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Question: how many Sudoku arrays are there?

(More technically: how many valid configurations are there?)
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Row condition: numbers 1, . . . , 9 appear exactly once.
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Sub-block condition: numbers 1, . . . , 9 appear exactly once.
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(More technically: how many valid configurations are there?)
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The determinant of an n× n-matrix θ

det(θ) =
∑

σ

sgn(σ)
∏

i∈[n]

θi,σ(i).

where the sum is over all n! permutations of the set [n] , {1, . . . , n}.

The permanent of an n× n-matrix θ:

perm(θ) =
∑

σ

∏

i∈[n]

θi,σ(i).

The permanent turns up in a variety of context, especially in

combinatorial problems, statistical physics (partition function), . . .
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Exactly Computing the Permanent

Brute-force computation:

O(n · n!) = O
(

n3/2 · (n/e)n
)

arithmetic operations.

Ryser’s algorithm:

Θ(n · 2n) arithmetic operations.

Complexity class [Valiant, 1979]:

#P (“sharp P” or “number P”),

where #P is the set of the counting problems associated with the

decision problems in the set NP. (Note that even the computation

of the permanent of zero-one matrices is #P-complete.)
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More efficient algorithms are possible if one does not want to compute

the permanent of a matrix exactly.

For a matrix that contains positive and negative entries:

→ “constructive and destructive interference of terms

in the summation.”

For a matrix that contains only non-negative entries:

→ “constructive interference of terms in the summation.”
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FROM NOW ON: we focus on the case where all entries of the

matrix are non-negative, i.e.

θij ≥ 0 ∀i, j.

Markov chain Monte Carlo based methods: [Broder, 1986], . . .

Godsil-Gutman formula based methods: [Karmarkar et al., 1993],

[Barvinok, 1997ff.], [Chien, Rasmussen, Sinclair, 2004], . . .

Fully polynomial-time randomized approximation schemes

(FPRAS): [Jerrum, Sinclair, Vigoda, 2004], . . .

Bethe-approximation-based / sum-product-algorithm-based

methods: [Chertkov et al., 2008], [Huang and Jebara, 2009], . . .
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From [Huang/Jebara, 2009].
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Graphical Model for Permanent

A1,1

A2,1

A7,1

A8,1

...

A2,2

A1,2

A7,2

A8,2

...

A1,3

A8,8

...

...

...
grow,8

grow,2

grow,1

gcol,8

gcol,2

gcol,1

...

...

(function nodes are suitably defined based on θ)

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , ai,8)
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perm(θ) = Z =
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Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , ai,8)

Permanent:

perm(θ) = Z =
∑

a1,1,...,a8,8

g(a1,1, . . . , a8,8)



Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

 Many short cycles.

 The vertex degrees are high.



Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

 Many short cycles.

 The vertex degrees are high.

Both facts might suggest that the

application of the sum-product algo-

rithm to this factor graph is rather

problematic.



Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

 Many short cycles.

 The vertex degrees are high.

Both facts might suggest that the

application of the sum-product algo-

rithm to this factor graph is rather

problematic.

However, luckily this is not the

case.



Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4
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grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

 Many short cycles.

 The vertex degrees are high.

Both facts might suggest that the

application of the sum-product algo-

rithm to this factor graph is rather

problematic.

However, luckily this is not the

case.

For an SPA suitability assessment,

the overall cycle structure and the

types of functions nodes are at least

as important.



Factor graphs and the

sum-product algorithm
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Factor Graphs

A factor graph can be

used to represent a

multivariate function:

f(x1, x2, x3)

f

X1 X2

X3

Variable nodes: for each variable we draw

a variable node (empty circles).

Function nodes: for each function we draw

a function node (filled squares).

Edges: there is an edge between a variable

node and a function node if the

corresponding variable is an argument of

the corresponding function.

Bipartite graph: the resulting graph is a

bipartite graph, i.e. there are only edges

between vertices of different types.



Factor Graphs

General references for factor graphs are:

F. R. Kschischang, B. J. Frey and H.-A. Loeliger, “Factor graphs

and the sum-product algorithm,” IEEE Trans. on Inform. Theory,

IT–47, Feb. 2001.

H.-A. Loeliger, “An introduction to factor graphs,” IEEE Signal

Processing Magazine, Jan. 2004.
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We assume that we know more about the internal structure of the

function f(x1, x2, x3), e.g.

f(x1, x2, x3) = fA(x1, x2) · fB(x2, x3).

Then we can take advantage of this fact and the factor graph represents

this structure.
X1 X2 X3

fA fB

f(., ., .) is called the global function.

fA(., .) and fB(., .) are called local functions.
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Factor Graphs
f(x1, x2, x3, x4, x5)

= fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5)

X1 X2 X3 X4 X5

fA fB fC fD fE

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Note: One and the same function can be represented by graphs with

different structures: some are more pleasing than others.



Factor Graph of an LDPC Code

In the context of channel coding, we usually take a factor graph to represent

the factorization of the joint pmf/pdf of all occuring variables, i.e. uncoded

symbols, coded symbols, and received symbols. Here it is shown when using

a quasi-cyclic repeat-accumulate LDPC code (binary [44, 22, 8] linear code).

Bit
Info-Bit
Channel-Bit
Info-/Channel-Bit
XOR-Function
Channel-Function



The Sum-Product Algorithm

Let us consider again the following factor graph (which is a tree).

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

The global function is

f(x1, x2, x3, x4, x5)

= fA(x1) · fB(x2) · fC(x1, x2, x3) · fD(x3, x4) · fE(x3, x5).
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The Sum-Product Algorithm
The figure shows the messages that are necessary for calculating ηX1

(x1), ηX2
(x2),

ηX3
(x3), ηX4

(x4), and ηX5
(x5).

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB

Edges: Messages are sent along edges.

Processing: Taking products and doing summations is done in the vertices.

Reuse of messages: We see that messages can be “reused” in the sense that

many partial calculations are the same; so it suffices to perform them only

once.
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f1

f2

f3

f4X

µX→f4
(x)

µX→f4(x) = µf1→X(x) · µf2→X(x) · µf3→X(x)

X1

X3

µf→X4
(x4)

f X4

X2

µf→X4(x4) =
∑

x1

∑

x2

∑

x3

f(x1, x2, x3, x4) · µX1→f (x1) · µX2→f (x2) · µX3→f (x3)
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f2

X

f1

f3

f4

Computation of marginal at variable node:

ηX(x) = µf1→X(x) · µf2→X(x)

· µf3→X(x) · µf4→X(x)

f

X2

X1

X4

X3

Computation of marginal at function node:

ηf (x1, x2, x3, x4) = f(x1, x2, x3, x4)

· µX1→f (x1) · µX2→f (x2)

· µX3→f (x3) · µX4→f (x4)
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Factor graph without loops: in this case it is obvious what

messages have to be calculated when.

⇒ Mode of operation 1



The Sum-Product Algorithm

Factor graph without loops: in this case it is obvious what

messages have to be calculated when.

⇒ Mode of operation 1

Factor graph with loops: one has to decide what update schedule

to take.

⇒ Mode of operation 2



Comments on the
Sum-Product Algorithm

If the factor graph has no loops then it is obvious what messages

have to be calculated when.

If the factor graphs has loops one has to decide what update

schedule to take.

Depending on the underlying semi-ring one gets different versions

of the summary-product algorithm.

For 〈R,+, · 〉 one gets the sum-product algorithm.

(This is the case discussed above.)

For 〈R+,max, · 〉 one gets the max-product algorithm.

For 〈R,min,+〉 one gets the min-sum algorithm.

etc.
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Claim:

Z =
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X2

· Z3
X3

· Z1
X4

· Z1
X5

(Here we used the fact that for a graph with one component and no cycles it holds

that #vertices = #edges + 1.)
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Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB
rescaled by γ

Z =
ZfA · ZfB · ZfC · ẐfD · ẐfE · ZX1 · ZX2 · ẐX3 · ẐX4 · ẐX5

Z2
X1
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· Ẑ3
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X4

· Ẑ1
X5



Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB
rescaled by γ

Z =
ZfA · ZfB · ZfC · γZfD · γZfE · ZX1 · ZX2 · γZX3 · γZX4 · γZX5

Z2
X1

· Z2
X2

· γ3Z3
X3

· γ1Z1
X4

· γ1Z1
X5



Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB
rescaled by γ

Z =
γ5

γ5
· ZfA · ZfB · ZfC · ZfD · ZfE · ZX1 · ZX2 · ZX3 · ZX4 · ZX5

Z2
X1

· Z2
X2
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· Z1
X4

· Z1
X5
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fE
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fB
rescaled by γ

Z =
ZfA · ZfB · ZfC · ZfD · ZfE · ZX1 · ZX2 · ZX3 · ZX4 · ZX5

Z2
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X2
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Partition Function

X4

X5

fD

fE

X3

X2

X1

fC

fA

fB
rescaled by γ

Z =
ZfA · ZfB · ZfC · ZfD · ZfE · ZX1 · ZX2 · ZX3 · ZX4 · ZX5

Z2
X1

· Z2
X2

· Z3
X3

· Z1
X4

· Z1
X5

Remarkable: this expression is invariant to rescaling of

function-node-to-variable-node messages!
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Bethe approximation:

Use the above type of expression also when factor graph has cycles.
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fB

Z =

∏

f Zf · ∏

X ZX
∏

X Z
deg(X)
X

Bethe approximation:

Use the above type of expression also when factor graph has cycles.

→ Z ′
Bethe
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Bethe Partition Function

Basically, we can evaluate the expresion for Z ′
Bethe at any iteration

of the SPA.

Factor graph without cycles:

We have Z ′
Bethe = Z only at a fixed point of the SPA.

Factor graph with cycles:

Therefore, we call Z ′
Bethe a (local) Bethe partition function only if

we are at a fixed point of the SPA.

Factor graph with cycles: the SPA can have multiple fixed points.

We define the Bethe partition function to be

ZBethe , max
fixed points of SPA

Z ′
Bethe.



Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

(function nodes are suitably defined based on θ)

(variable nodes have been omitted)

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , xi,8)

Permanent:

perm(θ) = Z =
∑

a1,1,...,a8,8

g(a1,1, . . . , a8,8)
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Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , xi,8)

Bethe Permanent:

permB(θ) , ZBethe

However, the SPA is a locally operating algorithm and so has its

limitations in the conclusions that it can reach.



Graphical Model for Permanent

grow,1

grow,2

grow,3

grow,4

grow,5

grow,6

grow,7

grow,8

gcol,1

gcol,2

gcol,3

gcol,4

gcol,5

gcol,6

gcol,7

gcol,8

Global function:

g(a1,1, . . . , a8,8)

=
∏

j

gcol,j(a1,j, . . . , a8,j)×

∏

i

grow,i(ai,1, . . . , xi,8)

Bethe Permanent:

permB(θ) , ZBethe

This locality of the SPA turns out to be well-captured by so-called

finite graph covers, especially at fixed points of the SPA.
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θ =
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Combinatorial Characterization
of the Permanent

Consider the matrix

θ =





θ1,1 θ1,2

θ2,1 θ2,2



 with perm(θ) = θ1,1θ2,2 + θ2,1θ1,2.

In particular,

θ =





1 1

1 1


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θ =
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1 1

1 1





equals the number of perfect matchings in the following bipartite graph:

2
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Combinatorial Characterization
of the Permanent

Recall that the permanent of a zero/one matrix like

θ =





1 1

1 1





equals the number of perfect matchings in the following bipartite graph:

2

11

2

Namely,

2

11

2 2

11

2



A Combinatorial Interpretation
of the Bethe Permanent

Consider the non-negative matrix θ of size n× n.

Let PM×M be the set of all permutation matrices of size M ×M .

For every positive integer M , we define ΨM be the set

ΨM ,

{

P =
{

P(i,j)
}

(i,j)∈[n]2

∣

∣

∣ P
(i,j) ∈ PM×M

}

.

For P ∈ ΨM we define the P-lifting of θ to be the following

(nM)× (nM) matrix

θ =









θ1,1 · · · θ1,n
...

...

θn,1 · · · θn,n









P-lifting
−→
of θ

θ↑P ,









θ1,1P
(1,1) · · · θ1,nP

(1,n)

...
...

θn,1P
(n,1) · · · θn,nP

(n,n)









.



Degree-M Bethe Permanent

Definition: For any positive integer M , we define the degree-M Bethe

permanent of θ to be

permB,M(θ) , M

√

〈

perm
(

θ↑P
)

〉

P∈ΨM

.

Theorem:

permB(θ) = lim sup
M→∞

permB,M(θ).



Special Case:
Deg.-M Bethe Permanent for n = 2

We want to obtain some appreciation why the Bethe permanent of θ is

close to the permanent of θ, and where the differences are.
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Special Case:
Deg.-M Bethe Permanent for n = 2

We want to obtain some appreciation why the Bethe permanent of θ is

close to the permanent of θ, and where the differences are.

As before, consider the matrix

θ =





θ1,1 θ1,2

θ2,1 θ2,2



 with perm(θ) = θ1,1θ2,2 + θ2,1θ1,2.

In particular,

θ =





1 1

1 1



 with perm(θ) = 1 · 1 + 1 · 1 = 2.
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Special Case:
Deg.-M Bethe Permanent for n = 2

For this θ, a P-lifting looks like

θ↑P =


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

 =




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perm
(

θ↑P
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I I
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

 .



Special Case:
Deg.-M Bethe Permanent for n = 2

For this θ, a P-lifting looks like

θ↑P =





1 ·P1,1 1 ·P1,2

1 ·P2,1 1 ·P2,2



 =





P1,1 P1,2

P2,1 P2,2



 .

Applying some row and column permutations, we obtain

perm
(

θ↑P
)

= perm





I I

I P−1
2,1P2,2P

−1
1,2P1,1



 .

Therefore,

permB,M(θ) , M

√

√

√

√

√

〈

perm





I I

I P′
2,2





〉

P′

2,2∈PM×M

.



Special Case:
Degree-2 Bethe Permanent for n = 2

For M = 2 we have

permB,2(θ) , 2

√

√

√

√

√

〈

perm





I I

I P′
2,2





〉

P′

2,2∈P2×2



Special Case:
Degree-2 Bethe Permanent for n = 2

For M = 2 we have

permB,2(θ) , 2

√

√

√

√

√

〈

perm





I I

I P′
2,2





〉

P′

2,2∈P2×2

corresponds to computing the average number of perfect matchings in

the following 2-covers (and taking the 2nd root):

1
′′

2
′

2
′′

1
′′

1
′

1
′
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′

2
′′

1
′′

2
′

2
′′

1
′′

1
′

1
′

2
′

2
′′

4 2



Special Case:
Degree-2 Bethe Permanent for n = 2

For M = 2 we have

permB,2(θ) =
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√

1
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Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph
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Because this double cover consists of two independent copies of the

base graph, the number of perfect matchings is 22 = 4.
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Special Case:
Degree-2 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph
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For this graph, the perfect matchings are
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The coupling of the cycles causes this graph to have fewer than

22 perfect matchings!



Special Case:
Degree-2 Bethe Permanent for n = 2

On the other hand, for M = 2 we have

permB,2(θ) =
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√

1
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3
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· 6 =
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Special Case:
Degree-3 Bethe Permanent for n = 2

On the other hand, for M = 3 we have

permB,3(θ) , 3

√

√

√

√

√

〈

perm





I I

I P′
2,2





〉

P′

2,2∈P3×3



Special Case:
Degree-3 Bethe Permanent for n = 2

On the other hand, for M = 3 we have

permB,3(θ) , 3

√

√

√

√

√

〈

perm





I I

I P′
2,2





〉

P′

2,2∈P3×3

corresponds to computing the average number of perfect matchings in

the following 3-covers (and taking the 3rd root):
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Special Case:
Degree-3 Bethe Permanent for n = 2

On the other hand, for M = 3 we have
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On the other hand, for M = 3 we have

permB,3(θ) =
3

√

1

3!
· (8 + 4 + 4 + 4 + 2 + 2)

=
3

√

1

3!
· 24 =

3
√
4 ≈ 1.587

corresponds to computing the average number of perfect matchings in

the following 3-covers (and taking the 3rd root):
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Special Case:
Degree-3 Bethe Permanent for n = 2

On the other hand, for M = 3 we have

permB,3(θ) =
3

√

1

3!
· (8 + 4 + 4 + 4 + 2 + 2)

=
3

√

1

3!
· 24 =

3
√
4 ≈ 1.587 <

3
√
8 = 2 = perm(θ)

corresponds to computing the average number of perfect matchings in

the following 3-covers (and taking the 3rd root):
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Special Case:
Degree-3 Bethe Permanent for n = 2

Let us have a closer look at the perfect matchings in the graph
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The coupling of the cycles causes this graph to have fewer than

23 perfect matchings!



Special Case:
Deg.-M Bethe Permanent for n = 2

For general M we obtain

permB,M(θ) = M
√

ζSM
=

M
√
M + 1,

ζSM
: cycle index of the symmetric group over M elements.
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The Gibbs free energy function

FGibbs(p) , −
∑

a

pa · log
(

g(a)
)

+
∑

a

pa · log(pa).

is defined such that its minimal value is related to the partition function:

perm(θ) = Z = exp

(

−min
p

FGibbs(p)

)

.

Nice, but it does not yield any computational savings by itself.



Gibbs Free Energy
Function
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∗

− log(ZGibbs) FGibbs(p)

F ′(p)

− log(Z ′)

p
′

The Gibbs free energy function

FGibbs(p) , −
∑

a

pa · log
(

g(a)
)

+
∑

a

pa · log(pa).

is defined such that its minimal value is related to the partition function:

perm(θ) = Z = exp

(

−min
p

FGibbs(p)

)

.

But it suggests other optimization schemes.
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The Bethe approximation to the Gibbs free energy function yields such

an alternative optimization scheme.

This approximation is interesting because of the following theorem:

Theorem (Yedidia/Freeman/Weiss, 2000):

Fixed points of the sum-product algorithm (SPA) correspond to

stationary points of the Bethe free energy function.

Definition: We define the Bethe permanent of θ to be

permB(θ) = ZBethe = exp

(

−min
β

FBethe(β)

)

.



Bethe Approximation

However, in general, this approach of replacing the Gibbs free energy by

the Bethe free energy comes with very few guarantees:



Bethe Approximation

However, in general, this approach of replacing the Gibbs free energy by

the Bethe free energy comes with very few guarantees:

The Bethe free energy function might have multiple local minima.



Bethe Approximation

However, in general, this approach of replacing the Gibbs free energy by

the Bethe free energy comes with very few guarantees:

The Bethe free energy function might have multiple local minima.

It is unclear how close the (global) minimum of the Bethe free

energy is to the minimum of the Gibbs free energy.



Bethe Approximation

However, in general, this approach of replacing the Gibbs free energy by

the Bethe free energy comes with very few guarantees:

The Bethe free energy function might have multiple local minima.

It is unclear how close the (global) minimum of the Bethe free

energy is to the minimum of the Gibbs free energy.

It is unclear if the sum-product algorithm converges (even to a

local minimum of the Bethe free energy).
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Luckily, in the case of the permanent approximation problem, the

above-mentioned normal factor graph N(θ) is such that the Bethe free

energy function is very well behaved. In particular, one can show that:

The Bethe free energy function (for a suitable parametrization)

is convex and therefore has no local minima [V., 2010, 2011].

The minimum of the Bethe free energy is quite close to the

minimum of the Gibbs free energy. (More details later.)

The sum-product algorithm converges to the minimum of the

Bethe free energy. (More details later.)
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permB(θ)

Theorem (Gurvits, 2011)
↓
≤ perm(θ)

Conjecture (Gurvits, 2011)
↓
≤

√
2
n · permB(θ)

This can be rewritten as follows:

1

n
log permB(θ)

Theorem
↓
≤ 1

n
log perm(θ)

Conjecture
↓
≤ 1

n
log permB(θ) + log(

√
2)
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Relationship between
Permanent and Bethe Permanent

Problem: find large classes of random matrices such that w.h.p.

permB(θ)

Theorem (Gurvits, 2011)
↓
≤ perm(θ) ≤ O(

√
n) · permB(θ).

This can be rewritten as follows:

1

n
log permB(θ)

Theorem
↓
≤ 1

n
log perm(θ) ≤ 1

n
log permB(θ) +O

(

1

n
log(n)

)
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Sum-Product Algorithm Convergence

Theorem: Modulo some minor technical conditions on the initial

messages, the sum-product algorithm converges to the (global)

minimum of the Bethe free energy function [V., 2010, 2011].

Comment: the first part of the proof of the above theorem is very

similar to the SPA convergence proof in

Bayati and Nair, “A rigorous proof of the cavity method for counting

matchings,” Allerton 2006.

Note that they consider matchings, not perfect matchings. (Although

the perfect matching case can be seen as a limiting case of the matching

setup, the convergence proof of the SPA is incomplete for that case.)
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Conclusions

Loopy belief propagagion is no silver bullet.

However, there are interesting setups where it works very well.

Complexity of the permanent estimation based on the SPA is

remarkably low. (Hard to be beaten by any standard convex

optimization algorithm that minimizes the Bethe free energy.)

If the Bethe approximation does not work well, one can try better

approximations, e.g., the Kikuchi approximation.

Note: One can also give a comb. interpr. of the Kikuchi part. func.

Inspired by the approaches mentioned in this talk, Ryuhei Mori

recently showed that many replica method computations can be

simplified and made quite a bit more intuitive.



Thank you!
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