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Codes on graphs

Origins: linear convolutional codes and encoders

I Linear time-invariant systems over finite fields
I Finite-state

I Trellis: finite-state transition diagrams spread out in time
I Underlying graphical model is a simple chain graph, cycle-free

Flowering: capacity-approaching codes and realizations

I Turbo codes, low-density parity-check (LDPC) codes
I Usually described by graphical representations
I For capacity-approaching codes, graphs must have cycles



Linear convolutional codes

Linear convolutional encoders:
linear systems (filters) over finite fields

Example (4-state rate-1
2 binary linear convolutional encoder):

x(D)
D Dt ti

a1(D) = (1 + D2)x(D)

ia2(D) = (1 + D + D2)x(D)

ti



Convolutional codes and local constraints

Convolutional encoder: specified by

I Symbol alphabets Ak (k = time index)

I State spaces Sk

I Local constraint codes Ck ⊆ Sk ×Ak ×Sk+1 (trellis sections)

Example (Ak = Sk = (F2)2):
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Normal graph of a convolutional encoder

Normal graph:

I Constraint codes Ck are represented by vertices

I Each symbol alphabet Ak is involved in precisely one
constraint code; represented by a “dangling edge” (half-edge)

I Each state space Sk is involved in precisely two constraint
codes; represented by an ordinary edge

. . . Sk Sk+1 Sk+2 . . .

Ak Ak+1

Ck Ck+1

Trellis realization ⇔ simple chain graph (cycle-free)



Turbo codes (Berrou et al., 1993)

Rate-1
3 Berrou-type turbo code:
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Approaches Shannon Limit to within 1 dB!



Normal graph of a Berrou-type turbo code
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LDPC codes (Gallager, 1961; rediscovered 1994)
Normal graph of a regular (3, 6) low-density parity-check code:
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Behavioral realizations of linear codes and systems

Linear behavioral realization of a linear code C:

I External variables Ai (code symbols)

I Internal variables Sj (“state variables”)

I Constraint codes Ck , each involving a subset of the variables

I Linear: variable alphabets are vector spaces;
constraint codes are linear (i.e., vector subspaces)

Behavior B: set of all (a, s) that satisfy all constraints

Code C: set of all a that appear in some (a, s) ∈ B

I One-to-one: the projection map B→ C is one-to-one



Normal realizations
Normal realization = realization with degree restrictions:

I Each external variable Ai is involved in one constraint code

I Each internal variable Sj is involved in two constraint codes

I Note: a trellis realization is inherently normal

Lemma: any realization can be “normalized” as follows:

I For each appearance of each variable,
introduce a dummy variable (“replica”)

I For each variable, introduce a repetition constraint code
that constrains all replicas to be equal

Normal graph: natural graphical model of a normal realization

I Constraint codes Ck : vertices

I External variables Ai : half-edges (dangling edges, dongles)

I Internal variables Sj : ordinary edges



Normal graph duality theorem (NGDT)

Generic normal graph:

a ∈ A = ΠkAk
ΠiCi

s ∈ S = ΠjSj

s′ = s =

Dual normal graph:

· replace alphabets Ak ,Sj by dual groups/spaces Âk , Ŝj

· replace constraint codes Ci by orthogonal codes C⊥i
· insert a sign inverter ∼ into every internal variable edge

â ∈ Â = ΠkÂk
ΠiC⊥i

ŝ ∈ Ŝ = Πj Ŝj

ŝ′ = −ŝ ∼

NGDT: the dual graph realizes the orthogonal code C⊥.
Elementary group-theoretic proof : projection-subcode duality.



Example: Orthogonal convolutional codes
Normal graph of a trellis realization, with constraint codes Ck :

. . . Sk Sk+1 Sk+2 . . .

Ak Ak+1

Ck Ck+1

Normal graph of dual realization, with orthogonal constraint codes
C⊥k and sign inverters (omit for binary):

. . . Ŝk −Ŝk+1 Ŝk+1 −Ŝk+2 . . .

Âk Âk+1

C⊥k C⊥k+1∼

NGDT: This dual trellis realization generates C⊥.



Example: Low-density generator matrix codes

An LDGM code is the dual of an LDPC code. Dual realization:
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And now for something holographic...

Normal factor graph duality theorem (NFGDT)

I A normal partition function is represented
by a normal factor graph

I Partition function: a function in “sum of products” form
I “Normal”: same degree restrictions as in normal realizations
I Any partition function can be “normalized”

I NFGDT: the dual normal factor graph represents
the dual partition function

I Dual partition function: Fourier transform

I Corollary: Normal graph duality theorem



(Generalized) partition functions

Partition function: a function expressed in sum-of-products form

Z (x) =
∑
y∈Y

∏
k∈K

fk(xk , yk), x ∈ X ,

I External variables Xi taking values xi in alphabets Xi ;
external configurations x ∈ X =

∏m
i=1Xi

I Internal variables Yj taking values yj in alphabets Yj ;
internal configurations y ∈ Y =

∏n
j=1 Yj

I Factors fk(xk , yk), where xk ⊆ x, yk ⊆ y



Normal partition functions

Normal partition function:
a partition function with normal degree restrictions

I All external variables are involved in precisely one factor

I All internal variables are involved in precisely two factors

Normalization: any partition function may be straightforwardly
converted to an equivalent normal partition function by the
following replication procedure:

I Replace each variable in each factor by a replica variable;

I Constrain all replicas of each variable to be equal
by introducing an equality indicator function factor Φ=,
which equals 1 when they are all the same, and 0 otherwise.



Graphical model of a normal partition function

Normal factor graph:

I Vertices: factors fk(xk , yk)

I Ordinary edges: internal variables Yj (involved in two factors)

I Half-edges: external variables Xi (involved in one factor)



Example: Vector-matrix multiplication

Let v = wM; i.e., vj =
∑

i wiMij

A normal partition function with

I Factors: wi ,Mij

I External variable: J

I Internal variable: I

Normal factor graph:

I J
w M = v

J

Einstein summation convention: sum over all variables that
appear twice



Generalized holographic transformations

General approach: Let U(a, b),S(b, b′) and V (b′, a′) be three
factors whose concatenation USV is equivalent to the identity; i.e.,

δ(a, a′) =
∑

b∈B,b′∈B
U(a, b)S(b, b′)V (b′, a′)

A
=
A

U
B

S
B

V
A

Then in any NFG, any edge may be replaced by such a
concatenation USV without changing the partition function.

External variables may be transformed as well.

⇒ “Generalized Holant theorem” —Al-Bashabsheh and Mao

Special case: “Holant theorem” —Valiant



Example: normal factor graph duality theorem

Theorem (normal factor graph duality theorem):
Let Z (x) be the partition function of a normal factor graph G.
Define the dual normal factor graph Ĝ as follows:

I Replace each variable alphabet in G by its dual alphabet;

I Replace each factor in G by its Fourier transform;

I Insert a sign inverter factor Φ∼ into each ordinary edge.

Then the partition function of Ĝ is the Fourier transform Ẑ (x̂).

—Al-Bashabsheh and Mao [IT, Feb. 2011]; Forney [IT, Mar. 2011]



Lemmas for proof of NFGDT

Lemma 1: Fourier transform is separable:

Â1 Â3

Â2

f̂ = Â1 A1 A3 Â3

Â2

A2

FA1 f FA3

FA2

f̂ : Fourier transform of complex-valued function f
FA: Fourier kernel ω〈a,â〉 (from vector space A to dual space Â)

Lemma 2: FAΦ∼FA = identity ⇒ “holographic” transformation:

A
=
A FA

Â
Φ∼

Â FA
A

Φ∼: sign inverter indicator function over Â



NFGDT proof

Proof: Given a normal factor graph G, partition function Z (x):

f g h

X1 X2 X3

Step 1: apply Lemma 1 globally ⇒ partition function Ẑ (x̂);

f g h

F F F
X1 X2 X3

X̂1 X̂2 X̂3



NFGDT proof (cont.)

Step 2: apply Lemma 2 to each edge; partition function still Ẑ (x̂);

f g hF F F F∼ ∼

F F F

F F∼

X̂1 X̂2 X̂3

Step 3: apply Lemma 1 locally; partition function still Ẑ (x̂).

f̂ ĝ ĥ∼ ∼

∼

X̂1 X̂2 X̂3



Application of NFGDT: NGDT

The normal graph duality theorem for linear codes is a
corollary of the normal factor graph duality theorem.

Conversion of a normal graph realizing C to a normal factor graph
whose partition function is the indicator function ΦC of C:

I Replace each constraint code Ci by its indicator function ΦCi
I Partition function (assuming realization is one-to-one):∑

s∈S

∏
i

ΦCi (ai , si ) = ΦC(a), a ∈ A

Fact: The Fourier transform of the indicator function ΦC of a
linear code C is ΦC⊥ , up to scale.



Application of NFGDT: LDPC codes

Normal factor graph of indicator function ΦC of LDPC code C:
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+,= represent indicator functions of parity-check, repetition codes
Each little box represents a binary Fourier transform.
Decoding via the right graph: the “tanh rule” of LDPC decoding.



Other applications of generalized holographic transforms

I Generating functions of linear codes on graphs: Forney

I “Holographic” algorithms: Valiant, Cai et al.

I Tree reparameterization: Wainwright et al.

I Loop calculus: Chertkov and Chernyak

I Lagrange duality, Legendre transforms: Vontobel and Loeliger

I . . .

—Forney and Vontobel, ITA 2011 (arXiv: 1102.0316)



Generating functions of linear codes on graphs

Given a code indicator function ΦC(a)

I variables Ak taking values ak in alphabets Ak

I a ∈ A =
∏

k Ak

I ΦC(a) = 1 if a ∈ C, otherwise 0

For each Ak , define a set of indeterminates {zk(ak), ak ∈ Ak}
I z(a) =

∏
k zk(ak)

(Exact) generating function:

gC(z) =
∑
a∈A

ΦC(a)z(a) =
∑
a∈C

z(a)



Generating functions of normal partition functions

Let ΦC(a) be given as a normal partition function:

ΦC(a) =
∑
s∈S

∏
i

ΦCi (ai , si ), a ∈ A

Then its generating function is the partition function

gC(z) =
∑
a∈A

z(a)
∑
s∈S

∏
i

ΦCi (ai , si )

of the following normal factor graph:

A
ΦC z



MacWilliams identities

For each Ak , define a dual set of indeterminates {Zk(âk), âk ∈ Âk}
as the Fourier transform of {zk(ak), ak ∈ Ak}

Ak Âkzk FAk
= Zk

Â

Then the generating function ΦC⊥(Z) of the dual code C⊥ is the
Fourier transform of the generating function ΦC(z) (up to scale):

ΦC
A z = ΦC

A FA Â
Z = ΦC⊥

Â
Z

Corollaries: many MacWilliams identities [Forney, 2011]



System theory of normal linear realizations

Normal linear realization:

I Constraints Ck , external variables Ai , internal variables Sj

I Normal degree constraints ⇒ normal graph representation

I Generates a linear code C

Normal graph duality theorem:
The dual normal realization generates the orthogonal code C⊥.

Minimal realization theorem:
A normal realization on a finite connected cycle-free graph G is
minimal if and only if every constraint code Ci is trim and proper.

Unobservable/uncontrollable ⇒ locally reducible:
An unobservable normal realization or its dual uncontrollable
realization is locally reducible.



Trimness and properness
A constraint code Ci is

I trim if the projection of Ci onto any state space Sj that is
involved in Ci is Sj

I proper if Ci has no nonzero codewords that are supported on
a single state variable Sj

Theorem [Gluesing-Luerssen and Williams, 2011]:
A constraint code Ci is trim if and only if C⊥i is proper.

Proof : projection-subcode duality.

Local reducibility

I Obviously if Ci is not trim, then the state space Sj can be
“trimmed” without changing the code C that is realized.

I Correspondingly, if Ci is not proper, then the state space Sj

can be “merged” without changing the code C that is realized.
Proof : normal graph duality theorem.



Trimness and properness (cont.)

Example (dual conventional trellis realizations)
C = {000, 110}; C⊥ = {000, 110, 001, 111}
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Minimal cycle-free graph realizations

Cycle-free graph G:

I any edge cut partitions G into two disconnected graphs P,F
State space theorem [Willems, generalized]:

I In any cycle-free linear realization, minimal state spaces are
uniquely determined up to isomorphism (ΣP ∼= C|P/CP)

Trim-proper minimal realization theorem:

I A normal realization of a linear code C on a finite connected
cycle-free graph G is minimal if and only if
every constraint code Ci is trim and proper.

Proof : Necessity is obvious. For sufficiency, prove by induction:
Trim ⇒ every state in ΣP is reached by some aP ∈ C|P ;
Proper ⇒ every aP ∈ C|P reaches a unique state in ΣP .
Corollary: Straightforward minimal realization algorithm.



Cycle-free vs. cyclic representations

Cycle-free realizations (e.g., trellis realizations):

I Given G, minimal realization of a linear code C
is unique and easily computed

I Straightforward exact decoding algorithms
(e.g., belief propagation)

I However, the state complexity of any cycle-free realization of
a capacity-approaching code is necessarily high

Realizations with cycles (e.g., capacity-approaching codes):

I No unique minimal realizations

I Iterative, approximate decoding algorithms
(e.g., belief propagation)

I Feasible decoding complexity
(e.g., LDPC codes, turbo codes)



Single-cycle (“tail-biting”) trellis realizations
Tail-biting convolutional codes defined on a cyclical time axis:

C0 C2 C4C1 C3

A0 A1 A2 A3 A4S0 S1 S2 S3

S4

The dual realization is also a tail-biting trellis realization:

C⊥0 C⊥2 C⊥4C⊥1 C⊥3

Â0 Â1 Â2 Â3 Â4Ŝ0 Ŝ1 Ŝ2 Ŝ3

Ŝ4

(Sign inverters omitted)

State complexity can be much less than that of conventional trellis
Example: (24, 12, 8) binary Golay code

I Conventional trellis realization: 256 states

I Tail-biting trellis realization: 16 states



Controllability and observability

A linear realization is:

I observable if it is one-to-one—
i.e., if the codeword a determines the state sequence s

I controllable if its constraints are independent

Theorem: A linear realization is observable if and only if
its dual realization is controllable.

Example (dual tail-biting trellis realizations):
(C = {000, 011, 101, 110}; C⊥ = {000, 111})
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Controllability test

Theorem: A linear realization is controllable if and only if

dim B =
∑

i

dim Ci −
∑

j

dimSj .

Examples:
(TBT 1): 3 = 6− 3⇒ controllable.
(TBT 2): 1 6= 3− 3⇒ uncontrollable.

Corollary: A linear parity-check realization (e.g., an LDPC code)
is controllable if and only if its parity checks are independent.
Proof : count dimensions.



Unobservable/uncontrollable ⇒ locally reducible

Theorem: An unobservable linear realization on a finite graph G
with a nonzero trajectory (0, s) ∈ B may be locally reduced by
trimming any single state space in the support of s.
The dual uncontrollable realization may be correspondingly locally
reduced by the dual merging (“pinching”) operation.
Proof : construction.

Example (dual tail-biting trellis realizations, cont.):
(C = {000, 011, 101, 110}; C⊥ = {000, 111})
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Unobservability and cycles

Theorem: Given an unobservable trim and proper linear
realization on a finite graph G with a nonzero trajectory (0, s),
the support of (0, s) must be a cycle or generalized cycle G′ ⊆ G.

Cycle: a finite connected graph with vertex degrees = 2.
Generalized cycle: same, with vertex degrees ≥ 2 (a “2-core”).

Example of a generalized cycle:



Unobservability and cycles (cont.)

Theorem (cont.): On an unobservable trajectory (0, s) with
support G′, all first state coordinates may be taken to be equal.
In the dual uncontrollable realization, the corresponding global
constraint on G′ partitions B into disconnected cosets.

Example (dual tail-biting trellis realizations):
C = 〈01110, 10010, 01101〉; C⊥ = 〈10111, 01100〉
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Unobservability and cycles (cont.)

Theorem (cont.): A primal repetition realization on G′ determines
the possible values of the first state coordinates in the subspace of
B generated by (0, s). The dual zero-sum realization on G′
determines the constraints on all possible trajectories of the first
dual state coordinates in the dual uncontrollable realization.

= = = =

= = = =

= = = =

(a)
+ ss

+ s + s +

s+ ss
+ s + s +

s+ s + s + s +

(b)
= = = =

+ = = +

= = = =

(c)

(a) repetition realization defined on a generalized cycle G′;
(b) dual zero-sum realization (• = inverter); (c) equivalent dual.


