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Outline

Part |

e Monte Carlo methods to compute the capacity of
noiseless constrained 2D channels.

e [ree-Based Gibbs sampling.

Part Il

e Extensions to compute information rates of
noisy constrained 2D source/channel models.

e Multilayer importance sampling.

Both problems reduce to computing the
partition function of graphical models with cycles



The Partition Function

Problem setting:
- finite sets X}, ..., Xy and XéXl X Xo X ... X Xy
- function f: X — R with f(z) > 0forallx € X

Compute the partition function

Zp =) fl),

reX
where
- X1, ..., Xy are “small” sets (e.g., | X1 = ... =|Xn| =2)
- N is large

- f has a "useful” factorization (factor graph) - but not cycle-free.

Also define
SiE{reX: f(z) >0}



Part I: Noiseless Constrained 2D Channels

= = = =
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flxy,...,xN) = H g(xk, xp)

neighbors (zy, z/¢)

O, if T = Xy = 1
1, else

9(@p, x) = {

Also known as 2D (1, co)-RLL channel.



Noiseless Constrained 2D Channels

In this case

Zy = Z f(z) = number of valid configurations = |S¢|
reX

Cy = % log Zy = noiseless capacity (for N — oo called C, the Shannon capacity)

For a 2D (1, 00)-RLL [CW98,NZ00]
Co ~= 0.587891 ...

Tight bounds for C'y, are available for a few special cases, while our
method works for various generalizations of this example.



Noiseless Constrained 1D Channels

Consider a 1D (1, 00)-RLL constraint

N
f(xh SR ,IN) — Hgk<xk—17 CUk)
k=2

Zy=> f@)=> 1] 9or@r1, )

reX reX k=2

Computing Z; is straightforward

X9 Xk X, Xk+1

Ik—1 9k 9k+1
with sum-product message passing on a cycle-free factor graph.

Other approaches: combinatorial and algebraic [Shannon438].



Estimating 1/7¢ (Ogata-Tanemura)

Algorithm:
1. Draw samples (V) 2?2 € Sy according to pr= f(x)/Z;.

2. Compute:
K
. 1 1
=
K|Sy ,; f(z®)
= E[l=1/Z;.
Issues:

1. How draw samples? Gibbs sampling: highly dependent samples,
prone to slow mixing.

2. Not applicable to previous example since Zy = |Sy|.



Estimating 1/7¢ (Ogata-Tanemura)

Algorithm:
1. Draw samples 1), 22 . 25 ¢ Sy accordingtop,= f(x)/Z;.
2. Compute:

) 1 1
F:
K|Sy ,; f(z®)

AN

= El'| =1/Z;. Issues:

1. How draw samples? Gibbs sampling: highly dependent samples,
prone to slow mixing.

2. Not applicable to previous example since Zy = |Sy|.

We will address both issues by tree-based Gibbs sampling and
tree-based estimation of 1/Z;.




Tree-Based Gibbs Sampling
(Hamze & de Freitas, 2004)

Partition the index set {1,..., N} into two parts (A, B) such that
fixing either z 4 or g breaks all cycles in the remaining factor graph.
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Generate samples (azg), :cg)), (ajf), :1:(,?), ... by alternating between

- sampling :z:if) according to p(z4|zp = xg_1>) x f(xa, 35%:_1))

- sampling xg) according to p(zp|ra = xff)) x f(a:(Ak), rp)

Much faster mixing than naive Gibbs sampling.



Sampling from Cycle-Free Factor Graphs

(demonstrated for Markov chains)

n

Sampling from p(x1,...,z,) = p(x1) Hp(:):k|a:k_1) is straightforward.
k=2

What if p(xq,...,2,) x Hgk(a:k_l,xk) ?
k=2

Xk_g Xk:—l Xk Xk+1

gk—1 9k Jk+1

gi(Tp—1, z1) Pox, (k)
H
ILLXk—1(x/€—1)

Reparameterize using  p(zp|x, 1) =
with sum-product messages .

—> “backward filtering forward sampling” (or the other way round)
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Sampling from Cycle-Free Factor Graphs

(demonstrated for Markov chains)

n
Sampling from p(x1,...,z,) = p(z1) Hp($k|$k—1) is straightforward.
k=2

What if p(zq,...,2,) x Hgk(ajk_l,ajk) ?
k=2

Xi—2 X1 X Xit1

gk—1 gk Jk+1

gi(Tr—1, o) Tx, (T)
%
luXk:—1<xk—1)

Reparameterize using  p(zp|x, 1) =
with sum-product messages Ji.

—> “backward filtering forward sampling” (or the other way round)

Yields Z, = Z Hgk(zck_l,a:k) = Z ﬁXl(ajl) as a byproduct.

xl,...,xn k:2 'CU]_

11



Tree-Based Estimation of 1/Zf (ISIT 2008)

A A
= =
[] []
= =
[] []
= 5
[] []
= =

Suppose
falwa) 2 flwa,zp).
Tp
Therefore Zpy =D p, Jalwa) = Zy.

—> Can modify the “first method” to estimate 1/Zy = 1/Z;, by:

K |SfA‘ Z

klfA

Get fA(a:Ef)) and |Sy,| as byproducts of tree-based Gibbs sampling.
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Numerical Example: (1Tw 2009)

2D (1, 00)-RLL constraint, N = 10 x 10.

Estimated noiseless capacity % log Zf vs. number of samples K
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Numerical Example: (1Tw 2009)

2D (1, 00)-RLL constraint, N = 60 x 60.

Estimated noiseless capacity % log Zf vs. number of samples K
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Part |l: Extension to Information Rate
of Noisy Constrained 2-D Channels

- Constrained channel input X1,..., Xy
with 2-D factor graph for p(x1,...,zy) (up to a scale factor)

- Memoryless channel p(y|z) = [T, p(yr| 1)

X

=0 =200 7550 ¢
N !
[TDFDFDD\R
n n [?E\[]
[TDFDFDD\R
[?EK[] n n
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Estimating /(X;Y)

Want to estimate

IOGY) = T(HY) = H(Y| X))

Suppose H (Y| X) is analytically available, for example, if the noise
is additive white Gaussian (AWGN) independent of the input

1 1
NH(Y\X) =5 log(2mec?)

We will focus on estimating H(Y') (next slides).
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Estimating H(Y)
by a double-loop algorithm.

H(Y) = —Elogp(Y ——Zlogp

for samples ™M, ). .. L) from p(y).

Issues:
1. How to generate samples yM, ... y) ?
- Generate samples 2V, . .. 25 from p(z) by tree-based Gibbs
sampling.
- Generate yM, ...,y from 2, ... L) by channel simulation.

2. Remaining problem: how to estimate p(y'")) ?
—> inner loop (next slides).
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Estimating p(y)): Method 1
Clearly, the partition function of pxy(z,y'")) (as a function of z)
is p(y'")

p(y") = pxy(z,y")
rTEX

— Can estimate p(y'Y)) by
tree-based Gibbs sampling on py y(z, y“).
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Estimating p(y(@): Method 1

Clearly, the partition function of pxy(z,y'")) (as a function of z)
is p(y'")

p(y") = pxy(z,y")

reX

— Can estimate p(y'Y)) by
tree-based Gibbs sampling on py y(z, y“).

Convergence too slow/erratic at SNR =>-4 dB, (SNR 210 logy, é)
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Estimating p(y'')): Method 2

Importance sampling

1. Draw samples zM). 23 . 2(5) from X according to some

auxiliary probability distribution ¢(x) = Zigg(a:)

2. Compute
. 1 (x(k))
=g 2 e

k=1

~~

AN

= E(R) = Zf/Zg.
One (obvious) choice for g(x) is
gx) = f(x)*, for 0<a<l

With this choice, the structure of the factor graph is preserved =
Can sample from ¢(x) with tree-based Gibbs sampling.
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Estimating p(y'"):
Use J parallel versions of importance sampling as
For 7 =0,1,...,J let

A

gi(z) = f(x)v
with)0<a;<...<a; <a)=1.
Here Z,, = Z; and

Zr _ZnZy Lo
ZgJ Zgl Zg2 ZgJ

Multilayer importance sampling
1. Fory=1,2...,J compute Zgj_l/Zgj by importance sampling.

J
2. Use H R; as an estimate of Z;/Z, , since E(R;) = Zgi ]2y,
j=1



Estimating p(y'"):

Multilayer importance sampling
1. Forj=1,2,...,.J compute Zgj_l/Zgj by importance sampling.
J
2. Use H R; as an estimate of Z;/Z,,.
j=1

Estimating Z,, easier than Z; = tree-based Ogata-Tanemura.

In particular, we have Z,, = |S¢| if oy = 0.

In our numerical experiments

A

fo(z) = p(@pnx(yw”x)

And Z;, is the desired quantity.

23



Numerical Example:

Noisy 2D (1, 00)-RLL constraint, N = 24 x 24.
AWGN channel, p(x) uniform over valid configurations, and J = 4.

Estimated information rate at zero dB vs. number of samples L.
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Numerical Example:

Noisy 2D (1, 00)-RLL constraint, N = 24 x 24.
AWGN channel, p(x) uniform over valid configurations.

Estimated information rate vs. SNR

bits/symbol
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25



Conclusion

We proposed new sampling-based methods to estimate

e the partition function (normalization constant) of
unnormalized 2D probability distributions and

e the information rates of 2D source/channel models

The methods can handle other 2D constraints and other noisy 2D
channels, like ISI| channels.

The proposed methods are guaranteed to asymptotically converge
to the desired quantity, in contrast to approximate GBP-based

methods [SSKWW08, SM10].

Applications: 2D storage such as holographic data storage.
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Thank You!
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