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Support, Newton Polytope and Other

Things

Consider a polynomial pol(z1, ..., zm) = ∑ ar1,...,rm

∏
1≤i≤m zri

i ;

The support is defined as supp(pol) = {(r1, ..., rm) ∈

Zm
+ : ar1,...,rm 6= 0

The Newton Polytope is defined as

NP (pol) = CO(supp(pol)), i.e. the convex hull of the

support.

A few examples:

1. pol(z1, ..., zm) = 1+Sym1(z1, ..., zm)+...+Symm(z1, ..., zm)

then NP (pol) is the box

Boxm = {(x1, ..., xm) : 0 ≤ xi ≤ 1}.

2. pol(z1, ..., zm) = ∑
r1+...+rm≤k

∏
1≤i≤m zri

i

then NP (pol) ⊂ kPyrm, where the pyramid

Pyrm = {(x1, ..., xm) : ∑1≤i≤m xi ≤ 1; xi ≥ 0}
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Degree of a subset

degpol(S) = max(r1,...,rm)∈supp(pol)
∑

i∈S ri.

Note that

(r1, ..., rm) ∈ supp(pol) ⇒ ∑
i∈S ri ≤ degpol(S), S ⊂

{1, ...,m}

(x1, ..., xm) ∈ NP (pol) ⇒ ∑
i∈S xi ≤ degpol(S), S ⊂

{1, ...,m};

Example 0.1: A is n × n a non-negat. matrix;

Col(j) = {i : A(i, j) > 0};

ProdA(x1, ..., xn) =: ∏1≤i≤n
∑

1≤j≤n A(i, j)xj.

For this polynomial degProdA
(S) = | ∪j∈S Col(j)| and

(1, 1, ..., 1) ∈ supp(ProdA) ⇒ | ∪j∈S Col(j)| ≥ |S|.

Submodular Functions:

f (S1∪S2)+f (S1∩S2) ≤ f (S1)+f (S2), S1, S2 ⊂ {1, ...,m}
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Capacities

Applies to the case of nonnegative coefficients

Cap(pol) = inf
xi>0

pol(x1, ..., xm)∏
1≤i≤m xi

Note that Cap(pol) ≥ ∂m

∂x1...∂xn
pol(0).

Cpol(y1, ..., ym) =: inf
xi>0

pol(x1, ..., xm)∏
1≤i≤m(xi

yi
)yi

, yi ≥ 0.

Note that Cpol(y1, ..., ym) > 0 iff (y1, ..., ym) ∈ NP (pol).

A (discrete) subset S ⊂ Zm is called D-convex if

CO(S) ∩ Zm = S.

...and natural definition of convexity/concavity of func-

tions defined on (non-convex) sets:

F (a1Z1 + ... + akZk) ≤ (≥)a1F (Z1) + ... + akF (Zk) :

Z1, ..., Zk,
∑

1≤i≤k aiZi ∈ S; ai ≥ 0, ∑1≤i≤k ai = 1.
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The Minkowski sum and the Mixed Volume

Minkowski sum: A + B = {X + Y : X ∈ A, Y ∈

B}.

The convexity of A:

a1A + a2A + ... + akA = (a1 + ... + ak)A : ai > 0.

K = (K1, ..., Kn) is a n-tuple of convex compact

subsets in the Euclidean space Rn;

VK(λ1, ..., λn) =: V ol(λ1K1 + · · · + λnKn), λi ≥ 0.

Herman Minkowski proved in 1903(?) that VK is a ho-

mogeneous polynomial with non-negative coefficients.

The mixed volume:

V (K1, ..., Kn) =:
∂n

∂λ1...∂λn
VK(0, ..., 0).

i.e. the mixed volume V (K1, ..., Kn) is the coefficient

of the monomial ∏1≤i≤n λi in the Minkowski polynomial

VK (the mixed derivative).
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The Soviet Surprise

Bernshtein’s theorem (1975): number of iso-

lated toric solutions of the system of poly-

nomial equations pi(x1, ..., xn) = 0; 1 ≤ i ≤ n

is bounded by (and generically equal to) the

mixed volume V (NP (p1), ..., NP (pn)).

Example 0.2: deg(pi) ≤ Di, i.e. NP (pi) ⊂ DiPyrn, 1 ≤

i ≤ n. It follows that

V (NP (p1), ..., NP (pn)) ≤ V (D1Pyrn, ..., DnPyrn) =

= ∏
1≤i≤n Din!V ol(Pyrn) = ∏

1≤i≤n Di

And now there is an “industry” computing this mixed

volume...

6



Examples of the Mixed Volume

Two problems: to evaluate the volume polynomial

VK(λ1, ..., λn) and to compute its mixed derivative.

1. Ki = T, 1 ≤ i ≤ n; V (T, ..., T ) = n!V ol(T );

already SharpP-HARD.

2. The convex sets are coordinate boxes:

Bi = Diag(A(1, i), ..., A(n, i))Boxn, the matrix A

is nonnegative;

V ol(x1B1 + ...xnBn) = ProdA(x1, ..., xn), where

the product polynomial

ProdA(x1, ..., xn) =: ∏1≤i≤n
∑

1≤j≤n A(i, j)xj.

(Easy to compute). The mixed volume is equal to

the permanent:

V (B1, ..., Bn) = Per(A) =: ∑σ∈Sn

∏
1≤i≤n A(i, σ(i)).

Is SharpP-Complete if ”most” of columns have at
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least three non-zero entries. In terms of the corre-

sponding Newton Polytopes, that means that the

polynomial has at least 8 monomials.
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Parallelograms: Ki = Zon(ei, Aei) = {xei +

yAei : 0 ≤ x, y ≤ 1}, A is n× n matrix.

V ol(x1K1 + ...xnKn) =

= (∏1≤i≤n xi)V ol(Boxn+Diag(X−1)ADiag(X)Boxn).

The evaluation is SharpP-HARD!

Mixed Volume of Parallelograms: V (K1, ..., Kn) = MVA =:
∑

S⊂[1,n] | det (AS,S) |

Note that ∑
S⊂[1,n] det (AS,S) = det(I + A). But the

sign is a problem: SharpP-Complete, even if A is an

unimodular matrix:

A =


0 I I

Perm1 0 0
Perm2 0 0

 ,

where the three permutation matrices I, Perm1, P erm2

are not overlaping. (Actually, MVA = Per(I+Perm1+

Perm2).) In terms of polynomials: n polynomials of

the form a + xi + xkxl + xixkxl,

2n polynomials of the forms b + xj + xm + xjxm.
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What is known in the general case? (I mean

polynomial time algorithms.)

We consider the well-presented compact convex sets

with weak membership oracles.

1. If the number of distinct sets in the tuple (K1, ..., Kn)

is roughly O(log(n)) then there is FPRAS

(i.e. (1 + ε)-approximation, complexity poly(n, 1
ε))

for the mixed volume V (K1, ..., Kn).

(Dyer,Gritzman,Hufnagel;1998).

2. The general case: (Barvinok,1998) - randomized al-

gorithm with nO(n)-approximation.

(Gurvits,Samorodnitsky;2000,2002) - deterministic

algorithm with nO(n)-approximation.

3. The general case ; (Gurvits, 2007, 2009) - random-

ized algorithm with en-approximation and the bet-

ter exponents if most of the sets have small dim..
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One of the main results

My result is based on the following theorem: Recall the

notion of capacity:

Cap(pol) = inf
xi>0

pol(x1, ..., xm)∏
1≤i≤m xi

Theorem 0.3: Let K = (K1...Kn) be a n-tuple

convex compact subsets in the Euclidean space Rn.

Then the following inequality holds:

V (K1, ..., Kn) ≤ Cap(VK) ≤ nn

n!
V (K1, ..., Kn). (1)

The right ineq. in (1) is attained iff Cap(VK) = 0

or Ki = aiK1 + {bi}, i ≥ 2.

If affine dimensions are ”small”, say aff (Ki) ≤ d, then

Cap(VK) ≤ (αd)
nV (K1, ..., Kn), (αd)

−1 = min
x>0

∑
0≤i≤d

xi

i!

x
.

Note that α2 =
√

2 + 1 < e.
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Log-Convexity, Log-Concavity and all that

JAZZ

F : K → R+, log(F ) is convex, i.e (F (X1+X2
2 ))2 ≤

F (X1)F (X2) or
 F (X1) F (X1+X2

2 )
F (X1+X2

2 ) F (X2)

 � 0; X1, X2 ∈ K.

This proves that the set of log-convex functions is a

convex cone. One interesting sub-set:

log(pol(exp(y1), ..., exp(yn))) is convex on Rn provided

the coefficients of the polynomial (entire function) pol

are all non-negative. This observation gives the follow-

ing inequality for such functions:

p(x1, ..., xm)

p(y1, ..., ym)
≥ ∏

1≤i≤m
(
xi

yi
)gi, gi =

∂
∂yi

p(y1, ..., ym)yi

p(y1, ..., ym)
;

(2)
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Log-convexity is a very usefull thing: it allows poly-

time algorthms for many things, including Capacity:

log(Cap(pol)) = infy1,...,ym(log(pol(exp(y1), ..., exp(yn)))−
∑

1≤i≤m yi).

It is the heart of such seemingly unrelated results as

Bregman’s upper bound on the permanent of boolean

matrices and monotonicity of Baum-Welsh algorithm

for HMM. Here is one surprising application:
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Keith Ball’s Inequality

Let X1, ...., Xl ∈ Rn; ||Xi||2 =: tr(XiX
T
i ) = 1, 1 ≤

i ≤ l and ∑
1≤i≤l aiXiX

T
i = I . Then the following

inequality holds:

V ol(b1[Xi] + .... + bl[Xl]) ≥
∏

1≤i≤l
(
bi

ai
)ai,

here the interval [Xi] = {aXi, 0 ≤ a ≤ 1}.

Proof: V ol(b1[Xi] + .... + bl[Xl]) =

= ∑
1≤j1<...<jn≤l |Det([Xj1|...|Xjn])|

∏
1≤i≤n bji ≥

(the Hadamard’s inequality: |Det([Xj1|...|Xjn])| ≤ 1)

≥ ∑
1≤j1<...<jn≤l |Det([Xj1|...|Xjn|2

∏
1≤i≤n bji =

= Det(b1X1X
T
1 + ... + blXlX

T
l ).
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V ol(b1[Xi]+....+bl[Xl]) ≥ Det(b1X1X
T
1 +...+blXlX

T
l ).

Define p(b1, ..., bl) =: Det(b1X1X
T
1 + ... + blXlX

T
l ).

Then

∂

∂ai
p(a1, ..., al) = 1; p(a1, ..., al) = 1.

Using the LOG-CONVEXITY of p(exp(x1), ..., exp(xl))

(ineq. (2)), we get that:

p(b1, ..., bl)

p(a1, ..., al)
= p(b1, ..., bl) ≥

∏
1≤i≤l

(
bi

ai
)ai.
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Log-Concavity is not as nice, sum of Log-Concave

function is not nec. Log-Concave. Yet, Log-Concavity

is supremely powerful tool, especially in proving lower

bounds: Brunn-Minkowski, Isoperemetric Theorems,

Concentration results in probability theory ....

I will introduce a ”slightly” more general, yet com-

pletelly natural generalization, which has even more

magical proof power.

Next few pages give a brief historical motivaton(or sur-

vey).
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Newton’s inequalities

x1, x2, ..., xn are real (non-negative) numbers;

P (t) = ∏
1≤i≤n(t + xi) = ∑

0≤i≤n tiai. Then
 ai(

n
i

)

2

≥ ai−1(
n

i−1

) ai+1(
n

i+1

) : 1 ≤ i ≤ n− 1

In other words the sequence

(n!P (0), (n− 1)!P (1)(0), ..., (n− i)!P (i)(0), ..., P (n)(0))

is Log-Concave

Define the set of Log-Concave sequences:

LC(n + 1) = {(t0, ..., tn) ∈ Rn+1
+ : t2i ≥ ti−1ti+1 : 1 ≤

i ≤ n− 1}

Necessary condition for real rootedness, but what

does it really mean?
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For polynomials with nonnegative coefficients New-

ton’s inequalities can be restated as

(
n−i
√
p(i)

)(2)
(0) ≤ 0, 0 ≤ i ≤ n− 1. (3)

If the roots are real, i.e.

P (t) = C(t + c1)...(t + cn); ci, C ≥ 0, then n
√
P (t) is

concave on R+

(As simple as x2 + y2 ≥ 2xy).

Note that I just gave another proof of Newton’s in-

equalities, albeit for the nonnegative coefficients case.

Theorem 0.4: The inequalities (3) propagate: i.e.

they imply that

(
n−i
√
p(i)

)(2)
(t) ≤ 0, 0 ≤ i ≤ n− 1, t ≥ 0.
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Call a positive sequence (b0, ..., bn) good if

(b0P (0), b1P
(1)(0), ..., biP

(i)(0), ..., bnP
(n)(0)) ∈ LC(n+

1) implies the inclusion for all t ≥ 0.

Theorem 0.5: Let (b0, ..., bk) be a positive sequence.

Define ci = bi
bi+1

, 0 ≤ i ≤ k − 1. The sequence

(b0, ..., bk) is good iff the infinite sequence (c0, ..., ck−1, 0, ...)

is concave,i.e

2ci ≥ ci+1 + ci−1, 1 ≤ i ≤ n− 1; 2cn−1 ≥ cn−2.
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Homogeneous Polynomials in 2 variables

Let p(x) = ∑
0≤i≤d aix

i; ai ≥ 0, 0 ≤ i ≤ d;

Homogenation: H(x, y) = ydp(x
y).

Fact 0.6:

1. The roots of p are real iff the polynomial H is

H-Stable, i.e. H(z1, z2) 6= 0 if Re(Z1), Re(Z2) >

0.

2. Polynomial p satisfies Newton’s inequalities iff

the polynomial H is Strongly Log-Concave,

i.e. the derivatives (∂x)c1(∂y)cmH are either zero

or log ((∂x)c1(∂y)cmH) is concave on Rm
+

3. Homogeneous polynomial H ∈ Hom+(2, d) is Strongly

Log-Concave iff the map

DerH(c1, c2) : {(k, l) : k, l ∈ Z+, k + l = d} → R+

is Log-Concave.
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How to generalize to many variables?
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1. A homogeneous polynomial p(z1, ..., zm) is called

H-Stable if

Re(zi) > 0, 1 ≤ i ≤ m → p(z1, ..., zm) 6= 0.

2. An entire function f (z1, ..., zn) with non-negative

coefficients is called Strongly Log-Concave if

(∂x1)
c1...(∂xm)cmf is either zero or

log((∂x1)
c1...(∂xm)cmp) is concave on Rm

+ .

The set of Strongly Log-Concave function is invari-

ant respect to partial differentiations(by definition);

the same holds for (H-Stable polynomials + the zero

polynomial)([Gauss-Lukas]).

Therefore H-Stable polynomials are Strongly Log-

Concave.

The set of H-Stable polynomials is also invariant re-

spect to positive changes of variables p(AX),

where matrices A are positive entry-wise.
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Brunn-Minkowski(1903?):

(VK(λ1, ..., λn))
1
n is concave on Rn

+:

(V ol(K + S))
1
n ≥ (V ol(K))

1
n + (V ol(S))

1
n .

Why it was such a big deal?

Consider just the univariate case

P (t) = V ol(K + tBall(1)) = tnV ol(Ball(1)) + ... +

a1t+V ol(K). Now, a1 = P (1)(0) is the surface area of

the convex body K. The log-concavity gives that:

P (t)
1
n ≤ V ol(K)

1
n +

t

n

a1

(V ol(K))1−
1
n
.

Dividing left and right sides by t and taking the limit

t →∞ we get

(V ol(K))
n−1
n ≤ a1

n
(V ol(Ball(1)))−

1
n .

Which proves that the Balls have maximum volume

for the fixed surface area. Does it remind you of Newton

Inequlities?
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Simple, yet crucial, differential inequality

We need the following elementary result, its proof is

very similar to the isoperemetric proof above:

Lemma 0.7: Consider a function f : R+ → R+

such that the derivative f ′(0) exists.

1. If f
1
k is concave on R+ for k > 1 then

f ′(0) ≥ (k−1
k )k−1 inft>0

f(t)
t .

2. If f is log-concave on R+ then

f ′(0) ≥ 1
e inft>0

f(t)
t .

If, additionally, the function f is analytic and

f ′(0) = 1
e inft>0

f(t)
t then f (t) = exp(at), a > 0.
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Alexandrov(1937), Fenchel(?):

Brunn-Minkowski theory - Log-Concavity of the

volume polynomial VK on Rn
+:

the backbone of convex geometry and its numerous ap-

plications ...

Its generalization, Alexandrov-Fenchel theory, is

based on the very deep fact that the functionals

 ∂k

∂λ1...∂λk
VK(0, .., 0, λk+1, ..., λn)


1

n−k

are concave on Rn−k
+ for all 1 ≤ k ≤ n − 1. In other

words the volume polynomials VK are Strongly Log-

Concave.
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Theorem 0.8: [Shephard, 1960] A homogeneous

polynomial H ∈ Hom+(2, n) is Strongly Log-Concave

(i.e. the univariate polynomial satisfies Newton

Inequalities)

iff there exist two convex compact sets K1, K2 ∈ Rn

such that

H(x, y) = V oln(xK1 + yK2).

Corollary 0.9: [L.G. 08] If the polynomials H1 ∈

Hom+(2, k), H2 ∈ Hom+(2, l) are Strongly Log-

Concave then the product H1H2 ∈ Hom+(2, k + l)

is also Strongly Log-Concave.

(Previous Proofs are (boringly) long,..., very usefull

in geometric funct. analysis, exact Khintchine Con-

stants...)
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Remark 0.10:

1. Alexandrov-Fenchel Inequalities :

V (K1, K2, K3, ....)
2 ≥ V (K1, K1, K3, ...)V (K2, K2, K3, ...)

(4)

Equivalent to the Strongly Log-Concavity of

the volume polynomial.

2. Alexandrov also proved that the determinantal poly-

nomials det(x1Q1 + ... + xnQn) where Qi � 0 are

Strongly Log-Concave, i.e. the determinantal

analogue of (4). He did not realize that such deter-

minantal polynomials are H-Stable.

3. (Petrovsky, 1937; Garding 1950s): A homogeneous

polynomial p(x1, ..., xm) is called hyperbolic in di-

rection e ∈ Rm if the roots of p(V − te) = 0 are

real for all real vectors V ∈ Rn. The hyperbolic

cone is the (convex) set of the vectors with non-
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negative roots.

A homogeneous polynomial p ∈ HomC(m, n) is H-

Stable iff it is hyperbolic in direction e = (1, ..., 1),

and its hyperbolic cone contains the positive or-

thant Rm
++, i.e. the roots of p(X − te) = 0 are

positive real numbers for all positive real vectors

X ∈ Rm
++.

Moreover p
p(X) ∈ Hom+(m, n) for all X ∈ Rm

++

and

|p(z1, ..., zm)| ≥ p(Re(z1), ..., Re(zm)) : Re(zi) ≥

0.

4. Important for this talk: volume polynomials are

Strongly Log-Concave; the determinantal poly-

nomials as above are H-Stable.
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5. A H-Stable polynomial p(x, y, z), p(1, 1, 1) > 0

has a ”positive” determinantal representation:

p(x, y, z) = det(xQ1 + yQ2 + yQ3) : Qi � 0, Q1 +

Q2 + Q3 � 0.

Hermitian case [B. Dubrovin, 1983], Real symmetric

case[V.Vinnikov, 1993].
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Strong Log-Concavity and Lower Bounds:

Easy Induction

Let p(x1, ..., xn−1, xn) be Strongly Log-Concave

function. Fix positive numbers (x1, ..., xn−1) and de-

fine univariate function f (t) = p(x1, ..., xn−1, t). Note

that f (t) is Log-Concave on R+ and

∂
∂xn

p(x1, ..., xn−1, 0) = f (1)(0).

Define qn−1(x1, ..., xn−1) = ∂
∂xn

p(x1, ..., xn, 0)

Recall the definition of capacity:

Cap(p) = infxi>0
p(x1,...,xn)∏

1≤i≤n xi
.

So, f (t) ≥ tCap(p)x1....xn−1. The elementary differ-

ential inequality above gives

1. In the general case

Cap(qn−1) ≥ e−1Cap(p).

2. If p ∈ Hom+(n, n) then Cap(qn−1) ≥ G(n)Cap(p),

where G(i) =
(
i−1
i

)i−1
, i > 1; G(1) = 1.
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3. If p ∈ Hom+(n, n) is H-Stable then

Cap(qn−1) ≥ G(degp({n}))Cap(p);

(just reminding) where G(i) =
(
i−1
i

)i−1
, i > 1; G(1) =

1.
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And now the induction is easy!:

qn = p; qi(x1, ..., xi) =
∂n−i

∂xn...∂xi+1
p(x1, ..., xi, 0, ..., 0);

Note that Cap(p) ≥ Cap(gn−1) ≥ ... ≥ Cap(q0) and,

most importantly,

Cap(q0) = ∂n

∂xn...∂x1
p(0, ..., 0).

For instance, in the general Strongly Log-Concave

case we get that

Cap(qk−1) ≥ e−1Cap((qk).

In the homogeneous Strongly Log-Concave case

we get that

Cap(qk−1) ≥ G(k)Cap((qk).

In the (homogeneous) H-Stable case we get that

Cap(qk−1) ≥ G(degqk
({k}))Cap((qk).

And G(2)...G(n) = vdw(n) =: n!
nn .

32



Theorem 0.11:

1. Let f ∈ Ent+(n) be Strongly Log-Concave

entire function in n variables. Then the follow.

inequality holds:

Cap(f ) ≥ ∂n

∂x1...∂xn
f (0) ≥ 1

en
Cap(f ) (5)

Note that the right inequality in (5) becomes equal-

ity if f = exp(∑1≤i≤n aixi) where ai > 0, 1 ≤ i ≤

n.

2. Let a homogeneous polynomial p ∈ Hom+(n, n)

be Strongly Log-Concave. Then the follow.

inequality holds:

Cap(f ) ≥ ∂n

∂x1...∂xn
f (0) ≥ vdw(n)Cap(p), vdw(n) =

n!

nn

(6)

Moreover, the right inequality in (6) becomes

equality iff Cap(p) = 0 or p = (∑1≤i≤n aixi)
n

where ai > 0, 1 ≤ i ≤ n.
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In the H-Stable we have a stronger result: Recall

G(i) =
(
i−1
i

)i−1
, i > 1; G(1) = 1. This function G is

strictly decreasing and G(k) = wdv(k)
wdv(k−1), vdw(k) =: k!

kk

for integer k

Theorem 0.12:

∂n

∂x1...∂xn
p(0) ≥ Cap(p)

∏
2≤i≤n

G(degqi
({i})). (7)

As degqi
({i}) ≤ min(i, degp({i})) we get that

∂n

∂x1...∂xn
p(0) ≥ Cap(p)

∏
2≤i≤n

G(min(i, degp({i}))).

(8)

If degp({i}) ≤ k, 1 ≤ i ≤ n or degqi
({i}) ≤ k, 1 ≤

i ≤ n then

∂n

∂x1...∂xn
p(0) ≥ Cap(p)wdv(k)G(k)n−k. (9)

The inequality (9) is asymptotically sharp with assump-

tion degp({i}) ≤ k, 3 ≤ k ≤ n − 1 and exactly sharp

with assumption degqi
({i}) ≤ k, 1 ≤ i ≤ n.
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Multivariate Newton-Like Inequalities

Recall

Cf(y1, ..., ym) =: inf
xi>0

f (x1, ..., xm)∏
1≤i≤m(xi

yi
)yi

, yi ≥ 0.

Corollary 0.13: Let f ∈ Ent+(m) be Strongly

Log-Concave entire function in m variables. Then

for all integer vectors R = (r1, ..., rm) ∈ Zm
+ the fol-

lowing inequalities hold:

(∏1≤i≤m vdw(ri)) Cf(r1, ..., rm) ≥ (∂x1)
r1...(∂xm)rmf (0) ≥

exp(−|R|1)Cf(r1, ..., rm)

But if f is just Log-Concave then Cf(y1, ..., ym) is also

Log-Concave. This observation gives the following

Newton-Like Inequalities:
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Consider integer vectors Y0, Y1, ..., Yk ∈ Zm
+ such

that

Y0 = ∑
1≤i≤k aiYi; ai ≥ 0, ∑1≤i≤k ai = 1.

For a non-negative integer r we define vdw(r) = r!
rr , and

for a non-negative integer vector Y = (r1, ..., rm) ∈ Zm
+

we define V DW (Y ) = ∏
1≤i≤m vdw(ri).

If the entire function f ∈ Ent+(m) is Strogly Log-

Concave then

Derf(Y0) ≥

≥ exp(−|Y0|1) ∏1≤i≤k(V DW (Yi))
−ai ∏

1≤i≤k(Derf(Yi))
ai.

Corollary 0.14: The supports of Strogly Log-

Concave entire functions f ∈ Ent+(m) are D-

convex, i.e.

CO(supp(f )) ∩ Zm = supp(f ).
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Log-Concavity alone is not sufficient

Log-concavity of f alone is not sufficient for D-convexity

of the support supp(f ) even for univariate polynomials

with non-negative coefficients.

Indeed, consider p(t) = t + t3.

The fourth root n−i
√
p(t) is concave on R+:

(p(1)(t))2−4

3
p(t)p(2)(t) = (1+3t2)2−4

3
(t+t3)6t = (t2−1)2 ≥ 0.

This example can be ”lifted” to a ”bad” log-concave

homogeneous polynomial q ∈ Hom+(4, 4):

q(x, y, v, w) = (x + y)3(v + w) + (v + w)3(x + y).

It is easy to see that Cap(q) = 25

but ∂4

∂x∂y∂v∂wq(0) = 0.
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A few words about the Permanent

Specializing to the permanent

(and the mixed discriminant, which is the mixed deriva-

tive of det(x1Q+... + xnQn)):

the generating polynomial for the permanent Per(A)

is

ProdA(x1, ..., xn) =
∏

1≤i≤n

∑
1≤j≤n

A(i, j)xj.

I.e. the mixed derivative of ProdA is equal to Per(A).

If A is non-negative and ProdA 6= 0 then ProdA is

H-Stable.

degProdA
(j) = |col(j)| = number of non-zero entries in

jth column.

If A is doubly-stochastic then Cap(ProdA) = 1.

Theorem 0.15: If A is a doubly-stochastic n × n

matrix then

Per(A) ≥ ∏
2≤j≤n

G(min(|col(j)|, j)) ≥ ∏
2≤i≤n

G(j) =
n!

nn
.
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If |col(j)| ≤ k < n for k + 1 ≤ j ≥ n then

Per(A) ≥
k − 1

k


(k−1)(n−k) k!

kk
>


k − 1

k


k−1


n

(10)

The ineq. (10) is sharp only for k = 2, n. But the

following lower bound is sharp:

∂n

∂x1...∂xn
p(0) ≥ Cap(p)

∏
2≤i≤n

G(degqi
({i})) (11)

Example 0.16: Doubly-stochastic matrices with the

pentagon pattern:

DS(n, k) = {A ∈ DS(n) : A(i, j) = 0 : j−i ≥ n−k}.

Then minA∈DS(n,k) Per(A) =
(
k−1
k

)(k−1)(n−k) k!
kk ,

and degqi
({i}) ≤ k, 1 ≤ i ≤ n.
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A. Schrijever (1998): A = {d(i,j)
n : 1 ≤ i, j ≤ n},

All rows and columns of the integer matrix D sum

to k ≤ n (i.e. k-regular bipartite graph with multiple

edges). Then

Per(A) ≥
k − 1

k


(k−1)n

. (12)

The inequality (10) gives a stronger version of the very

discrete Schrijvers’s inequality (12). Moreover, our in-

equality works in much more general real valued case.

Amazingly, the exponent
(
k−1
k

)k−1
is optimal. This op-

timality follows from a forgotten H. Wilf’s 1966 paper.

Was rediscovered by Schrijver and Valiant in 1981.

In the case of the mixed discriminant of doubly-stochastic

tuples (i.e. tr(Qi) ≡ 1, ∑1≤i≤n Qi = I):

D(A1, ..., An) ≥
∏

2≤j≤n
G(min(Rank(Aj), j)).
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This leads to the deterministic poly-time algorithms

to approximate as ∑
S⊂{1,...,n} | det(AS,S)|(the mixed vol-

ume of parallelograms) as well
∑

S⊂{1,...,n} | det(AS,S)|2 with the factor 2n

nm . But the

permanent is apparently quite special: if A is doubly-

stochastic then [L.G, 2011]

Per(A) ≥ ∏
1≤i,j≤n

(1− A(i, j))1−A(i,j) (13)

And it is just a beginning...
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A bit of Complexity Theory, Separation of

Variables

A polynomial p(x1, ..., xm), p ∈ Hom+(n, m) with

(non-negative) integer coefficients given as evaluation

oracle; i.e. we can evaluate it at rational vectors with

bounded bit-wise complexity. The following questions

seem to be natural and practical:

1. Does integer vector (r1, ..., rm) ∈ supp(p)?

2. Does rational vector (b1, ..., bm) ∈ NP (p)?

3. What is degqi
({i}) ?

4. Can we factorize

p(x1, ..., xm) = P (xi : i ∈ S)Q(xj, j ∈ T ), where

S ∪ T is a nontrivial partition of variables.

5. Can we split monomials, i.e. does there exist a non-

trivial partition such that degp(S) + degp(T ) = n?
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Note that in the homogeneous case splitting of mono-

mials is necessary for the separation of variables.

6. Can we approximate (within relative error) the co-

efficients?

7. If p(1, ..., 1) = 1 then we have a probabilistic dis-

tribution on {(d1, ..., dm) ∈ Zm
+ : ∑

1≤i≤m di = n}.

Can we sample (with small error) from that distri-

bution?
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Separation of variables is in BPP, using (Schwartz,

Zippel):

construct the following undirected graph with m ver-

tices : (i, j) are connected iff

((∂xi)p)((∂xj)p)− p((∂xi∂xj)p) 6= 0.

The variables can be saparated iff the graph is not con-

nected. But the splitting of monomials is NP-HARD.
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Theorem 0.17: let p ∈ Hom+(n, m) be H-Stable.

Then(all vectors sum to n and non-negative)

1. The degree function degp(S) is submodular.

2. (r1, ..., rm) ∈ supp(p) iff ∑
i∈S ri ≤ degp(S), S ⊂

{1, ...,m}.

3. (b1, ..., bm) ∈ NP (p) iff ∑
i∈S bi ≤ degp(S), S ⊂

{1, ...,m} and ∑
1≤i≤m bi = n.

4. The separation of variables is equivalent to the

the splitting of monomials (just the hyperbolicity

in direction (1,...,1) would do).

Using submodular minimization, this result allows for

H-Stable polynomials deterministic strongly poly-time

algorithms for memberships, separation of variables,

splitting of monomials.

My proof is based on Dubrovin’s hermitian determi-

nantal representation of H-Stable polynomials.
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Theorem 0.18:

1. Let p ∈ Hom(n, m) be non-zero homogeneous

polynomial which log-concave on some open set.

Consider a non-trivial partition S ∪ T of vari-

ables. If degp(S) = 1 and degp(S) + degp(T ) = n

then variables are separated.

Note that this result gives log-concavity charac-

terization of rank-one tensors.

2. Let p ∈ Hom(n, m) be non-zero homogeneous

polynomial. Assume that there is an open subset

U ⊂ Rm and open subset of matrices M ∈ Rm2

such that the polynomials p(AX), A ∈ M are

Strogly Log-Concave on U . Then the separa-

tion of variables is equivalent to the the splitting

of monomials.
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