Statistical physics approach to compressed sensing

Marc Mézard LPTMS, Université Paris Sud, CNRS

collaboration with **Florent Krzakala**(ESPCI), **François Sausset** (LPTMS), **Yifan Sun** (ESPCI), **Lenka Zdeborova**(IPhT)

arXiv:1109.4424

Sparse signals

(From Candes-Wakin)

Exploited for data compression (JPEG). More recently: data acquisition (...,Donoho, Candes-Romberg-Tao, 2006,+...)

Compressed sensing

Acquire N bit data by doing measurements on much less than N bits (possible if signal is compressible, i.e. it has much less than N bits of information).

Possible applications:

- Rapid Magnetic Resonance Imaging
- Tomography, microscopy
- Image acquisition (single-pixel camera)
- Infer regulatory interactions among many genes using only a limited number of experimental conditions

- Possible relevance in information processing in the brain (e.g. uncover original signal from compressed signal sent by retina

- ...

An example from magnetic resonance imaging

Left: image acquired with compressed sensing: acceleration 2.5

Lustig et al.,

The simplest problem: getting a signal from some measurement= linear transforms

Consider a system of linear measurements

Pb: Find x when M < N and x is sparse

The problem: y = Fs and x is sparse, i.e. it has R components $\neq 0$

R < M < N y is observed, F is known. Find s

Study the linear system y = Fx

Exploit the sparsity of the original *s*

 \mathcal{X}

The problem: y = Fs and s is sparse *R* components $\neq 0$ \implies Study the linear system y = FxA 'simple' solution: guess the positions where $x_i \neq 0$ and check if it is correct **e.g.** $x_1, \ldots, x_R \neq 0$ $\begin{vmatrix} y \end{vmatrix} = \begin{vmatrix} G & F \end{vmatrix} \begin{vmatrix} x \\ \end{vmatrix}$ $G = \{ R \text{ first columns of } F \}$ **Solve:** $y^{\mu} = \sum_{i=1}^{K} G^{\mu i} x_i$ $\mu = 1, ..., M$ $R < M \implies$ too many equations

generically inconsistent (no solution), except if the guess of locations of $x_i \neq 0$ was correct

Compressed sensing as an optimization problem: the L_1 norm approach

Find a N - component vector x such that the M equations y = Fx are satisfied and ||x|| is minimal

Hopefully: x = s

 $||x||_0$: number of non-zero components

$$\|x\||_p = \sum_i |x_i|^p$$

Ideally, use $\||x\||_0$. In practice, use $\||x\||_1$

Compressed sensing as an optimization problem: the L_1 norm approach

Find a N - component vector x such that the M equations y = Fx are satisfied and ||x|| is minimal

Worst-case analysis: How many equations are needed in order to get the correct result for any initial sparse signal? Candès-Tao, Donoho

Typical-case analysis: How many equations are needed in order to get the correct result for almost all initial sparse signals and measurement matrices, drawn from some measure (e.g. $F_{\mu i}$ = iid Gaussian variables)

Phase diagram of the L_1 norm approach

Find a N - component vector x such that the M equations y = Fx are satisfied and ||x|| is minimal

Hardest and most interesting regime:

 $N \gg 1$ variables

 $R = \rho N$ non-zero variables

 $M = \alpha N$ equations

Typical-case analysis: phase diagram in the plane ρ, α

Phase diagram

Find a *N* - component vector x such that the *M* equations y = Fx are satisfied and ||x|| is minimal Gaussian random matrix

Alternative approach, able to reach the optimal rate $\alpha = \rho$ Krzakala Sausset Mézard Sun Zdeborova 2011

- Probabilistic approach
- Message passing reconstruction of the signal
- •Careful design of the measurement matrix

NB: each of these three ingredients is crucial

Step I:Probabilistic approach to compressed sensing

Signal generated from: $P_0(\mathbf{s}) = \prod_{i=1}^{N} [(1 - \rho_0)\delta(s_i) + \rho_0\phi_0(s_i)]$

Probabilistic decoding using:

$$P(\mathbf{x}) = \prod_{i=1}^{N} \left[(1-\rho)\delta(x_i) + \rho\phi(x_i) \right] \quad \prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i \right)$$

NB: $(\rho, \phi(x))$ may be distinct from true signal distribution $(\rho_0, \phi_0(x))$: no need of prior knowledge of signal

Theorem: if $\rho_0 < 1$, $\rho < 1$, $\alpha > \rho_0$, F random Gaussian, in the large N limit the maximum of $P(\mathbf{x})$ is at $\mathbf{x} = \mathbf{s}$

Sampling from $P(\mathbf{x})$ is optimal, even if we do not know the correct ρ_0 , ϕ_0

Step I:Probabilistic approach to compressed sensing

Signal generated from: $P_0(\mathbf{s}) = \prod_{i=1}^{N} [(1 - \rho_0)\delta(s_i) + \rho_0\phi_0(s_i)]$ Probabilistic decoding using:

 $P(\mathbf{x}) = \prod_{i=1}^{N} \left[(1-\rho)\delta(x_i) + \rho\phi(x_i) \right] \quad \prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i \right)$

Theorem: if $\rho_0 < 1$, $\rho < 1$, $\alpha > \rho_0$, F random Gaussian, in the large N limit the maximum of $P(\mathbf{x})$ is at $\mathbf{x} = \mathbf{s}$

Also true for broader class of measurement matrices F e.g. the seeding matrices to be used in the final design

Step 2: belief propagation-based reconstruction with parameter learning

$$P(\mathbf{x}) = \prod_{i=1}^{N} \left[(1-\rho)\delta(x_i) + \rho\phi(x_i) \right] \quad \prod_{\mu=1}^{P} \delta\left(y_{\mu} - \sum_{i} F_{\mu i} x_i \right) \quad \text{Gaussian } \phi$$

«Native configuration»= stored signal $x_i = s_i$ is infinitely more probable than other configurations. Efficient sampling?

Use **belief propagation**, with **gaussianapproximated** messages, and **parameter learning** of (ρ, ϕ) .

Message passing for compressed sensing

$$a_{i\to\mu} = \int \mathrm{d}x_i \, x_i \, m_{i\to\mu}(x_i)$$

$$v_{i \to \mu} = \int \mathrm{d}x_i \, x_i^2 \, m_{i \to \mu}(x_i) - a_{i \to \mu}^2$$

Gaussian-projected BP («relaxed-BP»)

... (TAP +cavity method for SK model)..., Kabashima Saad, Guo Wang, Rangan \rightarrow CS

$$m_{\mu \to i}(x_i) = \frac{1}{\tilde{Z}^{\mu \to i}} e^{-\frac{x_i^2}{2}A_{\mu \to i} + B_{\mu \to i}x_i}$$

$$m_{i \to \mu}(x_i) = \frac{1}{\tilde{Z}^{i \to \mu}} \left[(1 - \rho)\delta(x_i) + \rho\phi(x_i) \right] e^{-\frac{x_i^2}{2}\sum_{\gamma \neq \mu} A_{\gamma \to i} + x_i \sum_{\gamma \neq \mu} B_{\gamma \to i}}$$

Large connectivity: simplification by projection of the messages on their first two moments

NB : Possible further simplification: «Approximate Message Passing» (TAP-form) Donoho-Montanari

$$m_{i \to \mu}(x_i) = \frac{1}{\tilde{Z}^{i \to \mu}} \left[(1-\rho)\delta(x_i) + \rho\phi(x_i) \right] e^{-\frac{x_i^2}{2}\sum_{\gamma \neq \mu} A_{\gamma \to i} + x_i \sum_{\gamma \neq \mu} B_{\gamma \to i}}$$

$$\sum_{\gamma \neq \mu} A_{\gamma \rightarrow i}$$
 depends only weakly on μ

Expansion to first order in the correction (Onsager's reaction term). Messages: two real numbers on each vertex

$$\omega_{\mu} = \sum_{i} F_{\mu i} a_{i \to \mu} \qquad \gamma_{\mu} = \sum_{i} F_{\mu i}^{2} v_{i \to \mu}$$

$$U_i = \sum_{\mu} A_{\mu \to i} \qquad V_i = \sum_{\mu} B_{\mu \to i}$$

Parameter learning

$$P(x) = \frac{1}{Z} \prod_{i=1}^{N} \left[(1-\rho)\delta(x_i) + \rho\phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i \right)$$

Parameters: ρ , \overline{x} , σ

(taking Gaussian
$$\phi(x) = \frac{1}{\sqrt{2\pi}} e^{-(x-\overline{x})^2)/(2\sigma^2)}$$
)

Express the Bethe free-entropy $\log Z$ in terms of the BP messages.

Update the parameters ρ , \overline{x} , σ at each iteration by moving in the direction of the gradient of $\log Z$

Find the parameters which maximize Z

Performance of the probabilistic approach + message passing + parameter learning

$$Z = \int \prod_{j=1}^{N} \mathrm{d}x_j \prod_{i=1}^{N} \left[(1-\rho)\delta(x_i) + \rho\phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_\mu - \sum_{i=1}^{N} F_{\mu i} x_i \right)$$

 $F_{\mu i}$ iid Gaussian, variance 1/N

Simulations
Analytic study of the large N limit

Analytic study: cavity equations, density evolution, replicas, state evolution

$$Z = \int \prod_{j=1}^{N} \mathrm{d}x_j \prod_{i=1}^{N} \left[(1-\rho)\delta(x_i) + \rho\phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_{\mu} - \sum_{i=1}^{N} F_{\mu i} x_i \right)$$

Quenched disorder:

$$F_{\mu i} \quad \text{iid Gaussian, variance} \quad 1/N$$
$$y_{\mu} = \sum_{i=1}^{N} F_{\mu i} x_{i}^{0} \quad \text{where} \quad x_{i}^{0} \quad \text{are iid distributed from}$$
$$(1 - \rho_{0})\delta(x_{i}^{0}) + \rho_{0}\phi_{0}(x_{i})$$

Infinite range weak interactions... Replica computation:

$$E(\log Z) = \lim_{n \to 0} \frac{E(Z^n) - 1}{n}$$

Analytic study: cavity equations, density evolution, replicas, state evolution

$$E(Z^n) = \max_{D,V} e^{Nn\phi(D,V)}$$
 Φ is known

Order parameters:

$$D = \frac{1}{N} \sum_{i} \left(\langle x_i \rangle - s_i \right)^2 \qquad V = \frac{1}{N} \sum_{i} \left(\langle x_i^2 \rangle - \langle x_i^2 \rangle \right)$$

Cavity approach shows that the order parameters of the BP iteration flow according to the gradient of the replica free entropy Φ

NB: Replica symmetric expression of Φ is OK only on the Nishimori line: $\rho = \rho_0 \quad \phi = \phi_0$

When α is too small, BP is trapped in a glass phase

Performance of BP with parameter learning: phase diagram

Step 3: design the measurement matrix in order to get around the glass transition

Getting around the glass trap: design the matrix F so that one nucleates the naive state (crystal nucleation idea, borrowed from error correcting codes!) Hassani Macris Urbanke

→ Seeded BP

Group the variables and the measurements into L blocks

 $F_{\mu i}$ = independent random Gaussian variables, zero mean and variance $J_{b(\mu)b(i)}/N$

L = 8

 $N_i = N/L$ $M_i = \alpha_i N/L$

 $\alpha_{1} > \alpha_{BP}$ $\alpha_{j} = \alpha' < \alpha_{BP} \qquad j \ge 2$ $\alpha = \frac{1}{L} (\alpha_{1} + (L-1)\alpha')$

$$L = 8$$

 $N_i = N/L$ $M_i = \alpha_i N/L$

 $\alpha_{1} > \alpha_{BP}$ $\alpha_{j} = \alpha' < \alpha_{BP} \qquad j \ge 2$ $\alpha = \frac{1}{L} (\alpha_{1} + (L-1)\alpha')$

$$L = 8$$

 $N_i = N/L$ $M_i = \alpha_i N/L$

 $\alpha_1 > \alpha_{BP}$ $\alpha_j = \alpha' < \alpha_{BP} \qquad j \ge 2$ $\alpha = \frac{1}{L} (\alpha_1 + (L-1)\alpha')$

L = 8

 $N_i = N/L$ $M_i = \alpha_i N/L$

 $\alpha_{1} > \alpha_{BP}$ $\alpha_{j} = \alpha' < \alpha_{BP} \qquad j \ge 2$ $\alpha = \frac{1}{L} (\alpha_{1} + (L-1)\alpha')$

Mean square error

Performance of the probabilistic approach + message passing + parameter learning+ seeding matrix

$$Z = \int \prod_{j=1}^{N} \mathrm{d}x_j \prod_{i=1}^{N} \left[(1-\rho)\delta(x_i) + \rho\phi(x_i) \right] \prod_{\mu=1}^{M} \delta\left(y_\mu - \sum_{i=1}^{N} F_{\mu i} x_i \right)$$

: no coupling (null elements)

SimulationsAnalytic approaches

Analytic study: cavity equations, density evolution, replicas, state evolution

$$E(Z^n) = \max_{\{D_r, V_r,\}} e^{Nn\Phi(D_1, V_1, \dots, D_L, V_L)} \qquad \Phi \text{ is known}$$

2L order parameters:

$$D_r = \frac{1}{N/L} \sum_{i \in B_r} \left(\langle x_i \rangle - s_i \right)^2 \qquad V_r = \frac{1}{N/L} \sum_{i \in B_r} \left(\langle x_i^2 \rangle - \langle x_i^2 \rangle \right)$$

 \rightarrow optimize

 J_1, J_2

Cavity approach shows that the order parameters of the BP iteration +parameter learning flow according to the gradient of the replica free entropy Φ :

$$\left(\{D_r, V_r\}, \rho, \overline{x}, \sigma^2\right)^{(t+1)} = f\left(\left(\{D_r, V_r\}\rho, \overline{x}, \sigma^2\right)^{(t)}\right)$$

Known mapping f, depends on α_i, J_1, J_2

Analytic study: cavity equations, density evolution, replicas

Replica study of the seeding measurement matrix : in some regimes of α_1, J_1, J_2

there is no dynamical glass transition (in the large L limit)

possible to reach the optimal compressed sensing limit $\alpha = \rho$

Gaussian signal

Binary signal

$\alpha = \rho \approx 0.15$

Shepp-Logan phantom, in the Haar-wavelet representation

$\alpha = \rho \approx 0.24$

 L_1

BEP

s-BP

Summary

Progress based on the union of three ingredients:

Probabilistic approach

Message passing reconstruction of the signal
Careful design of the measurement matrix to avoid

glass transition

Many things to be done

Rigorous version of the analytic study (see Montanari's recent works)

Rigorous study of analytic equations (choice of J₁, J₂, convergence, degradation of L₁ by seeding, etc.)
Design of F for applications, taking into account constraints on the possible measurements

Full study of the performance in presence of noise
Non-linear versions

• • • •