Dⁿ⁻¹:

$$\mathbf{x} \in R \iff \exists b \in D, F(\mathbf{x}, b) \neq 0.$$

3 By definition,
$$R = S_1 \cup S_2 \cup \cdots \cup S_h$$

Can we use ω to compute a witness function ω_i for each S_i

伺い イラト イラト

The setting:

- Let R ⊂ Dⁿ and S₁,..., S_h be an h-way partition of R. It is known that all these sets share a Mal'tsev polymorphism φ.
- We DO NOT know h, though it is guaranteed that $h \leq d$.
- We have a witness function ω of R.
- There is a black box we can query: Upon receiving an x ∈ R, it returns the unique index j ∈ [h] such that x ∈ S_j.

Can we compute *h* and a witness function ω_i for S_i efficiently?

If *R* and the S_1, \ldots, S_h satisfy the following condition:

• For any
$$\mathbf{y} \in D^{\ell}$$
, $\ell \in [n]$, let
 $type(\mathbf{y}) = \left\{ j \in [h] : \exists \mathbf{z} \in D^{n-\ell} \text{ such that } \mathbf{y} \circ \mathbf{z} \in S_j \right\} \subseteq [h]$

The partition condition: For any y, y' ∈ D^ℓ, type(y) and type(y') are either disjoint or the same.

we have an efficient algorithm for splitting.

- A recursive algorithm that, given x ∈ D^ℓ, computes type(x). Here the partition condition is crucial!
- A recursive algorithm that, given x ∈ D^ℓ and j ∈ type(x), finds a y ∈ D^{n-ℓ} such that x ∘ y ∈ S_j.
- Similar Finally, construct a witness function ω_i for each S_i

The Type Partition condition

Essentially it requires that, every time we need to apply the splitting operation when implementing the oracle, the sets R and S_1, \ldots, S_h satisfy the partition condition.

Lemma

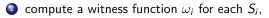
If \mathcal{L} does not satisfy the Type Partition condition, then the problem $\#CSP(\mathcal{L})$ is #P-hard.

< 同 > < 三 > < 三 >

Let $F: D^n \to \mathbb{C}$ denote the function defined by the input Inductively, for t from n to 2:

Use the oracles for $F^{[t+1]}, F^{[t+2]}, \dots, F^{[n]}$ to

Ocompute v₁,..., v_h, where h ≤ d, such that every F^[t](x, *) is linearly dependent with one of the v_i's



South done by using the algorithm for splitting

Finally, compute $\sum_{\mathbf{x}} F(\mathbf{x})$ using these oracles

Determine the decidability of these tractability conditions:

• Given a finite set of complex-valued functions \mathcal{L} , can we decide whether \mathcal{L} satisfies these conditions in finite time?

→ Ξ →

Thank you!

æ

🗇 🕨 🖉 🕑 🖉 🗁