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The Ising model

Let G = (V ,E ) be a graph, with indeterminates
γ = (γe : e ∈ E ) associated to the edges.

Definition

The Ising partition function is

ZIsing(G ; γ) =
∑

σ:V→{0,1}

∏
e∈E

(
1 + γeδe(σ)

)
,

where δe(σ) is 1 if σ assigns the same value to the two
endpoints of e, and 0 otherwise.

We are interested in computing the partition function in the
ferromagnetic case, which corresponds to evaluating the
polynomial ZIsing(G ; γ) in the positive orthant, γ ≥ 0.



Some remarks

In the q-state Potts model, a configuration is a function
V → {0, 1, . . . , q − 1}. The Ising model is the special
case q = 2. Leslie Goldberg will consider the general
Potts model later. For the time being, we stick to the
2-spin situation.

It is #P-hard to compute ZIsing(G ; γ) exactly, given G
and an assignment to γ.

It is NP-hard even to approximate ZIsing(G ; γ) in the
non-ferromagnetic case, corresponding to γ ≥ −1.
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Approximate computation: FPRAS

Definition

An FPRAS is a randomised algorithm that produces a result
that is correct to within relative error 1± ε with high
probability. It must run in time poly(n, ε−1), where n is the
input size.

Theorem (Jerrum & Sinclair 1990)

There is an FPRAS for ZIsing(G ; γ) in the ferromagnetic region
(γ ≥ 0).

(Alternatively: there is an FPRAS for the Tutte polynomial
along the positive branch of the hyperbola defined by q = 2.)
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Attempt 1: direct simulation

The FPRAS for the ferromagnetic Ising partition function is an
example of the Markov chain Monte Carlo (MCMC) method,
but a direct application, based on single-site updates clearly
fails. The following simulation illustrates the point:

Demo

(Acknowledgements to Bernd Nottelmann and Peter Young.)

We can say that the Markov chain is not “rapidly mixing”.



Attempt 2: expansion in terms of even subgraphs

Call an edge subset A even if every vertex in (V ,A) has even
degree.

Then we have the following alternative “high temperature”
expansion of the partition function:

ZIsing(G ; γ) = 2|V |
∏
e∈E

w ′e
∑
A⊆E

A even

∏
e∈A

we

where w ′e = (γe + 2)/2 and we = γe/(γe + 2).

The Markov chain based on single-edge updates of even
subsets (and defective even subsets) is rapidly mixing. . .
yielding an FPRAS.



Extension to “consistent” external field

Now suppose there is a multiplicative weight 1 + µvσ(v) at
each vertex v . There is again a high-temperature expansion:

ZIsing(G ; γ,µ) = 2|V | · · ·
∑
A⊆E

∏
e∈A

we

∏
v∈V

degA(v) odd

zv

where zv = µv/(µv + 2) and we is as before. (An easily
computable product of weights has been omitted.)

A slight modification of the earlier Markov chain with
single-edge updates works here also, provided µv ≥ 0 (or
µv ≤ 0) for all v ∈ V .

But what if the field is inconsistent, i.e., µv takes negative
values as well as positive?



Interlude: an interesting class of counting problems

Denote by #BIS the problem of counting independent sets in
a bipartite graph.

Fact (Dyer, Goldberg, Greenhill & Jerrum, 2000)

#BIS is inter-reducible — in an approximation-preserving
sense — with several other counting problems (e.g., downsets
in a partial order, stable matchings, Widom-Rowlinson model
in statistical physics).

A class of sampling problems of intermediate computational
complexity or an illusion?



A logically defined complexity class

The complexity class, #RHΠ1, containing “Bipartite
Independent Set” and its peers is characterised by syntactically
restricted sentences in first order logic. In fact, #BIS is
complete for this class with respect to
approximation-preserving reducibility. (C.f. “restricted Krom
SNP”/“Linear Datalog”.)

E.g., the set of downsets in a partial order (A,≺) may be
expressed as{

D : ∀x , y ∈ A. ¬D(x) ∨ ¬(y ≺ x) ∨ D(y)
}
.
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The complexity class, #RHΠ1, containing “Bipartite
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Each clause has at most one unnegated relation symbol and at
most one negated relation symbol.



Some restrictions of the Ising model

Zero external field: µv = 0, for all v ∈ V .

Consistent external field: µv ≥ 0, for all v
(or µv ≤ 0, for all v).

Ferromagnetic: γe ≥ 0, for all e ∈ E .



Computational complexity of some variants

Ising partition function Exact Approximate

Zero field, planar FP1 -
Ferromagnetic, consistent field #P-hard FPRAS2

Ferromagnetic, general field #P-hard ?
Antiferromagnetic/spinglass #P-hard NP-hard3

Notes
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1Reduction to dimer coverings (perfect matchings) [Fisher].
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Computational complexity of some variants

Ising partition function Exact Approximate

Zero field, planar FP1 -
Ferromagnetic, consistent field #P-hard FPRAS2

Ferromagnetic, general field #P-hard ?
Antiferromagnetic/spinglass #P-hard NP-hard3

Notes
3Essentially Max Cut.



General external field: idea for a reduction

It is possible to encode an instance of #BIS as an instance of
the ferromagnetic Ising model with general field:

1 means “OUT”;

0 means “IN”;

1 + µu =
(1 + γ)deg(u).

u

v

γe = γ > 0

1 means “IN”;

0 means “OUT”;

1 + µv =
(1 + γ)−deg(v).



Calculation

σ(u) – σ(v) Contribution Equals

IN – IN 1× 1× (1 + γ)−1 (1 + γ)−1

IN – OUT 1× (1 + γ)× 1 1 + γ
OUT – IN (1 + γ)× (1 + γ)× (1 + γ)−1 1 + γ

OUT – OUT (1 + γ)× 1× 1 1 + γ

Fleshing out the details (and also doing the reduction in the
other direction) yields:

Theorem (Goldberg and Jerrum, 2007)

Computing the partition function of a ferromagnetic Ising
model with a general fields is equivalent to #BIS under
approximation-preserving reductions.



Complexity of some variants (reprise)

Ising partition function Exact Approximate

Zero field, planar FP -
Ferromagnetic, consistent field #P-hard FPRAS
Ferromagnetic, general field #P-hard #BIS-equivalent
Antiferromagnetic/spinglass #P-hard NP-hard


