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General Linear Realizations

Generic Factor Graph :
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The state and symbol spaces, as well as the local constraint
codes, are all linear.

The full behaviour B of such a realization is the set of all
symbol/state configurations that satisfy all local constraints.

The code realized is the projection of B onto the symbol vars.
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Normal Realizations

In a normal realization,

all state variables have degree two,
all symbol variables have degree one.

Any linear realization can be normalized [Forney (2001)].
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Normalization preserves cycle-free structure.
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Normal Realizations

Normal graph
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Factor graph

.

In a normal graph, state variables sit on edges.
and symbol variables are depicted by “dongles”.
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Example: RM(1, 3)

Consider the [8,4] binary Reed-Muller code RM(1, 3) defined to be
the nullspace (kernel) of the parity-check matrix

H =


1 1 0 0 1 1 0 0
0 1 1 0 0 1 1 0
0 0 1 1 0 0 1 1
0 0 1 1 1 1 0 0


Thus, RM(1, 3) consists of all (x1, x2, . . . , x8) ∈ {0, 1}8 such that:

x1 + x2 + x5 + x6 = 0

x2 + x3 + x6 + x7 = 0

x3 + x4 + x7 + x8 = 0

x3 + x4 + x5 + x6 = 0
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RM(1, 3): Tanner Graph

x3 + x4 + x5 + x6 = 0

x1

x2

x3

x4

x5

x6

x7

x8

x1 + x2 + x5 + x6 = 0

x2 + x3 + x6 + x7 = 0

x3 + x4 + x7 + x8 = 0



Definitions and Motivation Theorems Details Open Problems References

RM(1, 3): Normal Realization
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Message-Passing Decoder

A Tanner graph realization admits an iterative message-passing
decoding algorithm for the code.

Goal of decoding algorithm (given received word y):

recover, at each coordinate xi , a vector proportional to the
a-posteriori probability (APP) vector
[p(xi = 0 | y) , p(xi = 1 | y)].
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RM(1, 3) Tanner Graph has Cycles

x3 + x4 + x5 + x6 = 0

x1

x2
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x4

x5

x6

x7

x8

x1 + x2 + x5 + x6 = 0

x2 + x3 + x6 + x7 = 0

x3 + x4 + x7 + x8 = 0

On a Tanner graph with cycles, iterative message-passing decoding
is not guaranteed to produce the correct output, or even to
converge.
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Cycle-Free Tanner Graphs

Iterative message-passing decoding algorithms are guaranteed to
converge to the correct output on a cycle-free graph.

RM(1, 3) has no cycle-free Tanner graph
[by a result of Etzion-Trachtenberg-Vardy (1999)].
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Cycle-Free Realizations of RM(1, 3)

Tree realization:

[4, 2]

C2

C1 C3

C4

C5 C6

x4 x8

x5x1

x2

x3

x6

x7

[4, 2] [6, 3] [6, 3] [4, 2]

[4, 2]

Trellis realization:

x1

[2, 1] [4, 2] [6, 3] [6, 3] [6, 3] [6, 3] [4, 2] [2, 1]

x8x7x6x5x4x3x2

(State variables on edges are not shown.)
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Message-Passing Decoding

The computational complexity of the message-passing decoding
algorithm is proportional to∑

i

deg(vi ) |Ci | =
∑
i

deg(vi ) 2dim(Ci )

where vi is the vertex of the graph within which Ci sits.
[Aji-McEliece (2001), Forney (2001)]
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Constraint Complexity

[4, 2]

C2

C1 C3

C4

C5 C6

x4 x8

x5x1

x2

x3

x6

x7

[4, 2] [6, 3] [6, 3] [4, 2]

[4, 2]

∑
i deg(vi ) 2dim(Ci ) is dominated by the 2maxi dim(Ci ) terms.

We call maxi dim(Ci ) the constraint complexity of the realization.

For the realization shown, the constraint complexity is 3.
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Another Cycle-Free Realization of RM(1, 3)

x1

[2, 1] [4, 2] [6, 3] [6, 3] [6, 3] [6, 3] [4, 2] [2, 1]

x8x7x6x5x4x3x2

The constraint complexity is again 3.

We will define the treewidth of a code (e.g. RM(1, 3)) to be the
least constraint complexity of any of its cycle-free realizations.

The treewidth of a code estimates the complexity of implementing
optimum (maximum-likelihood) decoding as a message-passing
algorithm on the best cycle-free realization of the code.
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Definitions: Tree and Trellis Realizations

Definition

A normal realization is called

a tree realization if its underlying graph is a tree
(a tree is a cycle-free connected graph).

a trellis realization if its underlying graph is a path
(a path is a tree in which all vertices lie in a straight line).
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Definitions: Treewidth and Trelliswidth

Definition

The constraint complexity of a normal realization is the maximum
dimension among its local constraint codes.

Definition

The treewidth (resp. trelliswidth) of a code is the least
constraint complexity among its tree (resp. trellis) realizations.

κtree(C) := treewidth of code C
κtrellis(C) := trelliswidth of code C
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Comparing κtree and κtrellis

Since a trellis realization is a special type of tree realization,
for any code C, we have

κtree(C) ≤ κtrellis(C).

Theorem (K. (2009))

For a linear code C of length n > 1,

κtrellis(C)

κtree(C)
≤ 2 log2(n − 1) + 3.

This bound on the ratio is the best possible, up to the constants
involved. It is known [K. (2007)] that a sequence of codes C(i),
i = 1, 2, . . ., of length ni , exists such that

κtrellis(C(i))

κtree(C(i))
≈ 1

4
log2 ni .
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Parametrized Complexity of ML decoding

Theorem (K. (2009))

The complexity of maximum-likelihood decoding of a length-n
linear code C over Fq is O(nqt), where t is the treewidth of C.

As a corollary, we see that

codes of bounded treewidth are linear-time decodable.

However, codes of bounded treewidth do not have good
minimum distance, and so may not be good from an
error-correcting perspective.
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Proof Sketch

Forney (2003) made the following observation:

A length-n linear code C has an optimal tree realization
in which the underlying tree

(a) is cubic (i.e., all internal nodes have degree 3), and
(b) has n leaves

Here, “optimal” means that the constraint complexity of the
realization equals the treewidth of the code.

The computational complexity of message-passing decoding on
such an optimal tree realization T is proportional to∑
v∈V (T )

deg(v) qdim(Cv ) ≤
∑

v∈V (T )

3 · qκtree(C) = 3(2n − 2)qκtree(C)

the last equality because a cubic tree with n leaves has exactly
(2n − 2) vertices.
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Computing Treewidth

Theorem (from Hliněný & Whittle (2008))

Computing the treewidth of a linear code is NP-hard.

Theorem (K. and Thangaraj (2011))

For an [n, k] MDS code,

treewidth = trelliswidth = min(k, n − k + 1).

For the Reed-Muller code RM(r ,m),

treewidth = trelliswidth =

{∑r
j=0

(m−2j−1
r−j

)
if m ≥ 2r + 1

1 +
∑m−r−1

j=0

(m−2j−1
r−j

)
if m < 2r + 1
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Constructing Tree Realizations

Given: a code C of length n

Select:

T - a tree

, and

ω - an assignment of the n coordinates of C (i.e. the symbol
variables) to V (T )
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Local Constraint Codes [Forney (2003)]

Notation: For J ⊆ [n], CJ := {c ∈ C : c|Jc = 0}.

For a node v ∈ V (T ) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti ))

Cv := local constraint code at v = C/
⊕δ

i=1 CJi
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State Spaces [Forney (2003)]

e

For an edge e ∈ E (T ):

the removal of e from T yields a graph with two components,
T ′ and T ′′

set J ′ = ω−1(V (T ′)) and J ′′ = ω−1(V (T ′′))

Se := state space at e = C/(CJ′ ⊕ CJ′′)
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Constraint Complexity

For each v ∈ V (T ) in Forney’s tree realization,

dim(Cv ) = dim(C)−
δ∑

i=1

dim(CJi )

Hence, the constraint complexity of the realization is

κ(C;T , ω) := max
v∈V (T )

[
dim(C)−

δ∑
i=1

dim(CJi )

]

Theorem

Given a tree T and a mapping ω : [n]→ V (T ), κ(C;T , ω) is the
minimum constraint complexity among all tree realizations on T
with coordinate assignment ω.
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Treewidth

For a linear code C,

κtree(C) = min
(T ,ω)

κ(C;T , ω)

= min
(T ,ω)

max
v∈V (T )

[
dim(C)−

δ∑
i=1

dim(CJi )

]

The minimization above may be taken over (T , ω) such that

T is a cubic tree with n leaves (n = blocklength of C), and

ω is a 1-1 assignment of coordinates of C to the leaves of T .
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Generalization to Matroids

The definition of treewidth for a linear code is based heavily on the
work of Forney (2001,2003).

Around 2005, Jim Geelen independently defined a notion of
treewidth for matroids, as a generalization of a well-established
definition of treewidth for graphs.

Remarkably, Geelen’s definition of matroid treewidth, when applied
to the special case of vector matroids, reduces precisely to the
definition for linear codes.
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What is a Matroid?

Definition

A matroid consists of a finite set E together with a function
r : 2E → Z+ having the following properties:

(M1) 0 ≤ r(A) ≤ |A| for all A ⊆ E

(M2) if A ⊆ B, then r(A) ≤ r(B) [monotonicity]

(M3) r(A ∪ B) + r(A ∩ B) ≤ r(A) + r(B) for all A,B ⊆ E
[submodularity]

The set E is called the ground set and the function r is called the
rank function of the matroid.
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Tree Decompositions of Matroids

A tree decomposition of a matroid M = (E , r) consists of

a tree T

a mapping ω : E → V (T )
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Tree Decompositions of Matroids

A tree decomposition of a matroid M = (E , r) consists of

a tree T , and

a mapping ω : E → V (T )
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Width of a Tree Decomposition

Let (T , ω) be a tree decomposition of a matroid M = (E , r).

For a node v ∈ V (T ) with degree δ:

the removal of v from T yields a graph whose components,
T1, . . . ,Tδ, are subtrees of T

for i = 1, . . . , δ, set Ji = ω−1(V (Ti ))

node-width(v) := r(E )−
∑δ

i=1 [r(E )− r(E \ Ji )]

Then, width(T , ω) = maxv∈V (T ) node-width(v)
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Matroid Treewidth

Definition (J.F. Geelen (unpublished); Hliněný and Whittle (2006))

The treewidth of M is the least width of any of its
tree decompositions.

Hliněný and Whittle (2006,2008) showed that the definition, when
applied to graphic matroids, reduces to the standard definition of
graph treewidth.
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Graph Treewidth

Let G be a graph with vertex set V (G).

A tree decomposition of G consists of a tree T , and an ordered
collection V = (Vx , x ∈ V (T )) of subsets of V (G), satisfying⋃

x∈V (T ) Vx = V ;

for each v ∈ V (G), the subgraph of T induced by
{x ∈ V (T ) : v ∈ Vx} is connected; and

for each pair of adjacent vertices u, v ∈ V (G), we have
{u, v} ⊆ Vx for some x ∈ V (T ).

We then define width(T ,V) 4= maxx∈V (T ) |Vx | − 1.

Definition (Robertson & Seymour (1983))

The treewidth of G is defined to be the least width
of any tree decomposition of G; denoted by κtree(G).
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Some Examples

For any tree T , κtree(T ) = 1.

If G is a cycle on at least three vertices, then κtree(G) = 2.

The graph G shown below also has treewidth 2.
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An optimal tree decomposition of G
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Relating Graph and Code Treewidth (via Matroids)

Hliněný and Whittle (2006,2008) showed that the treewidth of
a graph equals the treewidth of its cycle matroid.

The cycle matroid of a graph corresponds to its cut-set code.

Definition

The cut-set code of a graph G = (V ,E ) is the binary code C[G]
generated by the |V | × |E | vertex-edge incidence matrix of G.

Theorem (Hliněný and Whittle (2006,2008))

κtree(G) = κtree(C[G]) for any graph G.

Computing the treewidth of a graph is NP-hard.
[Arnborg, Corneil and Proskurowski (1987)]

Hence, computing the treewidth of a linear code is also NP-hard.
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Treewidth of MDS and Reed-Muller Codes

Theorem (K. and Thangaraj (2011))

For an [n, k] MDS code,

treewidth = trelliswidth = min(k, n − k + 1).

For the Reed-Muller code RM(r ,m),

treewidth = trelliswidth =

{∑r
j=0

(m−2j−1
r−j

)
if m ≥ 2r + 1

1 +
∑m−r−1

j=0

(m−2j−1
r−j

)
if m < 2r + 1
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Proof Strategy

Recall that for a linear code C,

κtree(C) = min
(T ,ω)

κ(C;T , ω)

= min
(T ,ω)

max
v∈V (T )

[
dim(C)−

δ∑
i=1

dim(CJi )

]

and the minimization above may be taken over (T , ω) such that

T is a cubic tree with n leaves (n = blocklength of C), and

ω is a 1-1 assignment of coordinates of C to the leaves of T .

Our proof strategy is to

first compute κtrellis for MDS and RM codes;

then show that if C is an MDS or RM code, then for any
(T , ω) as above, we have κ(C;T , ω) ≥ κtrellis(C).



Definitions and Motivation Theorems Details Open Problems References

Proof Strategy

Recall that for a linear code C,

κtree(C) = min
(T ,ω)

κ(C;T , ω)

= min
(T ,ω)

max
v∈V (T )

[
dim(C)−

δ∑
i=1

dim(CJi )

]

and the minimization above may be taken over (T , ω) such that

T is a cubic tree with n leaves (n = blocklength of C), and

ω is a 1-1 assignment of coordinates of C to the leaves of T .

Our proof strategy is to

first compute κtrellis for MDS and RM codes;

then show that if C is an MDS or RM code, then for any
(T , ω) as above, we have κ(C;T , ω) ≥ κtrellis(C).



Definitions and Motivation Theorems Details Open Problems References

Computation of κtrellis

Computing κtrellis(C) is a matter of finding a coordinate ordering of
C that yields an optimal trellis realization.

Dimension of local constraint code at node h (1 ≤ h ≤ n) is

dim(C)− dim(C{1,2,...,h−1})− dim(C{h+1,h+2,...,n}).

For an [n, k] MDS code, dim(CJ) depends only on |J|:

dim(CJ) = max{0, |J| − (n − k)}

Hence, constraint complexity of trellis realization is
independent of coordinate order.

Routine computations show κtrellis = min{k , n − k + 1}.
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Computation of κtrellis for RM Codes

For RM codes,

an optimal coordinate ordering has been determined by
Kasami et al. (1993);

methods developed by Blackmore and Norton (2000)
easily yield an expression for κtrellis.
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Showing κ(C;T , ω) ≥ κtrellis

κ(C;T , ω) = max
v∈V (T )

[
dim(C)−

δ∑
i=1

dim(CJi )

]
︸ ︷︷ ︸

κv

Let C be an MDS or RM code, and let T be any cubic tree.

It can be shown that there exists a vertex v ∈ V (T ) such that
no matter what the coordinate assignment ω, we have κv ≥ κtrellis.

Hence, κ(C;T , ω) ≥ κtrellis for any cubic tree T and coord map ω.
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Choice of v for an MDS Code

Theorem (C. Jordan (1869))

In any tree T with n leaves, there exists a node v such that each
component of T − v has at most n/2 leaves.

A node v as above is called a centroid of the tree.
There can be at most two centroids in a tree.

If C is an MDS code, and T any cubic tree, then taking v to be a
centroid of T , we are guaranteed κv ≥ κtrellis(C).
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Choice of v for an RM Code

For an internal node v in a cubic tree T , let n1 ≤ n2 ≤ n3 denote
the number of leaves in the three components of T − v .

Theorem (folklore?)

In any cubic tree T with n leaves, there exists an internal node v
such that n/2 ≤ n3 ≤ 2n/3.

If C is an RM code, and T any cubic tree, then among the nodes
satisfying the theorem, take v to be one with largest n3.
For this choice of v , we have κv ≥ κtrellis(C).
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Some Open Problems

What other NP-hard problems for codes (e.g., computing
minimum distance) become tractable for codes of bounded
treewidth?

Is it true that |κtree(C⊥)− κtree(C)| ≤ 1 for any code C?

It can be shown that 1
2 κtree(C) ≤ κtree(C⊥) ≤ 2κtree(C).

Can the treewidth of a linear code be efficiently approximated
within some constant factor?
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