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Sparse signals

4 Wavelet Coefficients
x 10

From 65.536 wavelet coefficients, keep 25.000

(From Candes-Wakin)

Exploited for data compression (JPEG). More recently: data
acquisition (...,Donoho, Candes-Romberg-Tao, 2006,+...)




Compressed sensing

Acquire N bit data by doing measurements on much
less than N bits (possible if signal is compressible,
i.e. it has much less than N bits of information).

Possible applications:

- Rapid Magnetic Resonance Imaging

- Tomography, microscopy

- Image acquisition (single-pixel camera)

- Infer regulatory interactions among many genes
using only a limited number of experimental
conditions

- Possible relevance in information processing in the
brain (e.g. uncover original signal from compressed
signal sent by retina




An example from magnetic resonance imaging

Left: image acquired with compressed
sensing: acceleration 2.5




The simplest problem: getting a signal from some
measurement= linear transforms

Consider a system of linear measurements

y=Fx

Measurements \

[yt ) Signal ==

\ v

components)

Pb: Find « when M < N and X is sparse




The problem:  y = £'s and zis sparse,i.e. it has
R components +# 0

R<M< N vy isobserved, F is known. Find s

Study the linear system Yy = I'x

Exploit the sparsity of
the original s




The problem:  y = Fs and s is sparse
R components +# 0

Study the linear system Yy = Fx

A ‘simple’ solution: guess the positions
where z: #0 and check if it is correct

e.g. xl,...,xR#O

G ={ R first columns of F }

R
Solve : y“:ZG“ixi u=1,...,.M
i=1

too many equations

. generically inconsistent (no solution), except if
the guess of locations of z; £ 0 was correct




The problem:  y = Fs and s is sparse
R components +# 0

== Study the linear system Yy = I'x

A ‘simple’ solution: guess the positions
where z: #0 and check if it is correct

e.g. = a L0

G ={

( % ) possible guesses

Solvg

<M1

= generically inconsistent (no solution), except if
the guess of locations of z; £ 0 was correct




Compressed sensing as an optimization problem:
the L; norm approach

Find a ¥ - component vector x such that the u
equations y = F'x are satisfied and ||x|| is minimal

Hopefully: © = s

|z|lo :number of non-zero components

[z]lp = ) _ |zil?
1

Ideally, use ||z||o.In practice, use ||z|1




Compressed sensing as an optimization problem:
the L; norm approach

Find a ¥ - component vector x such that the u
equations y = F'x are satisfied and ||x|| is minimal

Worst-case analysis: How many equations are needed
in order to get the correct result for any initial sparse

signal?

Typical-case analysis: How many equations are needed
in order to get the correct result for almost all initial
sparse signals and measurement matrices, drawn from
some measure (e.g. F,; = iid Gaussian variables)




Phase diagram of the L; norm approach

Find a ¥ - component vector x such that the u
equations y = F'x are satisfied and ||x|| is minimal

Hardest and most N >1 variables

interesting regime: R = pN non-zero variables
M = aN equations

Typical-case analysis: phase diagram in the plane p,




Phase diagram

a=M/N
Number
of
measure-
ments
per
variable

p=R/N
Fraction of non-

0.« 2 0.4 O.6p 0.8 zero variables

Find a ¥ - component vector x such that the M
equations y = F'x are satisfied and ||x|| is minimal

\

Gaussian random matrix




Possible by linear
programming
Efficient message

passing solution

Donoho Maleki Montanari;
Kabashima MM

0.6p 0.8

Possible by
enumeration,
using a time O(e")




Alternative approach, able to reach the optimal rate o = p

*Probabilistic approach
*Message passing reconstruction of the signal
*Careful design of the measurement matrix

NB: each of these three ingredients is crucial




Step |:Probabilistic approach to compressed sensing

Signal generated from: Py(s) = | [[(1 = po)d(si) + podo(si)]

1=1

Probabilistic decoding using:

N

P(x) = [[1(1 - p)d(x:) + po(as)] H(S(yu ZF)

NB: (p,¢(z)) may be distinct from true signal
distribution (po, ¢0(z)): no need of prior knowledge of signal

Theorem:ifpo <1 ,p<1l a>po, I random Gaussian,in
the large N limit the maximum of P(x) is at x=s

Sampling from P(x) is optimal, even if we do not
ﬁ know the correct po , ¢,




Step |:Probabilistic approach to compressed sensing

N

Signal generated from: Py(s) = | [[(1 = po)d(si) + podo(si)]

Probabilistic decoding using:

N

P(x) = [[1(1 - p)d(x:) + po(as)] Hd(yu ZF)

1=1
Theorem:if o <1,p<1 a>po, " random Gaussian, in
the large N limit the maximum of P(x) is at x =s

Also true for broader class of measurement matrices F

e.g. the seeding matrices to be used in the final design




Step 2: belief propagation-based reconstruction
with parameter learning

N P

P(x) = [ (1 = p)d(z:) + po(z:)] |] 0 (f‘/u - ZFMf) Gaussian ¢

1=1 =1

«Native configuration»= stored signal z; = s, is infinitely

more probable than other configurations.
Efficient sampling?

Use belief propagation, with gaussian-
approximated messages, and parameter learning
of (p,9) .




Message passing for compressed sensing

L) i = F {muit v € 0\ p)

\ Useless as
. y such!

0 Yu — ZFMZxZ>

()
\. v,




Gaussian-projected BP
Gisp = / Ay 23 i () («relaxed-BPy)

_ 2 N g2

My—i(T4)

1 i

My (T) = Zion (1 —=p)o(z;) + po(xs)| e =

Large connectivity: simplification by projection of the
messages on their first two moments




NB : Possible further simplification:
«Approximate Message Passing» (TAP-form)

1

M (i) = == [(1 = p)o(xi) + pol:) e~ 7

Z Ay—i depends only weakly on #

VFH

Expansion to first order in the correction (Onsager’s
reaction term). Messages: two real numbers on each vertex

R . . L 2 .
2 ;

Ui = ZAM—MJ Vi = ZBM_M-
H T




Parameter learning

(1= p)d(z:) + po(ai)] | | 6 (yu - Z le‘i)

1
A

1

P(z) =

1

Parameters: p, z, o

1

: : _ —(z—7)%)/(207)
= e
(taking Gaussian ¢(7) o )

Express the Bethe free-entropy log Z in terms of the BP

messages.

Update the parameters p, 7, o at each iteration by
moving in the direction of the gradient of log 7

mmd Find the parameters which maximize Z



Performance of the probabilistic
approach + message passing +
parameter learning

N N M

z— [ TLaw; TL10 = p)3(a0) + potas) 1 (yZF)

71=1 1=1 u=1

Fui o iid Gaussian, variance 1/N

» Simulations
» Analytic study of the large N limit




Analytic study: cavity equations, density
evolution, replicas, state evolution

N
/ H d:z:] o(x;) + po(x;) H (yu — Z Fw;a:i)
1= 1=1

Quenched disorder:
Fuiiid Gaussian, variance 1/N

= ZFMSE‘? where z; are iid distributed from

1=1

(1= po)d(a7) + pogo(:)
Infinite range weak interactions...

Replica computation:
BE(Z") —1
E(log Z7) = lim

n—0 n




Analytic study: cavity equations, density
evolution, replicas, state evolution

E(Z") = max eNné(D,V) ® is known

Order parameters:

1 2
D = NZ(@O — 5;)

Cavity approach shows that the order parameters of

the BP iteration flow according to the gradient of
the replica free entropy @

NB: Replica symmetric expression of & is OK only on
the Nishimori line: p=p0 ¢ = og
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Free entropy BP convergence time

—
o
-
-

Number of iterations

distance to native state

Dynamic glass transition

When o« is too small, BP is trapped in a glass phase




Performance of BP with parameter
learning: phase diagram

Gaussian signal Binary signal




Step 3: design the measurement matrix in
order to get around the glass transition

Getting around the glass trap: design the matrix F
so that one nucleates the naive state (crystal
nucleation idea, borrowed from error correcting
codes!)

> Seeded BP

Group the variables and the measurements into L blocks

Iui = independent random Gaussian variables,
zero mean and variance J, .y /N




M : unit coupling

: coupling /

: coupling />

: no coupling (null elements)

Q1 > opp

Oéj:Ck/<Cva ]22

a:%(al—k(l)—l)a’)










M : unit coupling

: coupling /

: coupling />

: no coupling (null elements)

Q1 > opp

Oéj:Ck/<Cva ]22

a:%(al—k(l)—l)a’)




Numerical

study o4t
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Mean square error

t =10
decoding of ©
first block

L =20 N = 50000

t = 100
decoding

of blocks
1 to 9

10
Block index

p=.4




Numerical
study

Number of iterations

Seeded BEP - L=10
Seeded BEP - L.=40




Performance of the probabilistic
approach + message passing +
parameter learning+ seeding matrix

PJ

N
/ H dz; | | 0(xi) + po(xi)) H (yu - mei)
1= 1=1

» Simulations
» Analytic approaches

: unit coupling

: coupling /i

: coupling />

: no coupling (null elements)




Analytic study: cavity equations, density
evolution, replicas, state evolution

n Nn®(D1,V , o
E(Z )Z{Dmag}e HEUE o is known

2L, order parameters:

1 ) B
Y= NL 2 () —s)” Vi = N/L

1€ B, 1€ B,
Cavity approach shows that the order parameters of
the BP iteration +parameter learning flow according

to the gradient of the replica free entropy ¢ :

(D2, Vi}o 0, 7,07 D = £ (({D,, Vi }p, 7, 0%) ) -
— optimize

Known mapping f, depends on «;, Ji, J5 Ji, Jo




Analytic study: cavity equations,
density evolution, replicas

measurement matrix : in some

Replica study of the seeding |
regimes of o1, J1, J2

there is no dynamical glass
transition (in the large L
limit)

possible to reach the optimal
compressed sensing limit  a=p




Gaussian signal Binary signal
BP Ly
L4

seeded — BP

1
0.8 -
0.6 +

S
0.4 |

0.2 -

0

Theory: seeded-BP threshold at o =p when L — oc

L1 phase transition line moves up when using seeding F




Gaussian signal Binary signal




Shepp-Logan phantom, in the Haar-wavelet
representation







Summary

Progress based on the union of three ingredients:

*Probabilistic approach
*Message passing reconstruction
of the signal

*Careful design of the
measurement matrix to avoid
glass transition




Many things to be done

*Rigorous version of the analytic study

*Rigorous study of analytic equations (choice of Ji, Ja,
convergence, degradation of L; by seeding, etc.)
*Design of F' for applications, taking into account
constraints on the possible measurements

*Full study of the performance in presence of noise
°*Non-linear versions




