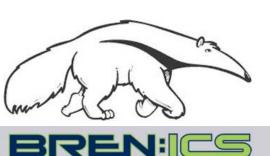
Variational algorithms for marginal MAP

Alexander Ihler UC Irvine



COMPUTER SCIENCES

CIOG Workshop November 2011

Variational algorithms for marginal MAP

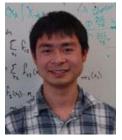
Alexander Ihler UC Irvine

COMPUTER SCIENCES

CIOG Workshop November 2011

Work with

Qiang Liu



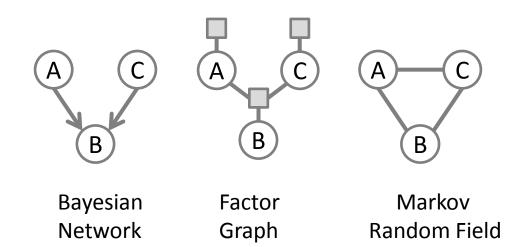
UNIVERSITY of CALIFORNIA

Graphical models

$$p(\underline{\mathbf{x}}) = p(x_1, x_2, \dots, x_N)$$
$$= \frac{1}{Z} \prod_{\alpha} \psi_{\alpha}(x_{\alpha})$$

$$x_i \quad \psi_{ij} \quad x_j$$

where $Z = \sum_{\boldsymbol{x}} \prod_{\alpha \in \mathcal{I}} \psi(\boldsymbol{x}_{\alpha})$ (partition function)



Types of queries

- Maximum a posterior (MAP) query
 - wCSPs, minimum energy configurations

 $\mathbf{x}^* = \arg \max_{\mathbf{x}} \prod_{\alpha} \psi_{\alpha}(x_{\alpha})$

Types of queries

- Maximum a posterior (MAP) query
 - wCSPs, minimum energy configurations
- Summation queries
 - Partition function, #CSP

$$\mathbf{x}^* = \arg\max_{\mathbf{x}} \prod_{\alpha} \psi_{\alpha}(x_{\alpha})$$

$$Z = \sum_{\mathbf{x}} \prod_{\alpha} \psi_{\alpha}(x_{\alpha})$$

Types of queries

- Maximum a posterior (MAP) query
 - wCSPs, minimum energy configurations
- Summation queries
 - Partition function, #CSP
- Mixed queries
 - Combine more than one elimination operator

Marginal-MAP
$$\mathbf{x}_B^* = \arg \max_{\mathbf{x}_B} \sum_{\mathbf{x}_A} \prod_{\alpha} \psi_{\alpha}(x_{\alpha})$$

where $A \cup B = V$
and many others...

$$\mathbf{x}^* = rg\max_{\mathbf{x}} \prod_{lpha} \psi_{lpha}(x_{lpha})$$

$$Z = \sum_{\mathbf{x}} \prod_{\alpha} \psi_{\alpha}(x_{\alpha})$$

Alexander Ihler, UC Irvine

Three type of queries

Max-Inference	$\max_{\mathbf{x}} \prod_{\alpha} \psi_{\alpha}(x_{\alpha})$
 Sum-Inference 	$\sum_{\mathbf{x}}\prod_{\alpha}\psi_{\alpha}(x_{\alpha})$
 Mixed-Inference 	$\max_{\mathbf{x}_B} \sum_{\mathbf{x}_A} \prod_{\alpha} \psi_{\alpha}(x_{\alpha})$

• NP-hard: exponentially many terms

• We will focus on **approximation** algorithms

Alexander Ihler, UC Irvine

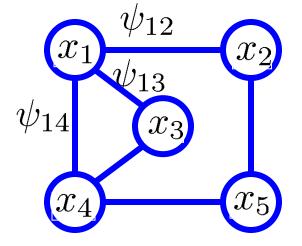
Variational algorithms for marginal MAP

Harder

$$p(\boldsymbol{x}) = \frac{1}{Z} \psi_{12}(x_1, x_2) \psi_{13}(x_1, x_3) \cdots$$

$$\sum_{x_1\dots x_5} \psi_{12}\psi_{13}\psi_{14}\psi_{25}\psi_{34}\psi_{45}$$

$$=\sum_{x_2...x_5}\psi_{25}\psi_{34}\psi_{45}\sum_{x_1}\psi_{12}\psi_{13}\psi_{14}$$

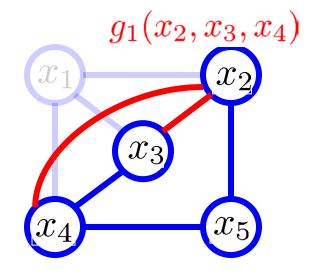


 $B_{1} : \{\psi_{12}, \psi_{13}, \psi_{14}\}$ $B_{2} : \{\psi_{25}\}$ $B_{3} : \{\psi_{34}\}$ $B_{4} : \{\psi_{45}\}$ $B_{5} : \{\}$

Alexander Ihler, UC Irvine

$$\sum_{x_1\dots x_5} \psi_{12}\psi_{13}\psi_{14}\psi_{25}\psi_{34}\psi_{45}$$

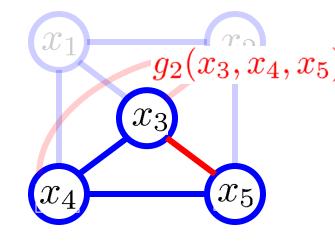
$$egin{aligned} &= \sum_{x_2...x_5} \psi_{25} \psi_{34} \psi_{45} \sum_{x_1} \psi_{12} \psi_{13} \psi_{14} \ &= \sum_{x_3...x_5} \psi_{34} \psi_{45} \sum_{x_2} \psi_{25} \; g_1(x_2,x_3,x_4) \end{aligned}$$



 $B_{1} : \{\psi_{12}, \psi_{13}, \psi_{14}\}$ $B_{2} : \{\psi_{25}, g_{1}\}$ $B_{3} : \{\psi_{34}\}$ $B_{4} : \{\psi_{45}\}$ $B_{5} : \{\}$

$$\sum_{x_1\dots x_5} \psi_{12}\psi_{13}\psi_{14}\psi_{25}\psi_{34}\psi_{45}$$

$$= \sum_{x_2...x_5} \psi_{25}\psi_{34}\psi_{45}\sum_{x_1}\psi_{12}\psi_{13}\psi_{14}$$
$$= \sum_{x_3...x_5} \psi_{34}\psi_{45}\sum_{x_2}\psi_{25} g_1(x_2, x_3, x_4)$$
$$= \sum_{x_3...x_5} \psi_{34}\psi_{45} g_2(x_3, x_4, x_5)$$



- B_1 : { $\psi_{12}, \psi_{13}, \psi_{14}$ }
- B_2 : { ψ_{25}, g_1 }
- $B_3 : \{\psi_{34}, g_2\}$

$$B_4 : \{\psi_{45}\}$$

 $B_5 : \{ \}$

$$\sum_{x_1\dots x_5} \psi_{12}\psi_{13}\psi_{14}\psi_{25}\psi_{34}\psi_{45}$$

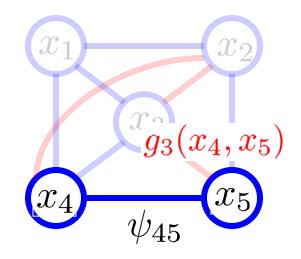
$$= \sum_{x_2...x_5} \psi_{25}\psi_{34}\psi_{45} \sum_{x_1} \psi_{12}\psi_{13}\psi_{14}$$
$$= \sum_{x_3...x_5} \psi_{34}\psi_{45} \sum_{x_2} \psi_{25} g_1(x_2, x_3, x_4)$$
$$= \sum_{x_3...x_5} \psi_{34}\psi_{45} g_2(x_3, x_4, x_5)$$
$$= \sum_{x_3...x_5} \psi_{45} g_3(x_4, x_5)$$

 x_4, x_5

Cost: exponential in the tree-width

Alexander Ihler, UC Irvine

Variational algorithms for marginal MAP



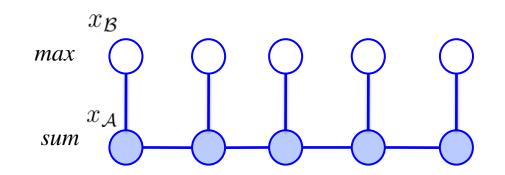
- $B_1 : \{\psi_{12}, \psi_{13}, \psi_{14}\}$
- B_2 : { ψ_{25}, g_1 }
- B_3 : { ψ_{34}, g_2 }
- $B_4 : \{\psi_{45}, g_3\}$

 $B_5 : \{ \}$

- Interpretation as message-passing on trees
- Algorithm similar for max (dynamic programming)

$$g_{1}(x_{2}) = \sum_{x_{1}} \psi_{1,2}(x_{1}, x_{2})$$

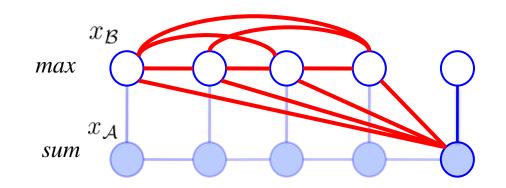
- Interpretation as message-passing on trees
- Algorithm similar for max (dynamic programming)
- Mixed-inference is harder!
 - Elimination orders are restricted: $\sum \max \neq \max \sum$



Example from D. Koller and N. Friedman (2009)

Variable Elimination (exact max /mixed)

- Interpretation as message-passing on trees
- Algorithm similar for max (dynamic programming)
- Mixed-inference is harder!
 - Elimination orders are restricted: $\sum \max \neq \max \sum$



Example from D. Koller and N. Friedman (2009)

Variational approaches

Replace "elimination" with optimization over distributions

$$p(x^*) = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log p(x)] \quad (\text{maximum: } q = \mathbf{1}(x^*))$$

 \mathbb{P} : set of joint distributions over x Equivalently n terms of $b \in \mathcal{M}$, the "marginal polytope"

Variational approaches

Replace "elimination" with optimization over distributions

$$p(x^*) = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log p(x)] \qquad (\text{maximum: } q = \mathbf{1}(x^*))$$

 \mathbb{P} : set of joint distributions over x Equivalently n terms of $b \in \mathcal{M}$, the "marginal polytope"

$$\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log \psi(x)] + H(x; q) \qquad \text{(maximum: } q = p\text{)}$$

Variational approaches

• Replace "elimination" with optimization over distributions

$$p(x^*) = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log p(x)] \quad (\text{maximum: } q = \mathbf{1}(x^*))$$

 \mathbb{P} : set of joint distributions over x Equivalently n terms of $b \in \mathcal{M}$, the "marginal polytope"

$$\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log \psi(x)] + H(x; q) \qquad \text{(maximum: } q = p\text{)}$$

Proof:
$$D(q||p) = \sum_{x} q(x) \log \left[\frac{q(x)}{\frac{1}{Z}\psi(x)}\right]$$
 (Kullback-Leibler divergence)
$$= -H(x;q) - \mathbb{E}_q[\log \psi] + \log Z$$

$$\Rightarrow \log Z \ge \mathbb{E}_q[\log \psi] + H(x;q)$$
equal iff $p = q$

Variational approximations

• Replace $q \in P$ and H(q) with simpler approximations

$$p(x^*) = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log \psi(x)]$$
$$\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log \psi(x)] + H(x; q)$$

Variational approximations

• Replace $q \in P$ and H(q) with simpler approximations

$$p(x^*) = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log \psi(x)]$$
$$\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log \psi(x)] + H(x; q)$$

• Algorithms & their properties:

	Method	distributions	entropy	value
Max:	Linear programming	$q\in\mathbb{L}\supseteq\mathbb{P}$	n/a	$\hat{p}_{lp} \ge p(x^*)$
Sum:	Mean field	$\{q = \prod q_i(x_i)\} \subseteq \mathbb{P}$	exact	$Z_{mf} \leq Z$
	Belief propagation	$q\in\mathbb{L}\supseteq\mathbb{P}$	$H_{\beta} \approx H(q)$	$Z_{\beta} \approx Z$
	Tree-reweighted	$q\in\mathbb{L}\supseteq\mathbb{P}$	$H_{tr} \ge H(q)$	$Z_{tr} \ge Z$

$$(x^*), p^* = (\arg) \max_{x_B} \sum_{x_A} \psi(x)$$

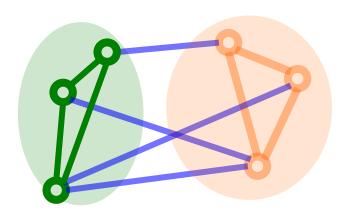
"max part" $\log p^* = \max_{x_B} \log Z_A(x_B)$ "sum part" $Z_A(x_B) = \sum_{x_A} \psi(x)$

Apply the same approach to each part:

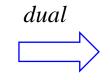
$$\log p^* \ge \mathbb{E}_q[\log Z_A(x_B)]$$

$$\ge \mathbb{E}_q[\log \psi(x)] + H(x_A | x_B ; q)$$

max (*B*) *sum* (*A*)



$$p^* = \max_{x_B} \sum_{x_A} \psi(x)$$



 $\max_{q \in \mathbb{P}} \mathbb{E}_q(\log \psi) + H(x_A | x_B; q)$

where $H(x_A|x_B) = H(x) - H(x_B)$

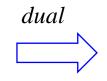
(Truncate the entropies of the max nodes)

• General framework for approximate algorithms

- Truncated Bethe approximation
- Truncated TRW approximation
- Truncated mean field approximation

$$H(x) = H(x_B) + H(x_A / x_B)$$

Truncated free energy approximations



 $\max_{q \in \mathbb{P}} \mathbb{E}_q(\log \psi) + H(x_A | x_B ; q)$

where $H(x_A|x_B) = H(x) - H(x_B)$

(Truncate the entropies of the max nodes)

Truncated Bethe approximation

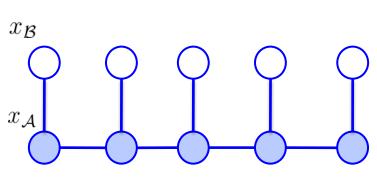
$$\hat{Z}_{bethe}(\tau, \log \psi) = \mathbb{E}_{\tau}[\log \psi] + \sum_{i \in A} H_i \quad -\sum_{(ij) \in E_A \cup \partial_{AB}} I_{ij}.$$

Truncated tree-reweighted approximation

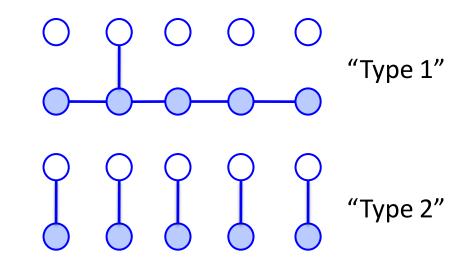
$$\hat{Z}_{trw}(\tau, \log \psi) = \mathbb{E}_{\tau}[\log \psi] + \sum_{i \in A} H_i \quad -\sum_{(ij) \in E_A \cup \partial_{AB}} \rho_{ij} I_{ij}.$$

A-B trees

- In sum or max-inference, trees are "tractable" subproblems
- In mixed inference, they may not be
- A-B trees
 - Extend the notion to mixed inference
 - Graph structure that remains a tree during elimination



Example from D. Koller and N. Friedman (2009)



Designing message passing algorithms

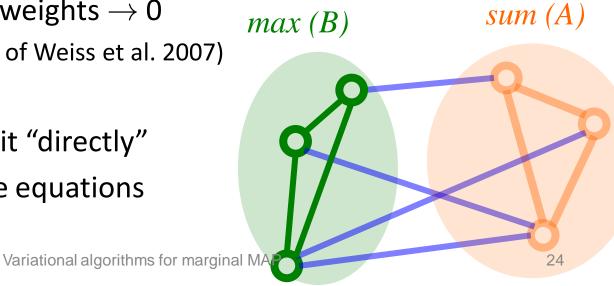
• Can write as "generic" weighted objective

$$\hat{Z}(\tau, w, \log \psi) = \mathbb{E}_{\tau}[\log \psi] + \sum_{i \in A} w_i H_i \quad -\sum_{(ij) \in E_A \cup \partial_{AB}} w_{ij} I_{ij}.$$

Derive messages

(minor generalization of TRW)

- Take limit as some weights $\rightarrow 0$ (minor generalization of Weiss et al. 2007)
- Can opt to take limit "directly" on message update equations



"Mixed" product message passing

$$\mathbf{A} \to \mathbf{A} \cup \mathbf{B} \quad m_{i \to j} \leftarrow \Big[\sum_{x_i} (\psi_i m_{\sim i}) (\frac{\psi_{ij}}{m_{j \to i}})^{1/\rho_{ij}}\Big]^{\rho_{ij}}$$

 $\mathbf{B} \to \mathbf{B} \qquad \qquad m_{i \to j} \leftarrow \max_{x_i} (\psi_i m_{\sim i})^{\rho_{ij}} (\frac{\psi_{ij}}{m_{j \to i}})$

Max-product

Sum- product

Match max and sum

$$\mathsf{B} \to \mathsf{A} \qquad m_{i \to j} \leftarrow \Big[\sum_{x_i \in \arg\max\{\psi_i m_{\sim i}\}} (\frac{\psi_{ij}}{m_{j \to i}})^{1/\rho_{ij}}\Big]^{\rho_{ij}}$$

max (B) sum (A)

"Mixed" product message passing

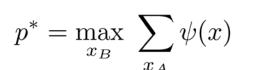
Satisfies a reparameterization property,

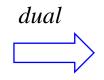
$$p(x) \propto \prod_i b_i(x_i) \prod_{i,j} \frac{b_{ij}(x_i, x_j)}{b_i(x_i) b_j(x_j)}$$

where

$$i \in A$$
 $\sum_{x_i} b_{ij}(x_i, x_j) = b_j(x_j),$ Sum- product $i, j \in B \rightarrow B$ $\max_{x_i} b_{ij}(x_i, x_j) = b_j(x_j),$ Max- product $i \in B, j \in A$ $\sum_{x_i \in \arg \max b_i} b_{ij}(x_i, x_j) = b_j(x_j),$ Match max and sum

Can use this to show local optimality properties similar to max-product





 $\max_{q \in \mathbb{P}} \mathbb{E}_q(\log \psi) + H(x_A | x_B ; q)$

where $H(x_A|x_B) = H(x) - H(x_B)$

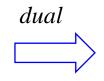
(Truncate the entropies of the max nodes)

"Double-loop" algorithms (CCCP & similar):

• Example: Truncated Bethe approximation

Solve summation problem: $\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log \psi(x)] + \hat{H}_\beta(x)$





 $\max_{q \in \mathbb{P}} \mathbb{E}_q(\log \psi) + H(x_A | x_B ; q)$

where $H(x_A|x_B) = H(x) - H(x_B)$

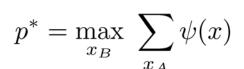
(Truncate the entropies of the max nodes)

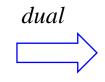
"Double-loop" algorithms (CCCP & similar):

• Example: Truncated Bethe approximation

Solve summation problem: $\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log \psi(x)] + \hat{H}_\beta(x)$ Remove excess entropy: $\mathbb{E}[\log \psi(x)] \leftarrow \mathbb{E}[\log \psi] - \hat{H}_\beta(x_B)$ $= \mathbb{E}[\log \psi(x) + \log q(x_B)]$

Alexander Ihler, UC Irvine





 $\max_{q \in \mathbb{P}} \mathbb{E}_q(\log \psi) + H(x_A | x_B ; q)$

where $H(x_A|x_B) = H(x) - H(x_B)$

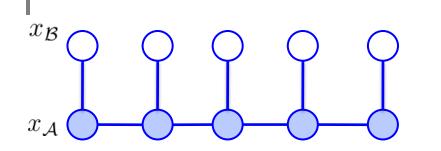
(Truncate the entropies of the max nodes)

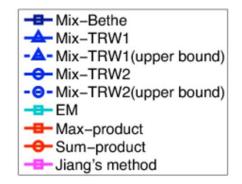
"Double-loop" algorithms (CCCP & similar):

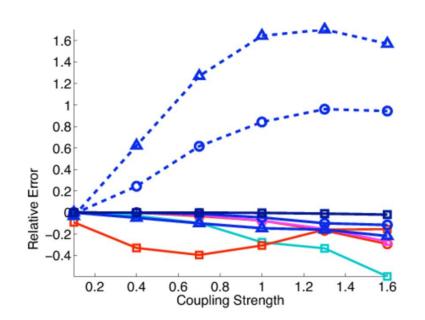
• Example: Truncated Bethe approximation Solve summation problem: $\log Z = \max_{q \in \mathbb{P}} \mathbb{E}_q[\log \psi(x)] + \hat{H}_\beta(x)$ Remove excess entropy: $\mathbb{E}[\log \psi(x)] \leftarrow \mathbb{E}[\log \psi] - \hat{H}_\beta(x_B)$ $=\mathbb{E}[\log \psi(x) + \log q(x_B)]$ Iterate:

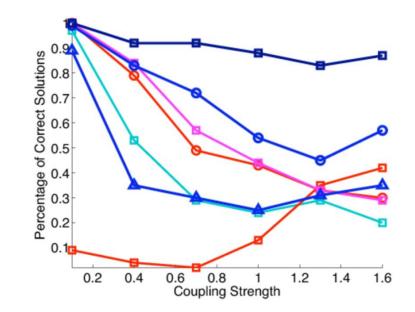
(a bit like annealing – makes the function "sharper")

Experiments: trees

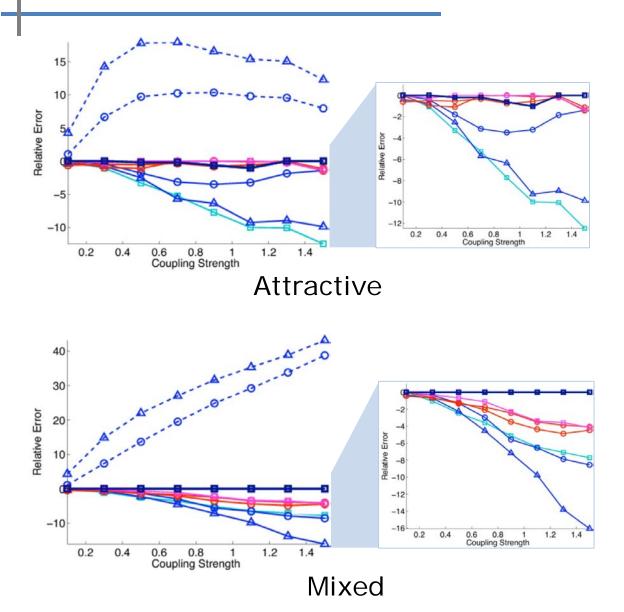


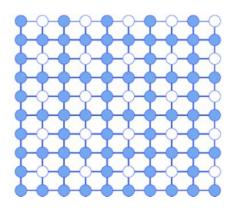


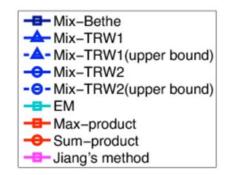




Experiments: cycles







Conclusions

- Consider "mixed" inference tasks (marginal MAP)
- Derive a variational framework
- Develop analogues of Bethe, TRW, etc.
 - Approximations and bounds
- Develop algorithms
 - Message passing & double-loop methods
- Directions
 - Extend to more general mixed problems
 - Algorithmic improvements

Conclusions

Thanks!

- Consider "mixed" inference tasks (marginal MAP)
- Derive a variational framework
- Develop analogues of Bethe, TRW, etc.
 - Approximations and bounds
- Develop algorithms
 - Message passing & double-loop methods
- Directions
 - Extend to more general mixed problems
 - Algorithmic improvements