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Sparse signals

Measurements

Exploited for data compression (JPEG). More recently: data 
acquisition (...,Donoho, Candes-Romberg-Tao, 2006,+...)

From 65.536  wavelet coefficients, keep 25.000

(From Candes-Wakin) 



Compressed sensing

Measurements

Acquire    bit data by doing measurements on much 
less than     bits (possible if signal is compressible, 
i.e. it has much less than    bits of information).

N

N

N

Possible applications: 
- Rapid Magnetic Resonance Imaging
- Tomography, microscopy
- Image acquisition (single-pixel camera)
- Infer regulatory interactions among many genes 
using only a limited number of experimental 
conditions
- Possible relevance in information processing in the 
brain (e.g. uncover original signal from compressed 
signal sent by retina
- ...



An example from magnetic resonance imaging 

Measurements

Left: image acquired with compressed 
sensing: acceleration Lustig et al., 2.5



The simplest problem: getting a signal from some 
measurement= linear transforms

Consider a system of linear measurements

y = Fx

y =





y1

.

.
yM





x =





x1

.

.

.

.
xN





F = M ×N matrix

Signal
MeasurementsMeasurements

(e.g. wavelet 
components)

Pb: Find x when M < N and x is sparse



The problem: 

y = Fx

and   is sparse, i.e.  it has
�= 0R

R < M < N

y = Fs
components 

is observed, y F is known.  Find s

Study the linear system

=y F
x

Exploit the sparsity of 
the original s

x



The problem: and   is sparse 
�= 0R

A ‘simple’ solution: guess the positions 
where           and check if it is correct

x1, . . . , xR �= 0

G = R{ }first columns of F

}R

=y F
x

G

Solve : yµ =
R�

i=1

Gµixi µ = 1, . . . ,M

y = Fs s
components 

y = FxStudy the linear system

xi �= 0

e.g.

too many equations 
generically inconsistent (no solution), except if 
the guess of locations of         was correctxi �= 0

R < M
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y = Fx
Find a    - component vector      such that the       
equations                are satisfied and        is minimal

N x M

||x||

Hopefully: x = s

||x||0Ideally, use         . In practice, use ||x||1

: number of non-zero components

||x||p =
�

i

|xi|p

||x||0

Compressed sensing as an optimization problem: 
the      norm approachL1



y = Fx
Find a    - component vector      such that the       
equations                are satisfied and        is minimal

N x M

||x||

Worst-case analysis: How many equations are needed 
in order to get the correct result for any initial sparse 
signal?

Typical-case analysis: How many equations are needed 
in order to get the correct result for almost all initial 
sparse signals and measurement matrices, drawn from 
some measure (e.g.        = iid Gaussian variables)

Candès-Tao, Donoho

Compressed sensing as an optimization problem: 
the      norm approachL1

Fµi



y = Fx
Find a    - component vector      such that the       
equations                are satisfied and        is minimal

N x M

||x||

Typical-case analysis: phase diagram in the plane 

Hardest and most 
interesting regime:

N � 1

M = αN

R = ρN

variables

equations
non-zero variables

Phase diagram of the      norm approachL1

ρ,α



Phase diagram

y = Fx
Find a    - component vector      such that the       
equations                are satisfied and        is minimal

N x M

||x||

Kabashima, 
Wadayama 
and Tanaka, 
JSTAT 2009

Donoho  
 2006, 
Donoho 
Tanner 2005

ρ = R/N
Fraction of non-
zero variables

Number 
of 
measure-
ments 
per 
variable

α = M/N

Gaussian random matrix



Possible by linear 
programming Possible by 

enumeration, 
using a time O(eN )

Reconstruction 
impossible

Efficient message 
passing solution

Donoho Maleki Montanari; 
(Kabashima MM)



Alternative approach, able to reach the optimal rate 

•Probabilistic approach
•Message passing reconstruction of the signal
•Careful design of the measurement matrix

Krzakala Sausset Mézard Sun Zdeborova 2011

NB: each of these three ingredients is crucial

α = ρ



Step 1:Probabilistic approach to compressed sensing

Signal generated from:

Probabilistic decoding using:

NB:             may be distinct from true signal 
distribution             : no need of prior knowledge of signal 

P (x) =
N�

i=1

[(1− ρ)δ(xi) + ρφ(xi)]
P�

µ=1

δ

�
yµ −

�

i

Fµixi

�

P0(s) =
N�

i=1

[(1− ρ0)δ(si) + ρ0φ0(si)]

(ρ,φ(x))

(ρ0,φ0(x))

Sampling from         is optimal, even if we do not 
know the correct     ,  

P (x)

ρ0 φ0

Theorem: if         ,        ,         ,     random Gaussian, in 
the large     limit the maximum of       

ρ0 < 1 ρ < 1 α > ρ0

is at P (x) x = s

F

N
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the large     limit the maximum of       

ρ0 < 1 ρ < 1 α > ρ0

is at P (x) x = s

F

N

Also true for broader class of measurement matrices 

e.g. the seeding matrices to be used in the final design

F



Step 2: belief propagation-based reconstruction
with parameter learning

P (x) =
N�

i=1

[(1− ρ)δ(xi) + ρφ(xi)]
P�

µ=1

δ

�
yµ −

�

i

Fµixi

�

«Native configuration»= stored signal           is infinitely 
more probable than other configurations. 
Efficient sampling? 

Use belief propagation, with gaussian-
approximated messages, and parameter learning 
of        .  

xi = si

(ρ,φ)

Gaussian φ



Message passing for compressed sensing

xi

P (x) =
N�

i=1

[(1− ρ)δ(xi) + ρφ(xi)]
P�

µ=1

δ

�
yµ −

�

i

Fµixi

�

µ

mi→µ(xi)

mi→µ = f ({mν→i} , ν ∈ ∂i \ µ)

Useless as 
such !



ai→µ =

�
dxi xi mi→µ(xi)

vi→µ =

�
dxi x

2
i mi→µ(xi)− a2i→µ

Large connectivity: simplification by projection of the 
messages on their first two moments

mµ→i(xi) =
1

Z̃µ→i
e−

x2
i
2 Aµ→i+Bµ→ixi

mi→µ(xi) =
1

Z̃i→µ
[(1− ρ)δ(xi) + ρφ(xi)] e

− x2
i
2

�
γ �=µ Aγ→i+xi

�
γ �=µ Bγ→i

Gaussian-projected BP
(«relaxed-BP»)

... (TAP +cavity method 
for SK model)...,
Kabashima Saad,
Guo Wang,
Rangan      CS



NB : Possible further simplification:  
«Approximate Message Passing» (TAP-form) 

mi→µ(xi) =
1

Z̃i→µ
[(1− ρ)δ(xi) + ρφ(xi)] e

− x2
i
2

�
γ �=µ Aγ→i+xi

�
γ �=µ Bγ→i

Donoho-Montanari 

�

γ �=µ

Aγ→i depends only weakly on µ

Expansion to first order in the correction (Onsager’s 
reaction term). Messages: two real numbers on each vertex

ωµ =
�

i

Fµiai→µ γµ =
�

i

F 2
µivi→µ

Vi =
�

µ

Bµ→iUi =
�

µ

Aµ→i



Express the Bethe free-entropy         in terms of the BP 
messages. 

Parameter learning

P (x) =
1

Z

N�

i=1

[(1− ρ)δ(xi) + ρφ(xi)]
M�

µ=1

δ

�
yµ −

N�

i=1

Fµixi

�

logZ

Parameters: ρ, x, σ

(taking Gaussian φ(x) =
1√
2π

e−(x−x)2)/(2σ2) )

Update the parameters             at each iteration by 
moving in the direction of the gradient of        

ρ, x, σ

logZ

Find the parameters which maximize Z       



Performance of the probabilistic 
approach + message passing + 

parameter learning

Z =

� N�

j=1

dxj

N�

i=1

[(1− ρ)δ(xi) + ρφ(xi)]
M�

µ=1

δ

�
yµ −

N�

i=1

Fµixi

�

Fµi iid Gaussian, variance 1/N

‣Simulations
‣Analytic study of the large     limitN



Analytic study: cavity equations, density 
evolution, replicas, state evolution

Quenched disorder: 

Z =

� N�

j=1

dxj

N�

i=1

[(1− ρ)δ(xi) + ρφ(xi)]
M�

µ=1

δ

�
yµ −

N�

i=1

Fµixi

�

Fµi iid Gaussian, variance 1/N

yµ =
N�

i=1

Fµix
0
i x0

iwhere are iid distributed from  
(1− ρ0)δ(x

0
i ) + ρ0φ0(xi)

Infinite range weak interactions... 
Replica computation:

E(logZ) = lim
n→0

E(Zn)− 1

n



NB: Replica symmetric expression of     is OK only on 
the Nishimori line: ρ = ρ0 φ = φ0

Order parameters:

Cavity approach shows that the order parameters of 
the BP iteration flow according to the gradient of 
the replica free entropy Φ

Φ is known

Analytic study: cavity equations, density 
evolution, replicas, state evolution

Φ

E(Zn) = max
D,V

eNnφ(D,V )

D =
1

N

�

i

(�xi� − si)
2 V =

1

N

�

i

�
�x2

i � − �x2
i �
�
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Free entropy

distance to native state

When      is too small,  BP is trapped in a glass phaseα

BP convergence timeρ0 = .4

Dynamic glass transition
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Performance of BP with parameter 
learning: phase diagram



Getting around the glass trap: design the matrix F 
so that one nucleates the naive state (crystal 
nucleation idea, borrowed from error correcting 
codes!)

Seeded BP

Step 3: design the measurement matrix in 
order to get around the glass transition

Fµi =

Group the variables and the measurements into     blocksL

independent random Gaussian variables, 
zero mean and variance Jb(µ)b(i)/N

Hassani Macris Urbanke
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Numerical 
study αL1αBEPα=ρ
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Performance of the probabilistic 
approach + message passing + 

parameter learning+ seeding matrix

Z =

� N�

j=1

dxj

N�

i=1

[(1− ρ)δ(xi) + ρφ(xi)]
M�

µ=1

δ

�
yµ −

N�

i=1

Fµixi

�

‣Simulations
‣Analytic approaches








= ×

y F s

: unit coupling

: no coupling (null elements)

: coupling J1
: coupling J2

J1
J1

J1
J1

J1
J1

J1

J2
J2

J2
J2

J2
J2

1
1

1
1

1
1

1

1 J2

0

0



















Φ is known

Analytic study: cavity equations, density 
evolution, replicas, state evolution

order parameters:

Cavity approach shows that the order parameters of 
the BP iteration +parameter learning flow according 
to the gradient of the replica free entropy     :Φ

Known mapping f, depends on αi, J1, J2

optimize
J1, J2

E(Zn) = max
{Dr, Vr,}

eNnΦ(D1,V1,...,DL,VL)

2L

Vr =
1

N/L

�

i∈Br

�
�x2

i � − �x2
i �
�

Dr =
1

N/L

�

i∈Br

(�xi� − si)
2

({Dr, Vr}, ρ, x,σ2)(t+1) = f
�
({Dr, Vr}ρ, x,σ2)(t)

�



Analytic study: cavity equations, 
density evolution, replicas

Replica study of the seeding 
measurement matrix : in some 
regimes of 
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α1, J1, J2

there is no dynamical glass 
transition (in the large     
limit)

L

possible to reach the optimal 
compressed sensing limit α = ρ
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Theory: seeded-BP threshold at            when α = ρ L → ∞

 phase transition line moves up when using seedingL1 F



Gaussian signal Binary signal
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L1

BEP

S-BEP

α = 0.5 α = 0.4 α = 0.3 α = 0.2 α = 0.1

α = ρ ! 0.15

s-BP

Shepp-Logan phantom, in the Haar-wavelet 
representation
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Progress based on the union of three ingredients:

Summary

•Probabilistic approach
•Message passing reconstruction 
of the signal
•Careful design of the 
measurement matrix to avoid 
glass transition



Many things to be done

•Rigorous version of the analytic study (see Montanari’s 
recent works)
•Rigorous study of analytic equations (choice of         , 
convergence, degradation of      by seeding, etc.)
•Design of      for applications, taking into account 
constraints on the possible measurements

•Full study of the performance in presence of noise
•Non-linear versions
•...

J1, J2
L1

F


