
Definitions and Motivation Theorems Details Open Problems References

The Treewidth of a Linear Code

Navin Kashyap

Department of Electrical Communication Engineering
Indian Institute of Science

November 3, 2011

Definitions and Motivation Theorems Details Open Problems References

Outline of Talk

1 Definitions and Motivation

2 Theorems

3 Details
Code Treewidth
Matroid Treewidth
Graph Treewidth
MDS and Reed-Muller Codes

4 Open Problems

Definitions and Motivation Theorems Details Open Problems References

General Linear Realizations

Generic Factor Graph :

local constraints

..

...

...

symbol
variables

state
variables

.
C1

C2

Cr

x1

x2

xn

s1

s2

sm

The state and symbol spaces, as well as the local constraint
codes, are all linear.

The full behaviour B of such a realization is the set of all
symbol/state configurations that satisfy all local constraints.

The code realized is the projection of B onto the symbol vars.

Definitions and Motivation Theorems Details Open Problems References

Normal Realizations

In a normal realization,

all state variables have degree two,
all symbol variables have degree one.

Any linear realization can be normalized [Forney (2001)].

=

.

.

.

.

.

.

.

.

=

.

Normalization preserves cycle-free structure.

Definitions and Motivation Theorems Details Open Problems References

Normal Realizations

In a normal realization,

all state variables have degree two,
all symbol variables have degree one.

Any linear realization can be normalized [Forney (2001)].

=

.

.

.

.

.

.

.

.

=

.

Normalization preserves cycle-free structure.

Definitions and Motivation Theorems Details Open Problems References

Normal Realizations

Normal graph

..

...

...

...

...

...

=

=

=

=

=

=

Factor graph

.

In a normal graph, state variables sit on edges.
and symbol variables are depicted by “dongles”.

Definitions and Motivation Theorems Details Open Problems References

Normal Realizations

Normal graph

..

...

...

...

...

...

=

=

=

=

=

=

Factor graph

.

In a normal graph, state variables sit on edges,
and symbol variables are depicted by “dongles”.

Definitions and Motivation Theorems Details Open Problems References

Example: RM(1, 3)

Consider the [8,4] binary Reed-Muller code RM(1, 3) defined to be
the nullspace (kernel) of the parity-check matrix

H =

1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0

Thus, RM(1, 3) consists of all (x1, x2, . . . , x8) ∈ {0, 1}8 such that:

x1 + x2 + x5 + x6 = 0

x2 + x3 + x6 + x7 = 0

x3 + x4 + x7 + x8 = 0

x3 + x4 + x5 + x6 = 0

Definitions and Motivation Theorems Details Open Problems References

RM(1, 3): Tanner Graph

x3 + x4 + x5 + x6 = 0

x1

x2

x3

x4

x5

x6

x7

x8

x1 + x2 + x5 + x6 = 0

x2 + x3 + x6 + x7 = 0

x3 + x4 + x7 + x8 = 0

Definitions and Motivation Theorems Details Open Problems References

RM(1, 3): Normal Realization

+

+

+

+

=

=

=

=

=

=

=

=

+

+

+

+

x1x1

x2

x3

x4

x5

x6

x7

x8 x8

x7

x6

x5

x4

x3

x2

Definitions and Motivation Theorems Details Open Problems References

Message-Passing Decoder

A Tanner graph realization admits an iterative message-passing
decoding algorithm for the code.

Goal of decoding algorithm (given received word y):

recover, at each coordinate xi , a vector proportional to the
a-posteriori probability (APP) vector
[p(xi = 0 | y) , p(xi = 1 | y)].

Definitions and Motivation Theorems Details Open Problems References

Message-Passing Decoder

A Tanner graph realization admits an iterative message-passing
decoding algorithm for the code.

Goal of decoding algorithm (given received word y):

recover, at each coordinate xi , a vector proportional to the
a-posteriori probability (APP) vector
[p(xi = 0 | y) , p(xi = 1 | y)].

Definitions and Motivation Theorems Details Open Problems References

RM(1, 3) Tanner Graph has Cycles

x3 + x4 + x5 + x6 = 0

x1

x2

x3

x4

x5

x6

x7

x8

x1 + x2 + x5 + x6 = 0

x2 + x3 + x6 + x7 = 0

x3 + x4 + x7 + x8 = 0

On a Tanner graph with cycles, iterative message-passing decoding
is not guaranteed to produce the correct output, or even to
converge.

Definitions and Motivation Theorems Details Open Problems References

Cycle-Free Tanner Graphs

Iterative message-passing decoding algorithms are guaranteed to
converge to the correct output on a cycle-free graph.

RM(1, 3) has no cycle-free Tanner graph
[by a result of Etzion-Trachtenberg-Vardy (1999)].

Definitions and Motivation Theorems Details Open Problems References

Cycle-Free Realizations of RM(1, 3)

Tree realization:

[4, 2]

C2

C1 C3

C4

C5 C6

x4 x8

x5x1

x2

x3

x6

x7

[4, 2] [6, 3] [6, 3] [4, 2]

[4, 2]

Trellis realization:

x1

[2, 1] [4, 2] [6, 3] [6, 3] [6, 3] [6, 3] [4, 2] [2, 1]

x8x7x6x5x4x3x2

(State variables on edges are not shown.)

Definitions and Motivation Theorems Details Open Problems References

Message-Passing Decoding

The computational complexity of the message-passing decoding
algorithm is proportional to∑

i

deg(vi) |Ci | =
∑
i

deg(vi) 2dim(Ci)

where vi is the vertex of the graph within which Ci sits.
[Aji-McEliece (2001), Forney (2001)]

Definitions and Motivation Theorems Details Open Problems References

Message-Passing Decoding

The computational complexity of the message-passing decoding
algorithm is proportional to∑

i

deg(vi) |Ci | =
∑
i

deg(vi) 2dim(Ci)

where vi is the vertex of the graph within which Ci sits.
[Aji-McEliece (2001), Forney (2001)]

Definitions and Motivation Theorems Details Open Problems References

Constraint Complexity

[4, 2]

C2

C1 C3

C4

C5 C6

x4 x8

x5x1

x2

x3

x6

x7

[4, 2] [6, 3] [6, 3] [4, 2]

[4, 2]

∑
i deg(vi) 2dim(Ci) is dominated by the 2maxi dim(Ci) terms.

We call maxi dim(Ci) the constraint complexity of the realization.

For the realization shown, the constraint complexity is 3.

Definitions and Motivation Theorems Details Open Problems References

Another Cycle-Free Realization of RM(1, 3)

x1

[2, 1] [4, 2] [6, 3] [6, 3] [6, 3] [6, 3] [4, 2] [2, 1]

x8x7x6x5x4x3x2

The constraint complexity is again 3.

We will define the treewidth of a code (e.g. RM(1, 3)) to be the
least constraint complexity of any of its cycle-free realizations.

The treewidth of a code estimates the complexity of implementing
optimum (maximum-likelihood) decoding as a message-passing
algorithm on the best cycle-free realization of the code.

Definitions and Motivation Theorems Details Open Problems References

Another Cycle-Free Realization of RM(1, 3)

x1

[2, 1] [4, 2] [6, 3] [6, 3] [6, 3] [6, 3] [4, 2] [2, 1]

x8x7x6x5x4x3x2

The constraint complexity is again 3.

We will define the treewidth of a code (e.g. RM(1, 3)) to be the
least constraint complexity of any of its cycle-free realizations.

The treewidth of a code estimates the complexity of implementing
optimum (maximum-likelihood) decoding as a message-passing
algorithm on the best cycle-free realization of the code.

Definitions and Motivation Theorems Details Open Problems References

Definitions: Tree and Trellis Realizations

Definition

A normal realization is called

a tree realization if its underlying graph is a tree
(a tree is a cycle-free connected graph).

a trellis realization if its underlying graph is a path
(a path is a tree in which all vertices lie in a straight line).

Definitions and Motivation Theorems Details Open Problems References

Definitions: Treewidth and Trelliswidth

Definition

The constraint complexity of a normal realization is the maximum
dimension among its local constraint codes.

Definition

The treewidth (resp. trelliswidth) of a code is the least
constraint complexity among its tree (resp. trellis) realizations.

κtree(C) := treewidth of code C
κtrellis(C) := trelliswidth of code C

Definitions and Motivation Theorems Details Open Problems References

Comparing κtree and κtrellis

Since a trellis realization is a special type of tree realization,
for any code C, we have

κtree(C) ≤ κtrellis(C).

Theorem (K. (2009))

For a linear code C of length n > 1,

κtrellis(C)

κtree(C)
≤ 2 log2(n − 1) + 3.

This bound on the ratio is the best possible, up to the constants
involved. It is known [K. (2007)] that a sequence of codes C(i),
i = 1, 2, . . ., of length ni , exists such that

κtrellis(C(i))

κtree(C(i))
≈ 1

4
log2 ni .

Definitions and Motivation Theorems Details Open Problems References

Comparing κtree and κtrellis

Since a trellis realization is a special type of tree realization,
for any code C, we have

κtree(C) ≤ κtrellis(C).

Theorem (K. (2009))

For a linear code C of length n > 1,

κtrellis(C)

κtree(C)
≤ 2 log2(n − 1) + 3.

This bound on the ratio is the best possible, up to the constants
involved. It is known [K. (2007)] that a sequence of codes C(i),
i = 1, 2, . . ., of length ni , exists such that

κtrellis(C(i))

κtree(C(i))
≈ 1

4
log2 ni .

Definitions and Motivation Theorems Details Open Problems References

Comparing κtree and κtrellis

Since a trellis realization is a special type of tree realization,
for any code C, we have

κtree(C) ≤ κtrellis(C).

Theorem (K. (2009))

For a linear code C of length n > 1,

κtrellis(C)

κtree(C)
≤ 2 log2(n − 1) + 3.

This bound on the ratio is the best possible, up to the constants
involved. It is known [K. (2007)] that a sequence of codes C(i),
i = 1, 2, . . ., of length ni , exists such that

κtrellis(C(i))

κtree(C(i))
≈ 1

4
log2 ni .

Definitions and Motivation Theorems Details Open Problems References

Parametrized Complexity of ML decoding

Theorem (K. (2009))

The complexity of maximum-likelihood decoding of a length-n
linear code C over Fq is O(nqt), where t is the treewidth of C.

As a corollary, we see that

codes of bounded treewidth are linear-time decodable.

However, codes of bounded treewidth do not have good
minimum distance, and so may not be good from an
error-correcting perspective.

Definitions and Motivation Theorems Details Open Problems References

Parametrized Complexity of ML decoding

Theorem (K. (2009))

The complexity of maximum-likelihood decoding of a length-n
linear code C over Fq is O(nqt), where t is the treewidth of C.

As a corollary, we see that

codes of bounded treewidth are linear-time decodable.

However, codes of bounded treewidth do not have good
minimum distance, and so may not be good from an
error-correcting perspective.

Definitions and Motivation Theorems Details Open Problems References

Proof Sketch

Forney (2003) made the following observation:

A length-n linear code C has an optimal tree realization
in which the underlying tree

(a) is cubic (i.e., all internal nodes have degree 3), and
(b) has n leaves

Here, “optimal” means that the constraint complexity of the
realization equals the treewidth of the code.

The computational complexity of message-passing decoding on
such an optimal tree realization T is proportional to∑
v∈V (T)

deg(v) qdim(Cv) ≤
∑

v∈V (T)

3 · qκtree(C) = 3(2n − 2)qκtree(C)

the last equality because a cubic tree with n leaves has exactly
(2n − 2) vertices.

Definitions and Motivation Theorems Details Open Problems References

Proof Sketch

Forney (2003) made the following observation:

A length-n linear code C has an optimal tree realization
in which the underlying tree

(a) is cubic (i.e., all internal nodes have degree 3), and
(b) has n leaves

Here, “optimal” means that the constraint complexity of the
realization equals the treewidth of the code.

The computational complexity of message-passing decoding on
such an optimal tree realization T is proportional to∑
v∈V (T)

deg(v) qdim(Cv) ≤
∑

v∈V (T)

3 · qκtree(C) = 3(2n − 2)qκtree(C)

the last equality because a cubic tree with n leaves has exactly
(2n − 2) vertices.

Definitions and Motivation Theorems Details Open Problems References

Computing Treewidth

Theorem (from Hliněný & Whittle (2008))

Computing the treewidth of a linear code is NP-hard.

Theorem (K. and Thangaraj (2011))

For an [n, k] MDS code,

treewidth = trelliswidth = min(k, n − k + 1).

For the Reed-Muller code RM(r ,m),

treewidth = trelliswidth =

{∑r
j=0

(m−2j−1
r−j

)
if m ≥ 2r + 1

1 +
∑m−r−1

j=0

(m−2j−1
r−j

)
if m < 2r + 1

Definitions and Motivation Theorems Details Open Problems References

Computing Treewidth

Theorem (from Hliněný & Whittle (2008))

Computing the treewidth of a linear code is NP-hard.

Theorem (K. and Thangaraj (2011))

For an [n, k] MDS code,

treewidth = trelliswidth = min(k, n − k + 1).

For the Reed-Muller code RM(r ,m),

treewidth = trelliswidth =

{∑r
j=0

(m−2j−1
r−j

)
if m ≥ 2r + 1

1 +
∑m−r−1

j=0

(m−2j−1
r−j

)
if m < 2r + 1

Definitions and Motivation Theorems Details Open Problems References

Constructing Tree Realizations

Given: a code C of length n

Select:

T - a tree

, and

ω - an assignment of the n coordinates of C (i.e. the symbol
variables) to V (T)

Definitions and Motivation Theorems Details Open Problems References

Constructing Tree Realizations

Given: a code C of length n

Select:

T - a tree, and

ω - an assignment of the n coordinates of C (i.e. the symbol
variables) to V (T)

Definitions and Motivation Theorems Details Open Problems References

Local Constraint Codes [Forney (2003)]

Notation: For J ⊆ [n], CJ := {c ∈ C : c|Jc = 0}.

For a node v ∈ V (T) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti))

Cv := local constraint code at v = C/
⊕δ

i=1 CJi

Definitions and Motivation Theorems Details Open Problems References

Local Constraint Codes [Forney (2003)]

Notation: For J ⊆ [n], CJ := {c ∈ C : c|Jc = 0}.

v

For a node v ∈ V (T) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti))

Cv := local constraint code at v = C/
⊕δ

i=1 CJi

Definitions and Motivation Theorems Details Open Problems References

Local Constraint Codes [Forney (2003)]

Notation: For J ⊆ [n], CJ := {c ∈ C : c|Jc = 0}.

For a node v ∈ V (T) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti))

Cv := local constraint code at v = C/
⊕δ

i=1 CJi

Definitions and Motivation Theorems Details Open Problems References

Local Constraint Codes [Forney (2003)]

Notation: For J ⊆ [n], CJ := {c ∈ C : c|Jc = 0}.

For a node v ∈ V (T) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti))

Cv := local constraint code at v = C/
⊕δ

i=1 CJi

Definitions and Motivation Theorems Details Open Problems References

Local Constraint Codes [Forney (2003)]

Notation: For J ⊆ [n], CJ := {c ∈ C : c|Jc = 0}.

For a node v ∈ V (T) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti))

Cv := local constraint code at v = C/
⊕δ

i=1 CJi

Definitions and Motivation Theorems Details Open Problems References

State Spaces [Forney (2003)]

e

For an edge e ∈ E (T):

the removal of e from T yields a graph with two components,
T ′ and T ′′

set J ′ = ω−1(V (T ′)) and J ′′ = ω−1(V (T ′′))

Se := state space at e = C/(CJ′ ⊕ CJ′′)

Definitions and Motivation Theorems Details Open Problems References

State Spaces [Forney (2003)]

For an edge e ∈ E (T):

the removal of e from T yields a graph with two components,
T ′ and T ′′

set J ′ = ω−1(V (T ′)) and J ′′ = ω−1(V (T ′′))

Se := state space at e = C/(CJ′ ⊕ CJ′′)

Definitions and Motivation Theorems Details Open Problems References

State Spaces [Forney (2003)]

For an edge e ∈ E (T):

the removal of e from T yields a graph with two components,
T ′ and T ′′

set J ′ = ω−1(V (T ′)) and J ′′ = ω−1(V (T ′′))

Se := state space at e = C/(CJ′ ⊕ CJ′′)

Definitions and Motivation Theorems Details Open Problems References

State Spaces [Forney (2003)]

For an edge e ∈ E (T):

the removal of e from T yields a graph with two components,
T ′ and T ′′

set J ′ = ω−1(V (T ′)) and J ′′ = ω−1(V (T ′′))

Se := state space at e = C/(CJ′ ⊕ CJ′′)

Definitions and Motivation Theorems Details Open Problems References

Constraint Complexity

For each v ∈ V (T) in Forney’s tree realization,

dim(Cv) = dim(C)−
δ∑

i=1

dim(CJi)

Hence, the constraint complexity of the realization is

κ(C;T , ω) := max
v∈V (T)

[
dim(C)−

δ∑
i=1

dim(CJi)

]

Theorem

Given a tree T and a mapping ω : [n]→ V (T), κ(C;T , ω) is the
minimum constraint complexity among all tree realizations on T
with coordinate assignment ω.

Definitions and Motivation Theorems Details Open Problems References

Constraint Complexity

For each v ∈ V (T) in Forney’s tree realization,

dim(Cv) = dim(C)−
δ∑

i=1

dim(CJi)

Hence, the constraint complexity of the realization is

κ(C;T , ω) := max
v∈V (T)

[
dim(C)−

δ∑
i=1

dim(CJi)

]

Theorem

Given a tree T and a mapping ω : [n]→ V (T), κ(C;T , ω) is the
minimum constraint complexity among all tree realizations on T
with coordinate assignment ω.

Definitions and Motivation Theorems Details Open Problems References

Treewidth

For a linear code C,

κtree(C) = min
(T ,ω)

κ(C;T , ω)

= min
(T ,ω)

max
v∈V (T)

[
dim(C)−

δ∑
i=1

dim(CJi)

]

The minimization above may be taken over (T , ω) such that

T is a cubic tree with n leaves (n = blocklength of C), and

ω is a 1-1 assignment of coordinates of C to the leaves of T .

Definitions and Motivation Theorems Details Open Problems References

Treewidth

For a linear code C,

κtree(C) = min
(T ,ω)

κ(C;T , ω)

= min
(T ,ω)

max
v∈V (T)

[
dim(C)−

δ∑
i=1

dim(CJi)

]

The minimization above may be taken over (T , ω) such that

T is a cubic tree with n leaves (n = blocklength of C), and

ω is a 1-1 assignment of coordinates of C to the leaves of T .

Definitions and Motivation Theorems Details Open Problems References

Generalization to Matroids

The definition of treewidth for a linear code is based heavily on the
work of Forney (2001,2003).

Around 2005, Jim Geelen independently defined a notion of
treewidth for matroids, as a generalization of a well-established
definition of treewidth for graphs.

Remarkably, Geelen’s definition of matroid treewidth, when applied
to the special case of vector matroids, reduces precisely to the
definition for linear codes.

Definitions and Motivation Theorems Details Open Problems References

What is a Matroid?

Definition

A matroid consists of a finite set E together with a function
r : 2E → Z+ having the following properties:

(M1) 0 ≤ r(A) ≤ |A| for all A ⊆ E

(M2) if A ⊆ B, then r(A) ≤ r(B) [monotonicity]

(M3) r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B) for all A,B ⊆ E
[submodularity]

The set E is called the ground set and the function r is called the
rank function of the matroid.

Definitions and Motivation Theorems Details Open Problems References

Tree Decompositions of Matroids

A tree decomposition of a matroid M = (E , r) consists of

a tree T

a mapping ω : E → V (T)

Definitions and Motivation Theorems Details Open Problems References

Tree Decompositions of Matroids

A tree decomposition of a matroid M = (E , r) consists of

a tree T , and

a mapping ω : E → V (T)

Definitions and Motivation Theorems Details Open Problems References

Width of a Tree Decomposition

Let (T , ω) be a tree decomposition of a matroid M = (E , r).

For a node v ∈ V (T) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti))

node-width(v) := r(E)−
∑δ

i=1 [r(E)− r(E \ Ji)]

Then, width(T , ω) = maxv∈V (T) node-width(v)

Definitions and Motivation Theorems Details Open Problems References

Width of a Tree Decomposition

Let (T , ω) be a tree decomposition of a matroid M = (E , r).

v

For a node v ∈ V (T) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti))

node-width(v) := r(E)−
∑δ

i=1 [r(E)− r(E \ Ji)]

Then, width(T , ω) = maxv∈V (T) node-width(v)

Definitions and Motivation Theorems Details Open Problems References

Width of a Tree Decomposition

Let (T , ω) be a tree decomposition of a matroid M = (E , r).

For a node v ∈ V (T) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti))

node-width(v) := r(E)−
∑δ

i=1 [r(E)− r(E \ Ji)]

Then, width(T , ω) = maxv∈V (T) node-width(v)

Definitions and Motivation Theorems Details Open Problems References

Width of a Tree Decomposition

Let (T , ω) be a tree decomposition of a matroid M = (E , r).

For a node v ∈ V (T) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti))

node-width(v) := r(E)−
∑δ

i=1 [r(E)− r(E \ Ji)]

Then, width(T , ω) = maxv∈V (T) node-width(v)

Definitions and Motivation Theorems Details Open Problems References

Matroid Treewidth

Definition (J.F. Geelen (unpublished); Hliněný and Whittle (2006))

The treewidth of M is the least width of any of its
tree decompositions.

Hliněný and Whittle (2006,2008) showed that the definition, when
applied to graphic matroids, reduces to the standard definition of
graph treewidth.

Definitions and Motivation Theorems Details Open Problems References

Matroid Treewidth

Definition (J.F. Geelen (unpublished); Hliněný and Whittle (2006))

The treewidth of M is the least width of any of its
tree decompositions.

Hliněný and Whittle (2006,2008) showed that the definition, when
applied to graphic matroids, reduces to the standard definition of
graph treewidth.

Definitions and Motivation Theorems Details Open Problems References

Graph Treewidth

Let G be a graph with vertex set V (G).

A tree decomposition of G consists of a tree T , and an ordered
collection V = (Vx , x ∈ V (T)) of subsets of V (G), satisfying⋃

x∈V (T) Vx = V ;

for each v ∈ V (G), the subgraph of T induced by
{x ∈ V (T) : v ∈ Vx} is connected; and

for each pair of adjacent vertices u, v ∈ V (G), we have
{u, v} ⊆ Vx for some x ∈ V (T).

We then define width(T ,V) 4= maxx∈V (T) |Vx | − 1.

Definition (Robertson & Seymour (1983))

The treewidth of G is defined to be the least width
of any tree decomposition of G; denoted by κtree(G).

Definitions and Motivation Theorems Details Open Problems References

Graph Treewidth

Let G be a graph with vertex set V (G).

A tree decomposition of G consists of a tree T , and an ordered
collection V = (Vx , x ∈ V (T)) of subsets of V (G), satisfying⋃

x∈V (T) Vx = V ;

for each v ∈ V (G), the subgraph of T induced by
{x ∈ V (T) : v ∈ Vx} is connected; and

for each pair of adjacent vertices u, v ∈ V (G), we have
{u, v} ⊆ Vx for some x ∈ V (T).

We then define width(T ,V) 4= maxx∈V (T) |Vx | − 1.

Definition (Robertson & Seymour (1983))

The treewidth of G is defined to be the least width
of any tree decomposition of G; denoted by κtree(G).

Definitions and Motivation Theorems Details Open Problems References

Some Examples

For any tree T , κtree(T) = 1.

If G is a cycle on at least three vertices, then κtree(G) = 2.

The graph G shown below also has treewidth 2.

H

G

A B

C

E

F

G

HD

An optimal tree decomposition of G

C
A

B

DE
C

E
B

C
B

EG

GF
B

G
E

Definitions and Motivation Theorems Details Open Problems References

Relating Graph and Code Treewidth (via Matroids)

Hliněný and Whittle (2006,2008) showed that the treewidth of
a graph equals the treewidth of its cycle matroid.

The cycle matroid of a graph corresponds to its cut-set code.

Definition

The cut-set code of a graph G = (V ,E) is the binary code C[G]
generated by the |V | × |E | vertex-edge incidence matrix of G.

Theorem (Hliněný and Whittle (2006,2008))

κtree(G) = κtree(C[G]) for any graph G.

Computing the treewidth of a graph is NP-hard.
[Arnborg, Corneil and Proskurowski (1987)]

Hence, computing the treewidth of a linear code is also NP-hard.

Definitions and Motivation Theorems Details Open Problems References

Relating Graph and Code Treewidth (via Matroids)

Hliněný and Whittle (2006,2008) showed that the treewidth of
a graph equals the treewidth of its cycle matroid.

The cycle matroid of a graph corresponds to its cut-set code.

Definition

The cut-set code of a graph G = (V ,E) is the binary code C[G]
generated by the |V | × |E | vertex-edge incidence matrix of G.

Theorem (Hliněný and Whittle (2006,2008))

κtree(G) = κtree(C[G]) for any graph G.

Computing the treewidth of a graph is NP-hard.
[Arnborg, Corneil and Proskurowski (1987)]

Hence, computing the treewidth of a linear code is also NP-hard.

Definitions and Motivation Theorems Details Open Problems References

Relating Graph and Code Treewidth (via Matroids)

Hliněný and Whittle (2006,2008) showed that the treewidth of
a graph equals the treewidth of its cycle matroid.

The cycle matroid of a graph corresponds to its cut-set code.

Definition

The cut-set code of a graph G = (V ,E) is the binary code C[G]
generated by the |V | × |E | vertex-edge incidence matrix of G.

Theorem (Hliněný and Whittle (2006,2008))

κtree(G) = κtree(C[G]) for any graph G.

Computing the treewidth of a graph is NP-hard.
[Arnborg, Corneil and Proskurowski (1987)]

Hence, computing the treewidth of a linear code is also NP-hard.

Definitions and Motivation Theorems Details Open Problems References

Treewidth of MDS and Reed-Muller Codes

Theorem (K. and Thangaraj (2011))

For an [n, k] MDS code,

treewidth = trelliswidth = min(k, n − k + 1).

For the Reed-Muller code RM(r ,m),

treewidth = trelliswidth =

{∑r
j=0

(m−2j−1
r−j

)
if m ≥ 2r + 1

1 +
∑m−r−1

j=0

(m−2j−1
r−j

)
if m < 2r + 1

Definitions and Motivation Theorems Details Open Problems References

Proof Strategy

Recall that for a linear code C,

κtree(C) = min
(T ,ω)

κ(C;T , ω)

= min
(T ,ω)

max
v∈V (T)

[
dim(C)−

δ∑
i=1

dim(CJi)

]

and the minimization above may be taken over (T , ω) such that

T is a cubic tree with n leaves (n = blocklength of C), and

ω is a 1-1 assignment of coordinates of C to the leaves of T .

Our proof strategy is to

first compute κtrellis for MDS and RM codes;

then show that if C is an MDS or RM code, then for any
(T , ω) as above, we have κ(C;T , ω) ≥ κtrellis(C).

Definitions and Motivation Theorems Details Open Problems References

Proof Strategy

Recall that for a linear code C,

κtree(C) = min
(T ,ω)

κ(C;T , ω)

= min
(T ,ω)

max
v∈V (T)

[
dim(C)−

δ∑
i=1

dim(CJi)

]

and the minimization above may be taken over (T , ω) such that

T is a cubic tree with n leaves (n = blocklength of C), and

ω is a 1-1 assignment of coordinates of C to the leaves of T .

Our proof strategy is to

first compute κtrellis for MDS and RM codes;

then show that if C is an MDS or RM code, then for any
(T , ω) as above, we have κ(C;T , ω) ≥ κtrellis(C).

Definitions and Motivation Theorems Details Open Problems References

Computation of κtrellis

Computing κtrellis(C) is a matter of finding a coordinate ordering of
C that yields an optimal trellis realization.

Dimension of local constraint code at node h (1 ≤ h ≤ n) is

dim(C)− dim(C{1,2,...,h−1})− dim(C{h+1,h+2,...,n}).

For an [n, k] MDS code, dim(CJ) depends only on |J|:

dim(CJ) = max{0, |J| − (n − k)}

Hence, constraint complexity of trellis realization is
independent of coordinate order.

Routine computations show κtrellis = min{k , n − k + 1}.

Definitions and Motivation Theorems Details Open Problems References

Computation of κtrellis

h

Computing κtrellis(C) is a matter of finding a coordinate ordering of
C that yields an optimal trellis realization.

Dimension of local constraint code at node h (1 ≤ h ≤ n) is

dim(C)− dim(C{1,2,...,h−1})− dim(C{h+1,h+2,...,n}).

For an [n, k] MDS code, dim(CJ) depends only on |J|:

dim(CJ) = max{0, |J| − (n − k)}

Hence, constraint complexity of trellis realization is
independent of coordinate order.

Routine computations show κtrellis = min{k , n − k + 1}.

Definitions and Motivation Theorems Details Open Problems References

Computation of κtrellis

h

Computing κtrellis(C) is a matter of finding a coordinate ordering of
C that yields an optimal trellis realization.

Dimension of local constraint code at node h (1 ≤ h ≤ n) is

dim(C)− dim(C{1,2,...,h−1})− dim(C{h+1,h+2,...,n}).

For an [n, k] MDS code, dim(CJ) depends only on |J|:

dim(CJ) = max{0, |J| − (n − k)}

Hence, constraint complexity of trellis realization is
independent of coordinate order.

Routine computations show κtrellis = min{k , n − k + 1}.

Definitions and Motivation Theorems Details Open Problems References

Computation of κtrellis for RM Codes

For RM codes,

an optimal coordinate ordering has been determined by
Kasami et al. (1993);

methods developed by Blackmore and Norton (2000)
easily yield an expression for κtrellis.

Definitions and Motivation Theorems Details Open Problems References

Showing κ(C;T , ω) ≥ κtrellis

κ(C;T , ω) = max
v∈V (T)

[
dim(C)−

δ∑
i=1

dim(CJi)

]
︸ ︷︷ ︸

κv

Let C be an MDS or RM code, and let T be any cubic tree.

It can be shown that there exists a vertex v ∈ V (T) such that
no matter what the coordinate assignment ω, we have κv ≥ κtrellis.

Hence, κ(C;T , ω) ≥ κtrellis for any cubic tree T and coord map ω.

Definitions and Motivation Theorems Details Open Problems References

Choice of v for an MDS Code

Theorem (C. Jordan (1869))

In any tree T with n leaves, there exists a node v such that each
component of T − v has at most n/2 leaves.

A node v as above is called a centroid of the tree.
There can be at most two centroids in a tree.

If C is an MDS code, and T any cubic tree, then taking v to be a
centroid of T , we are guaranteed κv ≥ κtrellis(C).

Definitions and Motivation Theorems Details Open Problems References

Choice of v for an RM Code

For an internal node v in a cubic tree T , let n1 ≤ n2 ≤ n3 denote
the number of leaves in the three components of T − v .

Theorem (folklore?)

In any cubic tree T with n leaves, there exists an internal node v
such that n/2 ≤ n3 ≤ 2n/3.

If C is an RM code, and T any cubic tree, then among the nodes
satisfying the theorem, take v to be one with largest n3.
For this choice of v , we have κv ≥ κtrellis(C).

Definitions and Motivation Theorems Details Open Problems References

Some Open Problems

What other NP-hard problems for codes (e.g., computing
minimum distance) become tractable for codes of bounded
treewidth?

Is it true that |κtree(C⊥)− κtree(C)| ≤ 1 for any code C?

It can be shown that 1
2 κtree(C) ≤ κtree(C⊥) ≤ 2κtree(C).

Can the treewidth of a linear code be efficiently approximated
within some constant factor?

Definitions and Motivation Theorems Details Open Problems References

Some Open Problems

What other NP-hard problems for codes (e.g., computing
minimum distance) become tractable for codes of bounded
treewidth?

Is it true that |κtree(C⊥)− κtree(C)| ≤ 1 for any code C?

It can be shown that 1
2 κtree(C) ≤ κtree(C⊥) ≤ 2κtree(C).

Can the treewidth of a linear code be efficiently approximated
within some constant factor?

Definitions and Motivation Theorems Details Open Problems References

Some Open Problems

What other NP-hard problems for codes (e.g., computing
minimum distance) become tractable for codes of bounded
treewidth?

Is it true that |κtree(C⊥)− κtree(C)| ≤ 1 for any code C?

It can be shown that 1
2 κtree(C) ≤ κtree(C⊥) ≤ 2κtree(C).

Can the treewidth of a linear code be efficiently approximated
within some constant factor?

Definitions and Motivation Theorems Details Open Problems References

References

[1] N. Kashyap, “On Minimal Tree Realizations of Linear Codes,”
IEEE Trans. Inform. Theory, vol. 55, no. 8, pp. 3501–3519,
Aug. 2009.

[2] N. Kashyap, “Constraint Complexity of Realizations of Linear
Codes on Arbitrary Graphs,” IEEE Trans. Inform. Theory, vol.
55, no. 11, pp. 4864–4877, Nov. 2009.

[3] N. Kashyap and A. Thangaraj, “The Treewidth of MDS and
Reed-Muller Codes,” arXiv:1102.2734, Feb. 2011.

	Definitions and Motivation
	Theorems
	Details
	Code Treewidth
	Matroid Treewidth
	Graph Treewidth
	MDS and Reed-Muller Codes

	Open Problems

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	0.10:
	0.11:
	0.12:
	0.13:
	0.14:
	0.15:
	0.16:
	0.17:
	0.18:
	0.19:
	0.20:
	0.21:
	0.22:
	0.23:
	0.24:
	0.25:
	0.26:
	0.27:
	0.28:
	0.29:
	0.30:
	anm0:
	0.EndLeft:
	0.StepLeft:
	0.PlayPauseLeft:
	0.PlayPauseRight:
	0.StepRight:
	0.EndRight:
	0.Minus:
	0.Reset:
	0.Plus:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	1.10:
	1.11:
	1.12:
	1.13:
	1.14:
	1.15:
	1.16:
	1.17:
	1.18:
	1.19:
	1.20:
	1.21:
	1.22:
	1.23:
	1.24:
	1.25:
	1.26:
	1.27:
	1.28:
	1.29:
	1.30:
	anm1:
	1.EndLeft:
	1.StepLeft:
	1.PlayPauseLeft:
	1.PlayPauseRight:
	1.StepRight:
	1.EndRight:
	1.Minus:
	1.Reset:
	1.Plus:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	2.10:
	2.11:
	2.12:
	anm2:
	2.EndLeft:
	2.StepLeft:
	2.PlayPauseLeft:
	2.PlayPauseRight:
	2.StepRight:
	2.EndRight:
	2.Minus:
	2.Reset:
	2.Plus:
	3.0:
	3.1:
	3.2:
	3.3:
	3.4:
	3.5:
	3.6:
	3.7:
	3.8:
	3.9:
	3.10:
	3.11:
	3.12:
	anm3:
	3.EndLeft:
	3.StepLeft:
	3.PlayPauseLeft:
	3.PlayPauseRight:
	3.StepRight:
	3.EndRight:
	3.Minus:
	3.Reset:
	3.Plus:

