Codes on Graphs, Normal Realizations, and Partition Functions

G. David Forney, Jr.¹

Workshop on Counting, Inference and Optimization Princeton, NJ

November 3, 2011

¹Joint work with: Heide Gluesing-Luerssen, Yongyi Mao, Pascal Vontobel 🛓 🔊 🤉

Codes on graphs

Origins: linear convolutional codes and encoders

- Linear time-invariant systems over finite fields
- Finite-state
 - > Trellis: finite-state transition diagrams spread out in time
 - Underlying graphical model is a simple chain graph, cycle-free

Flowering: capacity-approaching codes and realizations

- Turbo codes, low-density parity-check (LDPC) codes
 - Usually described by graphical representations
 - ► For capacity-approaching codes, graphs must have cycles

Linear convolutional codes

Linear convolutional encoders:

linear systems (filters) over finite fields

Example (4-state rate- $\frac{1}{2}$ binary linear convolutional encoder):

Convolutional codes and local constraints

Convolutional encoder: specified by

- Symbol alphabets A_k (k = time index)
- State spaces S_k
- ► Local constraint codes $C_k \subseteq S_k \times A_k \times S_{k+1}$ (trellis sections)

Normal graph of a convolutional encoder

Normal graph:

- Constraint codes C_k are represented by vertices
- Each symbol alphabet A_k is involved in precisely <u>one</u> constraint code; represented by a "dangling edge" (half-edge)
- Each state space S_k is involved in precisely <u>two</u> constraint codes; represented by an ordinary edge

Trellis realization \Leftrightarrow simple chain graph (cycle-free)

Turbo codes (Berrou et al., 1993)

Rate- $\frac{1}{3}$ Berrou-type turbo code:

Approaches Shannon Limit to within 1 dB!

Normal graph of a Berrou-type turbo code

LDPC codes (Gallager, 1961; rediscovered 1994) Normal graph of a regular (3,6) low-density parity-check code:

Approaches Shannon Limit to within 1 dB!

Behavioral realizations of linear codes and systems

Linear behavioral realization of a linear code C:

- External variables A_i (code symbols)
- ▶ Internal variables S_i ("state variables")
- **Constraint codes** C_k , each involving a subset of the variables

 Linear: variable alphabets are vector spaces; constraint codes are linear (*i.e.*, vector subspaces)

Behavior \mathfrak{B} : set of all (\mathbf{a}, \mathbf{s}) that satisfy all constraints

Code \mathcal{C} : set of all a that appear in some $(a, s) \in \mathfrak{B}$

• <u>One-to-one</u>: the projection map $\mathfrak{B} \to \mathcal{C}$ is one-to-one

Normal realizations

Normal realization = realization with **degree restrictions**:

- Each external variable A_i is involved in <u>one</u> constraint code
- Each internal variable S_j is involved in <u>two</u> constraint codes
- <u>Note</u>: a trellis realization is inherently normal

Lemma: any realization can be "normalized" as follows:

- For each appearance of each variable, introduce a dummy variable ("replica")
- For each variable, introduce a repetition constraint code that constrains all replicas to be equal

Normal graph: natural graphical model of a normal realization

- Constraint codes C_k : vertices
- External variables A_i: half-edges (dangling edges, dongles)

• Internal variables S_j : ordinary edges

Normal graph duality theorem (NGDT)

Generic normal graph:

$$\mathbf{a} \in \mathcal{A} = \prod_k \mathcal{A}_k \qquad \mathbf{s} \in \mathcal{S} = \prod_j \mathcal{S}_j$$
$$\Pi_j \mathcal{C}_i \qquad \mathbf{s}' = \mathbf{s}$$

Dual normal graph:

- \cdot replace alphabets $\mathcal{A}_k, \mathcal{S}_j$ by dual groups/spaces $\hat{\mathcal{A}}_k, \hat{\mathcal{S}}_j$
- · replace constraint codes C_i by orthogonal codes C_i^{\perp}
- \cdot insert a sign inverter \sim into every internal variable edge

$$\hat{\mathbf{a}} \in \hat{\mathcal{A}} = \prod_k \hat{\mathcal{A}}_k \qquad \qquad \hat{\mathbf{s}} \in \hat{\mathcal{S}} = \prod_j \hat{\mathcal{S}}_j \\ \Pi_j \mathcal{C}_i^{\perp} \qquad \hat{\mathbf{s}}' = -\hat{\mathbf{s}} \qquad \qquad \sim$$

NGDT: the dual graph realizes the orthogonal code C^{\perp} . *Elementary group-theoretic proof*: projection-subcode duality.

Example: Orthogonal convolutional codes

Normal graph of a trellis realization, with constraint codes C_k :

Normal graph of dual realization, with orthogonal constraint codes C_k^{\perp} and sign inverters (omit for binary):

NGDT: This dual trellis realization generates C^{\perp} .

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ うへの

Example: Low-density generator matrix codes An LDGM code is the dual of an LDPC code. Dual realization:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ●

And now for something holographic...

Normal factor graph duality theorem (NFGDT)

A normal partition function is represented by a normal factor graph

- Partition function: a function in "sum of products" form
- "Normal": same degree restrictions as in normal realizations

- Any partition function can be "normalized"
- NFGDT: the dual normal factor graph represents the dual partition function
 - Dual partition function: Fourier transform
- Corollary: Normal graph duality theorem

(Generalized) partition functions

Partition function: a function expressed in sum-of-products form

$$Z(\mathbf{x}) = \sum_{\mathbf{y}\in\mathcal{Y}}\prod_{k\in\mathcal{K}}f_k(\mathbf{x}_k,\mathbf{y}_k), \quad \mathbf{x}\in\mathcal{X},$$

- ► External variables X_i taking values x_i in alphabets X_i; external configurations x ∈ X = ∏^m_{i=1} X_i
- ► Internal variables Y_j taking values y_j in alphabets Y_j; internal configurations y ∈ Y = ∏ⁿ_{i=1} Y_j

Factors $f_k(\mathbf{x}_k, \mathbf{y}_k)$, where $\mathbf{x}_k \subseteq \mathbf{x}, \mathbf{y}_k \subseteq \mathbf{y}$

Normal partition functions

Normal partition function:

a partition function with normal degree restrictions

- All external variables are involved in precisely one factor
- ► All internal variables are involved in precisely two factors

Normalization: any partition function may be straightforwardly converted to an equivalent normal partition function by the following **replication procedure**:

- Replace each variable in each factor by a replica variable;
- Constrain all replicas of each variable to be equal by introducing an equality indicator function factor Φ₌, which equals 1 when they are all the same, and 0 otherwise.

Graphical model of a normal partition function

Normal factor graph:

- Vertices: factors $f_k(\mathbf{x}_k, \mathbf{y}_k)$
- Ordinary edges: internal variables Y_j (involved in two factors)

▶ Half-edges: external variables X_i (involved in one factor)

Example: Vector-matrix multiplication

Let
$$\mathbf{v} = \mathbf{w}M$$
; *i.e.*, $v_j = \sum_i w_i M_{ij}$

A normal partition function with

- ► Factors: w_i, M_{ij}
- External variable: J
- Internal variable: I

Normal factor graph:

Einstein summation convention: sum over all variables that appear twice

Generalized holographic transformations

General approach: Let U(a, b), S(b, b') and V(b', a') be three factors whose concatenation USV is equivalent to the identity; *i.e.*,

$$\delta(a, a') = \sum_{b \in \mathcal{B}, b' \in \mathcal{B}} U(a, b) S(b, b') V(b', a')$$
$$\mathcal{A} = \mathcal{A} \bigcup \mathcal{B} S \mathcal{B} V \mathcal{A}$$

Then in any NFG, any edge may be replaced by such a concatenation USV without changing the partition function.

External variables may be transformed as well.

 \Rightarrow "Generalized Holant theorem" —Al-Bashabsheh and Mao Special case: "Holant theorem" —Valiant

Example: normal factor graph duality theorem

Theorem (normal factor graph duality theorem): Let $Z(\mathbf{x})$ be the partition function of a normal factor graph \mathcal{G} . Define the **dual normal factor graph** $\hat{\mathcal{G}}$ as follows:

- Replace each variable alphabet in \mathcal{G} by its dual alphabet;
- ▶ Replace each factor in *G* by its Fourier transform;
- \blacktriangleright Insert a sign inverter factor Φ_{\sim} into each ordinary edge.

Then the partition function of $\hat{\mathcal{G}}$ is the Fourier transform $\hat{Z}(\hat{\mathbf{x}})$.

-Al-Bashabsheh and Mao [IT, Feb. 2011]; Forney [IT, Mar. 2011]

Lemmas for proof of NFGDT

Lemma 1: Fourier transform is separable: $\hat{\mathcal{A}}_2$

 \hat{f} : Fourier transform of complex-valued function f $\mathcal{F}_{\mathcal{A}}$: Fourier kernel $\omega^{\langle a, \hat{a} \rangle}$ (from vector space \mathcal{A} to dual space $\hat{\mathcal{A}}$)

 $\textbf{Lemma 2: } \mathcal{F}_{\mathcal{A}} \Phi_{\sim} \mathcal{F}_{\mathcal{A}} = \text{identity} \Rightarrow \text{``holographic'' transformation:}$

$$\begin{array}{c} \mathcal{A} \\ \hline \mathcal{A} \\ \end{array} = \begin{array}{c} \mathcal{A} \\ \mathcal{F}_{\mathcal{A}} \\ \mathcal{F}_{\mathcal{A}} \\ \end{array} \begin{array}{c} \hat{\mathcal{A}} \\ \mathcal{\Phi}_{\sim} \\ \mathcal{F}_{\mathcal{A}} \\ \mathcal{F}_{\mathcal{A}} \\ \end{array} \begin{array}{c} \mathcal{A} \\ \mathcal{F}_{\mathcal{A}} \\ \mathcal{F}$$

 $\Phi_{\sim}:$ sign inverter indicator function over $\hat{\mathcal{A}}$

NFGDT proof

Proof: Given a normal factor graph \mathcal{G} , partition function $Z(\mathbf{x})$:

Step 1: apply Lemma 1 globally \Rightarrow partition function $\hat{Z}(\hat{\mathbf{x}})$;

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

NFGDT proof (cont.)

Step 2: apply Lemma 2 to each edge; partition function still $\hat{Z}(\hat{\mathbf{x}})$;

Step 3: apply Lemma 1 locally; partition function still $\hat{Z}(\hat{\mathbf{x}})$.

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Application of NFGDT: NGDT

The **normal graph duality theorem for linear codes** is a corollary of the normal factor graph duality theorem.

Conversion of a normal graph realizing ${\mathcal C}$ to a normal factor graph whose partition function is the indicator function $\Phi_{\mathcal C}$ of ${\mathcal C}$:

- ▶ Replace each constraint code C_i by its indicator function Φ_{C_i}
- Partition function (assuming realization is one-to-one):

$$\sum_{\mathbf{s}\in\mathcal{S}}\prod_{i}\Phi_{\mathcal{C}_{i}}(\mathbf{a}_{i},\mathbf{s}_{i})=\Phi_{\mathcal{C}}(\mathbf{a}),\mathbf{a}\in\mathcal{A}$$

Fact: The Fourier transform of the indicator function $\Phi_{\mathcal{C}}$ of a linear code \mathcal{C} is $\Phi_{\mathcal{C}^{\perp}}$, up to scale.

Application of NFGDT: LDPC codes

Normal factor graph of indicator function $\Phi_{\mathcal{C}}$ of LDPC code \mathcal{C} :

+, = represent indicator functions of parity-check, repetition codes Each little box represents a binary Fourier transform. Decoding via the right graph: the "tanh rule" of LDPC decoding.

Other applications of generalized holographic transforms

- Generating functions of linear codes on graphs: Forney
- "Holographic" algorithms: Valiant, Cai et al.
- Tree reparameterization: Wainwright et al.
- Loop calculus: Chertkov and Chernyak
- Lagrange duality, Legendre transforms: Vontobel and Loeliger
 ...

-Forney and Vontobel, ITA 2011 (arXiv: 1102.0316)

Generating functions of linear codes on graphs

Given a code indicator function $\Phi_{\mathcal{C}}(\mathbf{a})$

• variables A_k taking values a_k in alphabets A_k

•
$$\mathbf{a} \in \mathcal{A} = \prod_k \mathcal{A}_k$$

• $\Phi_{\mathcal{C}}(\mathbf{a}) = 1$ if $\mathbf{a} \in \mathcal{C}$, otherwise 0

For each A_k , define a set of **indeterminates** $\{z_k(a_k), a_k \in A_k\}$

► $\mathbf{z}(\mathbf{a}) = \prod_k z_k(a_k)$

(Exact) generating function:

$$g_{\mathcal{C}}(\mathsf{z}) = \sum_{\mathsf{a} \in \mathcal{A}} \Phi_{\mathcal{C}}(\mathsf{a})\mathsf{z}(\mathsf{a}) = \sum_{\mathsf{a} \in \mathcal{C}} \mathsf{z}(\mathsf{a})$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Generating functions of normal partition functions

Let $\Phi_{\mathcal{C}}(\mathbf{a})$ be given as a normal partition function:

$$\Phi_{\mathcal{C}}(\mathsf{a}) = \sum_{\mathsf{s} \in \mathcal{S}} \prod_i \Phi_{\mathcal{C}_i}(\mathsf{a}_i,\mathsf{s}_i), \mathsf{a} \in \mathcal{A}$$

Then its generating function is the partition function

$$g_{\mathcal{C}}(\mathsf{z}) = \sum_{\mathsf{a} \in \mathcal{A}} \mathsf{z}(\mathsf{a}) \sum_{\mathsf{s} \in \mathcal{S}} \prod_{i} \Phi_{\mathcal{C}_{i}}(\mathsf{a}_{i},\mathsf{s}_{i})$$

of the following normal factor graph:

MacWilliams identities

For each A_k , define a dual set of indeterminates $\{Z_k(\hat{a}_k), \hat{a}_k \in \hat{A}_k\}$ as the Fourier transform of $\{z_k(a_k), a_k \in A_k\}$

Then the generating function $\Phi_{\mathcal{C}^{\perp}}(\mathbf{Z})$ of the dual code \mathcal{C}^{\perp} is the Fourier transform of the generating function $\Phi_{\mathcal{C}}(\mathbf{z})$ (up to scale):

Corollaries: many MacWilliams identities [Forney, 2011]

System theory of normal linear realizations

Normal linear realization:

- Constraints C_k , external variables A_i , internal variables S_j
- ▶ Normal degree constraints \Rightarrow normal graph representation
- ▶ Generates a linear code C

Normal graph duality theorem:

The dual normal realization generates the orthogonal code \mathcal{C}^{\perp} .

Minimal realization theorem:

A normal realization on a finite connected **cycle-free** graph G is minimal if and only if every constraint code C_i is **trim** and **proper**.

Unobservable/uncontrollable \Rightarrow locally reducible:

An unobservable normal realization or its dual uncontrollable realization is locally reducible.

Trimness and properness

A constraint code C_i is

- ► trim if the projection of C_i onto any state space S_j that is involved in C_i is S_j
- proper if C_i has no nonzero codewords that are supported on a single state variable S_j

Theorem [Gluesing-Luerssen and Williams, 2011]: A constraint code C_i is trim if and only if C_i^{\perp} is proper. *Proof*: projection-subcode duality.

Local reducibility

- ► Obviously if C_i is not trim, then the state space S_j can be "trimmed" without changing the code C that is realized.
- Correspondingly, if C_i is not proper, then the state space S_j can be "merged" without changing the code C that is realized. Proof: normal graph duality theorem.

Trimness and properness (cont.)

Example (dual conventional trellis realizations) $C = \{000, 110\}; \quad C^{\perp} = \{000, 110, 001, 111\}$

Minimal cycle-free graph realizations

Cycle-free graph \mathcal{G} :

- ▶ any edge cut partitions G into two disconnected graphs P, F
 State space theorem [Willems, generalized]:
 - In any cycle-free linear realization, minimal state spaces are uniquely determined up to isomorphism (Σ_P ≃ C_{|P}/C_P)
- Trim-proper minimal realization theorem:
 - ► A normal realization of a linear code C on a finite connected cycle-free graph G is minimal if and only if every constraint code C_i is trim and proper.

 $\begin{array}{l} \textit{Proof:} \ensuremath{\text{Necessity}}\ is obvious. \ \mbox{For sufficiency, prove by induction:} \\ \textit{Trim} \Rightarrow \mbox{every state in } \Sigma_{\mathcal{P}} \ \mbox{is reached by some } \mathbf{a}_{\mathcal{P}} \in \mathcal{C}_{|\mathcal{P}}; \\ \textit{Proper} \Rightarrow \mbox{every } \mathbf{a}_{\mathcal{P}} \in \mathcal{C}_{|\mathcal{P}} \ \mbox{reaches a unique state in } \Sigma_{\mathcal{P}}. \\ \mbox{Corollary: Straightforward minimal realization algorithm.} \end{array}$

Cycle-free vs. cyclic representations

Cycle-free realizations (*e.g.*, trellis realizations):

- Given G, minimal realization of a linear code C is unique and easily computed
- Straightforward exact decoding algorithms (*e.g.*, belief propagation)
- However, the state complexity of any cycle-free realization of a capacity-approaching code is necessarily high

Realizations with cycles (*e.g.*, capacity-approaching codes):

- No unique minimal realizations
- Iterative, approximate decoding algorithms (e.g., belief propagation)
- Feasible decoding complexity (*e.g.*, LDPC codes, turbo codes)

Single-cycle ("tail-biting") trellis realizations Tail-biting convolutional codes defined on a cyclical time axis:

The dual realization is also a tail-biting trellis realization:

(Sign inverters omitted)

State complexity can be much less than that of conventional trellis **Example**: (24, 12, 8) binary Golay code

- Conventional trellis realization: 256 states
- Tail-biting trellis realization: 16 states

Controllability and observability

A linear realization is:

observable if it is one-to-one—

i.e., if the codeword \mathbf{a} determines the state sequence \mathbf{s}

controllable if its constraints are independent

Theorem: A linear realization is observable if and only if its dual realization is controllable.

Example (dual tail-biting trellis realizations): $(C = \{000, 011, 101, 110\}; C^{\perp} = \{000, 111\})$

Controllability test

Theorem: A linear realization is controllable if and only if

$$\dim \mathfrak{B} = \sum_{i} \dim \mathcal{C}_{i} - \sum_{j} \dim \mathcal{S}_{j}.$$

Examples:

(TBT 1): $3 = 6 - 3 \Rightarrow$ controllable. (TBT 2): $1 \neq 3 - 3 \Rightarrow$ uncontrollable.

Corollary: A linear parity-check realization (*e.g.*, an LDPC code) is controllable if and only if its parity checks are independent. *Proof*: count dimensions.

Unobservable/uncontrollable \Rightarrow locally reducible

Theorem: An unobservable linear realization on a finite graph \mathcal{G} with a nonzero trajectory $(\mathbf{0}, \mathbf{s}) \in \mathfrak{B}$ may be locally reduced by trimming any single state space in the support of \mathbf{s} . The dual uncontrollable realization may be correspondingly locally reduced by the dual merging ("pinching") operation. *Proof*: construction.

Example (dual tail-biting trellis realizations, cont.): $(C = \{000, 011, 101, 110\}; C^{\perp} = \{000, 111\})$

Unobservability and cycles

Theorem: Given an unobservable trim and proper linear realization on a finite graph \mathcal{G} with a nonzero trajectory $(\mathbf{0}, \mathbf{s})$, the support of $(\mathbf{0}, \mathbf{s})$ must be a cycle or generalized cycle $\mathcal{G}' \subseteq \mathcal{G}$.

Cycle: a finite connected graph with vertex degrees = 2. **Generalized cycle**: same, with vertex degrees \geq 2 (a "2-core").

Example of a generalized cycle:

Unobservability and cycles (cont.)

Theorem (cont.): On an unobservable trajectory $(\mathbf{0}, \mathbf{s})$ with support \mathcal{G}' , all first state coordinates may be taken to be equal. In the dual uncontrollable realization, the corresponding global constraint on \mathcal{G}' partitions \mathfrak{B} into disconnected cosets.

Example (dual tail-biting trellis realizations): $C = \langle 01110, 10010, 01101 \rangle; \quad C^{\perp} = \langle 10111, 01100 \rangle$

Unobservability and cycles (cont.)

Theorem (cont.): A primal repetition realization on \mathcal{G}' determines the possible values of the first state coordinates in the subspace of \mathfrak{B} generated by $(\mathbf{0}, \mathbf{s})$. The dual zero-sum realization on \mathcal{G}' determines the constraints on all possible trajectories of the first dual state coordinates in the dual uncontrollable realization.

(a) repetition realization defined on a generalized cycle G'; (b) dual zero-sum realization (• = inverter); (c) equivalent dual.